IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received May 15, 2017, accepted July 1, 2017, date of publication July 7, 2017, date of current version July 24, 2017.

Digital Object Identifier 10.1109/ACCESS.2017.2724065

Nonuniform Neighborhood Sampling Based
Simulated Annealing for the Directed

Feedback Vertex Set Problem

ZHIPENG TANG, QILONG FENG, AND PING ZHONG, (Member, IEEE)

School of Information Science and Engineering, Central South University, Changsha 410083, China

Corresponding author: Ping Zhong (ping.zhong @csu.edu.cn)

This work was supported by the National Natural Science Foundation of China under Grant 61402542.

ABSTRACT The feedback vertex set problem (FVSP), a combinatorial optimization problem, finds a
set of vertices that intersect all cycles of the directed graph. One of the cutting-edge heuristics for this
problem is a simulated annealing (SA)-based algorithm named the SA-FVSP. In this paper, we propose
an improved variant of the SA-FVSP by applying the nonuniform neighborhood sampling (NNS), namely,
the SA-FVSP-NNS. The NNS is a general strategy for improving the SA-based algorithm. Its basic idea is
to prioritize the neighbors which are closer to the global optimum by assigning them with higher sampling
probabilities. By doing this, these neighbors are more likely to be selected in the sampling process. To apply
this general strategy to the SA-FVSP, we propose the concepts of the priority function and the sampling
function, respectively. The priority function utilizes the known heuristic rules of the FVSP to estimate and
score the quality of neighbors, while the sampling function converts the scores computed by the priority
function to sampling probabilities, which can directly guide the NNS process. Experiments indicate that the

SA-FVSP-NNS algorithm outperforms the SA-FVSP.

INDEX TERMS Feedback vertex set, simulated annealing, nonuniform neighborhood sampling.

I. INTRODUCTION

Given a graph, a feedback vertex set is a set of vertices which
intersect all cycles of the graph. In other words, the given
graph will be acyclic if all vertices in the feedback vertex
set are removed [1]. Obviously, the feedback vertex set is not
unique in a graph. We call the one with minimum cardinality
the minimum feedback vertex set. The feedback vertex set
problem (FVSP) is a combinatorial optimization problem
which aims to find a minimum feedback vertex set for a given
graph.

The FVSP is well-known in theoretical computer sci-
ence for a long time because its decision version for a
directed graph is among the first 21 problems proven to be
NP-complete [2]. It also has many applications in var-
ious areas, such as Bayesian inference [3], Operating
systems [4], VLSI chip design [5]. Because of the signif-
icance of the FVSP, enormous research has been done to
tackle this problem, especially from the perspectives of exact
algorithms [6], [7], approximation algorithms [8], [9], and
parameterized algorithms [10], [11]. However, there are only
a few studies dedicating to solve the problem from the stand-
point of metaheuristics [1].

In 2013, Galinier et al. [1] proposed a metaheuristic based
algorithm for the FVSP, i.e. the Simulated Annealing for the
Feedback Vertex Set Problem (SA-FVSP), which is regarded
as the best existing heuristic algorithm for the FVSP in the
directed graph so far. The SA-FVSP is based on simulated
annealing (SA), which is a typical local search based meta-
heuristic [12]. Local search is a search strategy which finds
local optimums for a combinatorial optimization problem by
moving from one solution to another in the search space
using local changes [13]. In order to apply a local search
based metaheuristic algorithm (such as the SA) to a com-
binatorial optimization problem, we need to define a local
search approach and then incorporate it into the metaheuristic
algorithm. A local search approach can be defined as a triplet
including: the search space (i.e. the set of configurations),
the evaluation function and the move mechanism [1]. Con-
figurations are the representation of feasible solutions, and
all feasible configurations constitute the search space. The
evaluation function is the quantification of the optimization
target. The move mechanism defines how to move from a
solution to one of its neighboring solutions. A move of a ref-
erence configuration can transform this configuration to one

2169-3536 © 2017 IEEE. Translations and content mining are permitted for academic research only.

VOLUME 5, 2017

Personal use is also permitted, but republication/redistribution requires IEEE permission. 12353

See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

IEEE Access

Z. Tang et al.: NNS-Based SA for the Directed FVSP

of its neighbors in accordance with the move mechanism. The
SA-FVSP defines a practical local search approach based on
the topological ordering property of the directed graph, and
then incorporates it into the SA metaheuristic. The SA starts
from an initial configuration. Then it moves from a config-
uration to another to forage for the global optimum. In each
iteration, it randomly picks up a feasible move of the cur-
rent configuration, and then determine whether to apply the
move to the current configuration according to the Metropolis
criterion.

In this paper, we introduce the nonuniform neighborhood
sampling (NNS) strategy to the SA-FVSP, and propose
an improved variant of this algorithm, named the Simu-
lated Annealing for the Feedback Vertex Set Problem using
Nonuniform Neighborhood Sampling (SA-FVSP-NNS).
More specifically, in the SA-FVSP, a move is selected with
uniform probabilities in each iteration of the SA before it is
applied to the current configuration. This is effective but not
efficient because such a sampling process (i.e. the process
of choosing a feasible move) is totally blind. To mitigate
the blindness, we find that a number of underlying heuristic
rules for the FVSP has been observed by previous studies.
Based on some of them, we can predict that some moves are
more likely to lead the current configuration to a global opti-
mum than others. Thus, when randomly selecting a feasible
move in the sampling process, if we assign these superior
moves with higher probabilities, and mutatis mutandis, assign
those inferior moves with lower probabilities, the algorithm
can definitely find out local optimums more rapidly and
finally converge to better solutions. This idea is called
NNS strategy [12]. Therefore, in the SA-FVSP-NNS,
the concept of the priority function is introduced to esti-
mate and score the quality of moves, and the concept of
the sampling function is introduced to guide the assign-
ment of the sampling probability in accordance with the
output of the priority function. Based on these two func-
tions, the newly proposed algorithm prioritizes those supe-
rior moves to a certain degree in the sampling process.
Extensive experiments are conducted based on a recog-
nized benchmark proposed by Pardalos et al. to show the
superiority of the SA-FVSP-NNS when compared with the
SA-FVSP.

The rest of the paper is organized as follows. A litera-
ture review is first presented in Section II. The SA-FVSP is
introduced in Section III. The details of the SA-FVSP-NNS
are described in Section IV. Section V presents the experi-
mental results. Finally, some concluding remarks are made
in Section VI.

Il. RELATED WORK
Optimization problems are ubiquitous in various fields of

computer science, such as theoretical computer science [14],
wireless sensor networks [15] and machine learning [16]. The
goal of the problem is to search from all possible solutions
for the best solution. Combinatorial optimization problems
are those optimization problems whose solution space is

12354

discrete. The feedback vertex set problem (FVSP) is a typical
combinatorial optimization problem.

The FVSP can be divided into several interrelated prob-
lems, whose common goal is to find a set of vertices with
minimum cardinality (or minimum weight) that intersect all
the cycles of a given graph. Depending on whether the given
graph is directed or undirected, we have the FVSP in the
directed graph or in the undirected graph. Similarly, depend-
ing on whether the given graph is weighted or unweighted,
we have the weighted or unweighted FVSP.

The FVSP is important in theoretical computer science
because it is NP-complete in general graphs [2], [17]. It also
has wide practical applications in various areas [3]-[5], [18].
As mentioned in Section I, many studies has been done
on this problem, including two comprehensive literature
reviews [5], [19]. However, there are only a few studies
focusing on designing heuristics for this problem [1].

Currently, there are five main heuristics for the unweighted
FVSP, i.e. the GRASP and its variant, the SA-FVSP,
the NewkL.S_FVS and the SALS. A chronological literature
review is conducted below.

In 1998, Pardalos et al. [20] proposed the Greedy Ran-
domized Adaptive Search Procedure (GRASP) for the FVSP,
which is the first known metaheuristic based algorithm for
the FVSP in literature. It can be used in both the directed and
undirected graph. The GRASP is a randomized metaheuristic
which can produce high quality solutions for a wide range
of combinatorial optimization problems [21]. An iteration of
the GRASP consists of two consecutive searching phases,
i.e. the construction phase and the local search phase [13].
With regard to the GRASP for the FVSP, an initial solution,
i.e. a valid feedback vertex set, is constructed in the con-
struction phase; then the constructed initial solution is fine-
tuned to achieve the local optimum solution in the local search
phase. The GRASP is a multi-start algorithm, which repeats
this iteration for many times to prevent itself from trapping
into only one local optimum solution. In the construction
phase, in order to improve the quality of the initial solution,
the greedy function is introduced to estimate how likely a
vertex belongs to the minimum feedback vertex set (More
specifically, if a vertex is more likely to belong to a minimum
feedback vertex set, the greedy function will assign it with
a larger score), and those vertices with higher scores have
higher probabilities to be chosen into the initial solution.
As for the local search phase, as Pardalos et al. [20] pointed
out, the main difficulty of this phase is verifying whether a
graph is acyclic or not. Although the reduction rules proposed
by Levy and Low [22] is used in the algorithm to mitigate the
difficulty, this phase is still the performance bottleneck of the
algorithm.

In 2006, Cai et al. [23] improved the performance of the
GRASP for the FVSP by modifying the computation process
of the original algorithm, adding newly observed reduction
rules and introducing a new greedy function.

In 2013, two local search based heuristic algorithm for the
FVSP were proposed. The first one is the aforementioned

VOLUME 5, 2017

Z. Tang et al.: NNS-Based SA for the Directed FVSP

IEEE Access

SA-FVSP, which is based on the SA [1], [24]. The SA-FVSP
ingeniously utilizes the topological ordering property of the
directed acyclic graph to avoid the time-consuming process of
verifying whether a graph is acyclic or not repetitively, which
was considered inevitable before. Therefore, it can obviously
outperform the GRASP based algorithms (It is worth noting
that the experiments to compare the performance gap between
the GRASP and the SA-FVSP is elaborately designed so that
little bias can occur). However, because of the utilization of
the topological ordering property, the SA-FVSP can only be
used for the FVSP in the directed graph. The second algo-
rithm is the k-opt Local Search Algorithm with a Randomized
Scheme for the Feedback Vertex Set (NewkLS_FVS) [25],
which mainly focuses on the FVSP in the undirected graph.
The metaheuristic used in this algorithm, i.e. the k-opt local
search algorithm, is different from the SA-FVSP and the
GRASP for the FVSP, which changes more than one ver-
tex from the current solution each time. Nevertheless, this
algorithm does not propose an efficient method to elimi-
nate or avoid the process of repetitively verifying whether a
graph is acyclic or not, so it also wastes a large amount of
time on this operation just like the GRASP based algorithms.

In 2014, Qin and Zhou [26] proposed the Simulated
Annealing Local Searching Protocol for the Undirected
FVSP (SALS) based on the work of Galinier et al.. This
algorithm is only applicable to the undirected graph version
of the FVSP. It modifies the microscopic search rules of the
SA-FVSP by defining a constrained order for the vertices
outside the current configuration.

As for the heuristics for the weighted FVSP, there are three
existing algorithms, i.e. XTS [27], ITS [28] and MA [29].
Carrabs et al. have given an excellent review on the heuristic
algorithm for the weighted FVSP (see [29]).

The SA-FVSP-NNS improves the performance of the
SA-FVSP by introducing nonuniform neighborhood sam-
pling (NNS), which is a general strategy for improving the
performance of the SA metaheurisitc. In some cases, NNS is
made to simplify the neighborhood generation procedure,
while in others it is used to guide the search more effectively.
In fact, the sampling process of some problems may even
be naturally nonuniform [12]. There are already a number
of studies using this strategy to accelerate the SA based
algorithm [30]-[35].

Dowsland and Thompson [12] provided a comprehensive
review on this topic. We notice that Lin et al.’s [33] solu-
tion to the truck and trailer routing problem and Ropke and
Pisinger solution to a pick up and delivery problem [34]
share some similarities to the ideas behind the proposed
SA-FVSP-NNS. We all try to bias the sampling process to
some neighbors. In Lin et al’s work, the algorithm gen-
erates several neighbors and uses the best of them as the
trial solution, instead of making the accept/reject decision on
every single neighbor. Unlike Lin et al.’s solution that uses
the best neighbor directly, Ropke et al. includes some kinds
of randomization in order to maintain an appropriate level
of flexibility for the SA. In the proposed SA-FVSP-NNS,

VOLUME 5, 2017

we define the sampling function taking into consideration the
requirements of both efficiency and flexibility. That is also the
reason why we introduce a parameter to randomize selection
in the sampling function.

Ill. SA-FVSP ALGORITHM
In this section, we briefly introduce the SA-FVSP, which

was proposed by Galinier et al. [1]. We first define the local
search approach that the SA-FVSP uses. Configurations and
the evaluation function are presented in Section III-A, and
the move mechanism is presented in Section III-B. Then,
in Section III-C, we incorporate the local search approach
into the SA metaheuristic and describe the pseudo-code of
the SA-FVSP.

A. CONFIGURATIONS AND EVALUATION FUNCTION

A directed graph can be denoted as G = (V, E) where V is a
set of vertices and E € V x V is a set of arcs. A directed
graph with no directed cycles is called a directed acyclic
graph (DAG). Suppose V' is a subset of V, the subgraph of
G induced by V', denoted as G(V’), is the graph whose vertex
setis V/ and whose arcs are those arcs which belong to E and
have two endpoints in V', i.e. G(V) = (V,EN (V' x V).

Since V' is a subset of V, it is obvious that the induced
subgraph G(V') is a DAG if and only if V — V' is a feedback
vertex set of the original directed graph G. Thus, the FVSP
is equivalent to finding a vertex subset V' of maximum car-
dinality such that G(V’) is a DAG. In the SA-FVSP, we only
consider this equivalent version of the FVSP.

A topological ordering of a directed graph is an ordering of
its vertices such that the starting point of every arc is in front
of the ending point of the arc in the ordering. An important
property of the topological ordering is that every DAG has
at least one feasible topological ordering, and conversely,
the existence of one topological ordering implies that the
graph is a DAG.

In the SA-FVSP, configurations are represented as the
topological ordering of the acyclic induced subgraph of G,
as formally defined in Def. 1:

Definition 1 (Configuration): In asequence S, the number
of elements is denoted as |S|, and the i-th element is denoted
as S[i], foreveryi = 1,2, ..., g where g = |S|. The sequence
S = (S[11, S[2], ..., S[q]) is a configuration if:

1) S[1], S[2], ...and S[g] are vertices in the set V and are

all different.

2) Vi,j,(1 <i<j<gq) — (S[jl,S[iD ¢ E (precedence

constraint)

In addition, we denote the set of the vertices that appear in
the sequence S as Dom(S) = {S[1], S[2], ..., S[ql}. A vertex
in V is described as numbered or unnumbered depending on
whether it belongs to the set Dom(S) or not.

We notice that every configuration S corresponds to an
induced DAG G(Dom(S)) and that V — Dom(S) is a cor-
responding feedback vertex set of G. Therefore, the opti-
mization target of the FVSP can be formalized as finding a
configuration S which can minimize |V — Dom(S)|. Def. 2 is
the definition of the evaluation function.

12355

IEEE Access

Z. Tang et al.: NNS-Based SA for the Directed FVSP

Definition 2 (Evaluation Function): Assume S is a con-
figuration in the search space, the evaluation function f(S)
can be defined as

f(8) =1V — Dom(S)| ey

B. MOVE MECHANISM

In the SA-FVSP, a move consists of two steps: inserting a new
vertex into a particular position of the current configuration
and then deleting the vertices which would now violate the
precedence constraint. Def. 3 is the formal definition of the
move.

Definition 3 (Move): Assume S 1is a configuration.
A move < v,i >, where v € V — Dom(S) and i €
{1,2,...,|S] + 1}, includes two steps: inserting v just
before S[i], and then removing from S the elements of
CV_(v,i) U CV4(v, i), where:

e CV_(v,i)={Sljl € S:j>iand (S[jl,v) € E}

o« CVL(v,i)={S[jle€ S :j<iand(v,S[j]) € E}

Adopting the move < v,i > to S, the so-obtained con-
figuration is obviously still valid and can be referred as
S® < v,i >. For a particular graph and one of its config-
uration S, all moves applicable to S consist of the move list
for S.

Instead of using the move list directly, the SA-FVSP
defines a refined move list, named the candidate list. The
candidate list is a subset of the move list with high-quality
moves inside. Def. 4 gives the definition of the high-quality
move.

Definition 4 (High-Quality Move): Assume S is a refer-
ence configuration. Assume

e I_(v) = {i : S[i] e N-(w)}and I+(v) = {i : S[i] €

N4 (v)}, where N_(v) and N (v) are the sets of the in-
coming and out-going neighbors of the vertex v in the
graph respectively.

o i_(v) = max(I-(v)) + 1 if I_(v) # ¢; otherwise,

i—(v)=1;

o i+ (v) = min(l-(v)) if I+ (v) # ¢; otherwise, i1 (v) =

IS+ 1.
A high-quality move (v, i), where v € V — Dom(S) and
i € {i_(v), i+(v)}, includes two steps: inserting v just before
S[i], and then removing from S the elements of CV_(v, i) U
CVi(v,i).

Intuitively speaking, for a reference configuration S and
a vertex v € V — Dom(S), the move list for § allows v to
be inserted into arbitrary positions of S, but the candidate
list for S restricts v to be inserted into only two positions,
i.e. the position just after its numbered in-coming vertices
(i.e. in the position before S[i_(v)]) and the position just
before its numbered out-going neighbors (i.e. in the position
before S[i(v)]). This restriction can significantly reduce the
number of vertices which violate the precedent constraint
after inserting a new vertex. Thus, the number of moves in
the candidate list is far less than that in the move list. Besides,
Galinier et al. proved that both the candidate list and the move
list define the same local optimum solutions [1].

12356

The performance of the move < v, i > can be defined as
S, i)=f(S® < v,i>)—f (S), which means its influence
on the evaluation function. Because a move will insert a new
vertex and then delete all conflicting vertices, we also have
that

8, i) = —1 4+ |CVL(v, D) + |[CV_(v, i) 2)

C. ALGORITHM

Since an effective local search approach for the FVSP has
been proposed, we now can incorporate it into a meta-
heuristic. The SA-FVSP is based on the SA, which is
a typical local search based metaheuristic, proposed by
Kirkpatrick et al. [36]. Algorithm 1 is the pseudo-code of the
algorithm.

Algorithm 1 SA-FVSP
Input: a directed graph G; parameters Ty, o, maxMv,

maxFail
Output: the best configuration S, found by the
algorithm
1 Set T := Ty; nbFail :==0; S := (); S« := ();
2 repeat
3 Set nbMv := 0; failure := true;
4 repeat
5 Choose a move < v, i > uniformly randomly
from the candidate list;
6 Evaluate A := §(v, i);
7 if A <0orexp(—A/T) > random(0, 1) then
8 Apply move < v, i > to configuration S;
9 Set nbMv := nbMv + 1;
10 if £(S) < f(Sx) then
11 Set Sy :=S;
12 Set failure := false;
13 end
14 end
15 until nbMv = maxMv;
16 if failure = true then
17 ‘ Set nbFail := nbFail + 1
18 else
19 | SetnbFail := 0
20 end
21 SetT =T x «a;

2 until nbFail = maxFuail;

(53

At the beginning, the temperature is initialized to a param-
eter Top and the configuration is initialized as an empty
sequence. There are two loops in the SA-FVSP. The inner
loop (lines 4-15) is corresponding to trials performed by the
SA: uniformly randomly choosing a move from the candi-
date list (line 5, called the sampling process); then using
the Metropolis criterion to determine whether the move is
accepted or not (line 7); applying the move to the current
configuration if the move is accepted (line 8-13). The outer
loop (line 2-22) is corresponding to stages of the algorithm.

VOLUME 5, 2017

Z. Tang et al.: NNS-Based SA for the Directed FVSP

IEEE Access

During a certain stage, SA-FVSP runs the inner loop repeat-
edly until maxMvt “actual” moves have been performed, and
then, decreases the temperature by multiplying « (line 21).
This process is repeated until maxFuail stages have been run
without any improvement of the score of the current best
configuration Sy (i.e. the value computed by the evaluation
function).

IV. SA-FVSP-NNS ALGORITHM
We notice that, in the sampling process of the SA-FVSP, every

feasible move are chosen from the candidate list with the
same probability. This sampling strategy is called uniform
neighborhood sampling. Although adopting uniform proba-
bilities is effective, it is not efficient. A natural idea is that
if we can predict which moves are superior (i.e. the moves
which can prompt the configuration to more rapidly converge
to a minimum feedback vertex set) by utilizing some under-
lying heuristic rules of the FVSP, we can improve the perfor-
mance of the SA-FVSP by prioritizing these superior moves
in the sampling process (more specifically, when choosing
a move from the candidate list, superior moves are assigned
with larger sampling probabilities whereas inferior moves are
assigned with smaller sampling probabilities). This idea is
called nonuniform neighborhood sampling (NNS), which is
a general technique for improving the performance of the SA
based algorithm [12].

In order to apply NNS to the SA-FVSP, we have to
answer two questions: how to estimate how superior a
move is, and how to convert the estimation to the sam-
pling probability, which can guide the sampling process
directly. We describe the solutions to these two problems in
the following Section IV-A and Section IV-B respectively.
In Section IV-C, we combine the SA-FVSP with NNS strat-
egy and propose the Simulated Annealing for the Feedback
Vertex Set Problem using Nonuniform Neighborhood Sam-
pling (SA-FVSP-NNS).

A. PRIORITY FUNCTION
When delving into combinatorial optimization problems,
we can usually find out some useful properties and heuristic
rules, some of which can be used to accelerate the optimiza-
tion process of local search based metaheuristics. For the
FVSP, we quantify this kind of properties and heuristic rules
as a function, which can estimate and score how superior a
move is (i.e. how likely a move makes the current configu-
ration approach a global optimum), and use this function to
guide the sampling process. We call this newly introduced
function the priority function, which is defined in Def. 5.
Definition 5 (Priority Function): A priority function
w(S, 1) is a two-variable function whose input is the current
configuration S and a move p in the candidate list for S, and
whose output is a numeric value, i.e. the score of the move .
Higher score means that the move u is more likely to lead the
current configuration to a global optimum. More formally,
For two moves w1 and u, in the candidate list for S, if 1 is
more likely to lead S to a global optimum than w7, we have
(S, 1) > (S, u2).

VOLUME 5, 2017

Because the SA-FVSP tries to tackle this problem by find-
ing the largest induced acyclic subgraph, rather than finding
the minimum feedback vertex set directly (see Section III-A),
the priority function should assign the vertices which are
more likely to belong to the minimum feedback vertex set
with smaller scores, and mutatis mutandis, assign the vertices
which are less likely to belong to the minimum feedback
vertex with larger scores. Note that the concept of the greedy
function in the GRASP (see Section II) is just opposite
to the concept of the priority function, because the greedy
function gives larger scores to the promising vertices, rather
than unpromising ones. Therefore, we can directly trans-
form the greedy function to the priority function with minor
modification.

So far, the best known greedy function A(v) is proposed by
Cai et al. [23]. Here is its mathematical formula:

h(v) = deg™(v) + deg™(v) — & x |deg™(v) — deg"(v)| (3)

where v is a vertex in the graph, deg™(v) and deg™ (v) are the
indegree and the outdegree of the vertex respectively and A is
a parameter. Cai et al. suggested that the best performance
can be achieved when A = 0.3 [23].

This greedy function is based on two intuitive heuristic
rules of the FVSP. The first is that if the indegree and out-
degree of a vertex are large, this vertex is more likely to
belong to the minimum feedback vertex set. The second is
that if the difference between indegree and outdegree of a
vertex is small, this vertex is more likely to belong to the
minimum feedback vertex set. A plays the role of balancing
the effectiveness of these two heuristic rules.

Based on this greedy function, we define a feasible priority
function wy for the SA-FVSP (see Def. 6).

Definition 6 (Concrete Priority Function): Suppose S is a
reference configuration, < m, i > is a move in the candidate
list for S, we can define a concrete priority function for the
SA-FVSP-NNS as

on(S, <m,i>)=—h(m))

Owing to the minus sign before h(m), wy conforms to the

definition of the priority function. We can also notice that

wy is independent from the current configuration S and the

position where the vertex insert. This is a useful property
which will be used in Section I'V-C.

B. SAMPLING FUNCTION
The priority function cannot be applied to the sampling pro-
cess directly because it does not conform to the probability
axiom [37]. Thus, we still need to convert the scores com-
puted by the priority function to probabilities, which can be
directly used in the sampling process. We call this kind of
probabilities the sampling probability. In Def. 7, we define a
new function similar to the priority function, named the sam-
pling function. This function directly outputs the sampling
probability of each move, rather than the score.

Definition 7 (Sampling Function): A sampling function
P(S,) is a two-variable function whose input is the current

12357

IEEE Access

Z. Tang et al.: NNS-Based SA for the Directed FVSP

Algorithm 2 SA-FVSP-NNS

Input: a directed graph G; parameters Ty, o, maxMv,
maxkFuail, 0

Output: the best configuration S, found by the

algorithm

1 Compute the values of wy for every vertex;

2 Compute the values of Py based on wy and 6;

3 Set T := Ty; nbFail :=0;S :=(); Sy« :=();

4 repeat

5

6

7

Set nbMv := 0; failure := true;

repeat
Choose a move < v, i > from the candidate list
with the probability Py;

8 Evaluate A :=§(v, i);

9 if A <0orexp(—A/T) > random(0, 1) then
10 Apply move < v, i > to configuration S;
1 Set nbMv := nbMv + 1;

12 if (S) < f(Ss) then
13 Set Sy =S,

14 Set failure := false;
15 end

16 end

17 until nbMv = maxMyv;

18 if failure = true then

19 ‘ Set nbFail := nbFail + 1
20 else

21 | SetnbFail :=0

22 end

23 SetT :=T x «a;

24 until nbFail = maxFail,

configuration S and a move u in the candidate list for S,
and whose output is an sampling probability. Moves will be
chosen with this probability in the sampling process. For a
certain reference configuration Sy, P(Sp, ;) must satisfy the
following two conditions:

1) P'(n) = P(So,) is a probability function, which

obeys the probability axiom.

2) For two moves w1 and wu, if w(So, 1) > o(So, w2),

P(So, 1) = P(So, pw2).

The first condition guarantees that the output of the
sampling function is a probability. The second condi-
tion implies that superior moves are assigned with higher
probabilities.

The major problem is how to transform a priority func-
tion to a sampling function. Apparently, there are many
feasible approaches. The approach we use is based on group
segmentation, which is described as follows: group moves
with similar priorities together and then assign moves in the
same group with the same probability and moves in different
groups with different probabilities. This method can assure
that the superior moves are prioritized to some extent yet
inferior moves do not lose opportunities to be a dark horse.
Therefore, the SA still maintains a certain level of flexibility

12358

TABLE 1. Parameters.

Parameter ~ Value Meaning

To 0.6 Initial temperature

« 0.99 Parameter for decreasing the temperature
maxMv 5xmn ! Number of moves performed in each stage
maxFail 10 Number of stages without improvement

0 5 Number of vertices in segmentation groups

like the scheme proposed by Ropke et al. (see Section II).
Def. 8 gives the formal definition of this approach.

Definition 8 (A Concrete Sampling Function): For a given
reference configuration S, suppose the candidate list for S is
{< mo,ip >, < my,i1 >,...,< my_1,i,—1 >} where
z is the number of moves in the candidate list. Without loss
of generality, we further suppose w(< mg,ip >) < w(<
my, i >) < ... < w(<mgeq,i;—1 >).

Suppose a segmentation group is a set of moves which have
similar priorities. The move < my, iy >,where0 < k < z—1,
will be assigned into the p(k)-th segmentation group. Below
is the formula of the function p(k):

k
p(k) = rg1+1 &)

where 1 < 6 < zis a parameter which controls the number
of moves in each group.

A sampling function Py based on the concept of the seg-
mentation group can be defined as

. p(k)
Pn(S, < my, ix >)=T (6)
Z/:o ()
Note that, if &6 = 1, all moves will be assigned with

different probabilities, and conversely, if 6 = z, this sam-
pling function will assign uniform probabilities to each move.
Therefore, 6 can be regarded as a parameter to control the
influence degree of nonuniform neighborhood sampling.

Like the priority function wy, the sampling function Py is
also independent from the current configuration and the posi-
tion where the vertex inserts. We can see the benefits of this
property in the next section.

C. ALGORITHM

Since we already have a concrete sampling function, it is easy
to modify the original SA-FVSP to support NNS. In fact,
we just need to add the process of computing the sampling
probability and modify the sampling process to choose a
move from candidate list in accordance with the computed
sampling probability.

As have been mentioned in Section IV-A and Section IV-B,
the priority function wy and the sampling function Py do
not depend on the current configuration and the position
where the vertex inserts. That is to say, these two functions
only depend on the vertex. Therefore, we do not need to
compute them in every iteration. Instead, we can just compute

1Henceforward, n and m denote the number of vertices and the number of
the arcs in the benchmark graph respectively

VOLUME 5, 2017

Z. Tang et al.: NNS-Based SA for the Directed FVSP

IEEE Access

TABLE 2. Experimental results obtained by running 1000 CPU time units.

Graph SA-FVSP-NNS SA-FVSP
n m min avg max dev min avg max dev
1000 30000 909 91490 921 2.567 920 923.85 927 2.080
1000 25000 890 89690 903 4.098 906 909.95 915 2.085
1000 20000 868 873.60 880 3.470 885 89170 897 3.257
1000 15000 826 834.60 845 4.821 848 857.95 865 3.827
1000 10000 744 75845 769 6.659 787 800.05 815 6.530
1000 5000 555 57120 585 8.841 621 637.80 650 8.122
1000 4500 514 53330 549 9.885 587 608.45 627 10.122
1000 4000 488 499.60 515 7.813 555 57310 593 9.534
1000 3500 451 465.10 483 7.203 528 542.65 562 9.991
1000 3000 411 428,50 448 8.553 492 506.75 526 10.881
500 7000 399 406.05 409 2479 415 41775 422 2.142
500 6500 391 39845 403 2710 409 412.80 416 2.182
500 6000 388 392.35 396 2.007 405 407.60 410 1.428
500 5500 374 382.35 389 3.678 394 400.70 406 2512
500 5000 362 37030 376 3.348 386 390.75 396 2.773
500 3000 285 296.00 304 4.324 322 331.35 339 4.788
500 2500 250 260.45 266 4.566 288 299.45 313 6.289
500 2000 211 218.35 237 6.381 253 260.15 271 5.180
500 1500 147 157.95 169 6.144 186 202.80 216 7.257
500 1000 83 89.55 95 3.278 108 119.75 130 5.549
100 1400 75 76.55 78 0.805 78 79.45 81 0.669
100 1300 74 75.40 77 0.735 77 78.25 80 0.887
100 1200 71 73.10 75 1179 76 76.95 78 0.669
100 1100 69 71.45 73 1.117 73 74.75 77 0.887
100 1000 67 70.30 72 1.269 71 73.20 74 0.980
100 600 51 53.10 55 1.338 56 58.70 60 1.187
100 500 46 47.30 49 0.900 49 52.85 55 1.459
100 400 35 37.60 39 1.114 42 43.85 46 1.152
100 300 26 28.30 30 1.054 31 33.85 37 1.711
100 200 10 11.80 14 0.980 14 16.05 18 1.322
50 900 39 39.65 40 0477 40 40.55 41 0.487
50 800 38 39.30 40 0.640 39 39.65 40 0.477
50 700 36 36.90 38 0.539 37 38.50 40 0.742
50 600 35 35.90 37 0.625 36 37.20 38 0.600
50 500 31 32.85 34 0.572 33 34.75 36 0.698
50 300 22 23.85 25 0.792 25 26.75 28 1.135
50 250 20 21.25 22 0.698 23 24.15 25 0.726
50 200 16 17.70 19 0714 18 20.20 22 0.871
50 150 10 10.75 12 0.622 12 13.90 16 0.995
50 100 3 3.00 3 0.000 3 3.50 4 0.500
them for every vertex in advance to accelerate the algorithm. 1) We use the same computer to test these two algo-
Therefore, the process of computing the sampling probability rithms, which is ThinkPad T420i with Intel Core i3-
can be added before the loops of the simulated annealing. 2350M CPU, 4GB RAM and Windows 7 operating
The newly proposed algorithm is called the Simulated system.
Annealing for the Feedback Vertex Set Problem using Nonuni- 2) Different programmers usually have distinct program-
form Neighborhood Sampling (SA-FVSP-NNS). Algorithm 2 matic preferences, which may cause that different
is its pseudo-code. We can notice that it shares nearly the implementations for the same algorithm have dif-
same structure with the original SA-FVSP. The only two ferent performances. In order to eliminate this kind
differences between the two algorithms are the newly added of error. We completely re-implement the SA-FVSP
sampling probability computation (see Line 1 and 2 of using C++. Then, because of the similar struc-
Algorithm 2) and the sampling process (see Line 7 of ture of the SA-FVSP and the SA-FVSP-NNS (see
Algorithm 2). Section IV-C), we carefully implement the SA-FVSP-
NNS by merely doing minor modifications on the code
V. EXPERIMENTAL ANALYSIS of the SA-FVSP so that algorithm implementation and
In this section, experiments are conducted to compare the code quality will not be a factor which bring about the
performance of the SA-FVSP-NNS and the SA-FVSP. The differences of the experimental results.
detailed performance comparison between the SA-FVSP and 3) We use a publicly recognized benchmark, which

the GRASP can be seen in the paper [1].
To achieve fairness, we do the following methods to control
experimental variables:

VOLUME 5, 2017

was generated by Pardalos et al. [20], to do exper-
iments. The experiments of the GRASP for the
FVSP and the SA-FVSP were also conducted on this

12359

IEEE Access

Z. Tang et al.: NNS-Based SA for the Directed FVSP

TABLE 3. Experimental results obtained by running 10000 CPU time units.

Graph SA-FVSP-NNS SA-FVSP
n m min avg max dev min avg max dev
1000 30000 906 91040 914 2.035 917 919.65 922 1.590
1000 25000 886 892.15 896 2.574 902 906.00 908 1.612
1000 20000 855 86690 872 3.419 879 885.15 889 2.903
1000 15000 819 826.75 831 2718 842 850.80 857 3.140
1000 10000 734 74250 751 4.945 7716 788.15 794 5237
1000 5000 504 51735 526 5977 589 599.00 611 6.648
1000 4500 464 47465 487 6452 545 55925 573 7.049
1000 4000 406 416,60 428 6.192 489 510.10 521 7.848
1000 3500 353 36580 377 6.361 440 455.05 466 6.607
1000 3000 297 30595 320 5.608 374 39440 413 8.622
500 7000 398 402.10 406 1.758 411 41480 419 2015
500 6500 390 39385 396 1.652 405 409.50 413 2.247
500 6000 382 386.45 389 1.962 399 402775 406 2.321
500 5500 372 376.00 379 1.844 391 39430 397 1.900
500 5000 358 363.70 369 2452 380 38545 388 2334
500 3000 281 286.40 293 2.764 314 32070 326 3.303
500 2500 244 25055 255 3.201 281 28955 295 3.721
500 2000 199 205.15 211 3.167 239 24620 253 3.295
500 1500 132 137.65 143 2.868 173 183.00 189 3.950
500 1000 63 66.95 71 2.037 85 92.95 100 3.905
100 1400 74 75.15 76 0.726 76 71.70 79 0.900
100 1300 73 74.20 75 0.748 75 76.95 79 0.865
100 1200 70 71.80 73 0.812 74 75.35 76 0.572
100 1100 68 69.70 71 0.843 71 73.20 74 0.927
100 1000 67 68.40 69 0.663 68 71.55 73 1.071
100 600 49 51.25 53 1.043 55 56.40 58 1.020
100 500 43 45.30 46 0.843 48 51.20 53 1.288
100 400 31 34.85 36 1.108 39 41.05 43 0921
100 300 25 26.35 27 0.726 30 31.65 34 1.108
100 200 10 10.90 11 0.300 13 14.00 16 0.775
50 900 38 38.75 39 0433 39 39.45 40 0.497
50 800 37 38.15 39 0.572 38 38.80 39 0.400
50 700 35 35.85 37 0.572 36 37.60 38 0.583
50 600 35 35.15 36 0.357 35 36.20 37 0510
50 500 31 32.00 33 0447 32 33.75 35 0.622
50 300 22 22.60 23 0.490 24 24.80 26 0.748
50 250 19 19.75 21 0.622 22 22.95 24 0.669
50 200 16 16.50 17 0.500 18 18.75 20 0.536
50 150 9 10.15 11 0477 10 12.55 14 0921
50 100 3 3.00 3 0.000 3 3.00 3 0.000

benchmark, so we cannot use some favorable instances
to deliberately aggrandize the performance of the
SA-FVSP-NNS.

In this benchmark, there are 40 graph in total, which
can be grouped into four groups. Each group includes
10 graphs. These 10 graphs have the same num-
ber of vertices but different number of arcs. The
graphs in these four groups contain 50, 100, 500 and
1000 vertices respectively. This benchmark can be
downloaded from http://mauricio.resende.info/data/
index.html.

4) We keep the parameter Ty, maxMv, o and maxFail the
same in the experiments of the two algorithms. Table 1
presents the value of these parameters. Garlinier et al.
have given a detailed explanation of how to select
appropriate parameters and why selecting these values
in their paper [1].

5) Every experiment runs 20 times with different random
seeds in order to reduce errors.

12360

In Section V-A, we will compare the experimental
results of the two algorithms by limiting the running time.
In Section V-B, we will fix the parameters, run the two
algorithms without the running time limit and then compare
their obtained results.

A. LIMITING RUNNING TIME

In this set of experiments, we compare the experimental
results of the SA-FVSP-NNS and the SA-FVSP by limiting
the running time to certain amounts, i.e. 1000 and 10000 units
of the CPU time. Limiting the running time to 1000 CPU time
units can help us compare the performance gap when given
a short running time. Similarly, limiting the running time to
10000 CPU time units can help us compare the long-term
performance gap. The parameter T, o, maxMv and 6 used in
these experiments are equal to the values in Table 1. maxFail
is set to +00 in order to prevent the program from stopping
before the time limit. All graphs in the benchmark are tested
for 20 times.

VOLUME 5, 2017

Z. Tang et al.: NNS-Based SA for the Directed FVSP

IEEE Access

TABLE 4. Experimental results obtained by running without the time limit.

Graph SA-FVSP-NNS SA-FVSP
n m min avg max dev time min avg max dev time
1000 30000 905 90795 911 1.687 32475.20 916 91895 922 1.499 24684.00
1000 25000 885 89040 893 1.960 36808.30 900 903.75 908 2.447 35241.55
1000 20000 861 864.55 867 1.658 36599.35 880 883.10 886 1.997 34396.35
1000 15000 818 82155 826 1.936 61148.30 839 847.60 853 3.292 49052.15
1000 10000 726 73740 743 4271 74956.80 778 783.90 791 3.345 62547.45
1000 5000 503 507.15 514 2.688 156732.00 580 58795 596 3.853 130023.90
1000 4500 453 460.75 468 4.700 160055.60 541 54775 555 3.858 135604.15
1000 4000 387 403.00 410 4.806 169096.10 485 496.65 507 5.677 145780.15
1000 3500 343 34920 356 3.043 185211.95 429 441.10 450 5.186 168794.75
1000 3000 280 289.80 298 4.142 223634.75 367 376.10 384 4.134 190028.10
500 7000 395 401.15 405 2.651 14674.00 411 41510 418 2.166 14175.45
500 6500 389 392770 396 2216 17659.35 405 407.70 412 1.819 14719.90
500 6000 379 38495 391 2924 18753.40 395 401.75 404 2467 18643.75
500 5500 371 37570 379 2124 19059.65 390 395.00 398 1.949 17372.90
500 5000 358 36225 366 1.946 25108.75 380 384.65 388 1.768 19132.60
500 3000 280 284.40 289 2.107 35185.80 312 31840 322 2417 29454.55
500 2500 243 24885 254 2937 38008.05 278 28595 293 3.500 35284.35
500 2000 196 20085 207 2594 43872.65 237 244.05 250 3.667 38229.85
500 1500 125 132.55 138 3.154 62137.65 175 179.35 184 2.435 48745.40
500 1000 58 61.70 64 1.819 68717.75 86 89.00 92 1.732 64455.00
100 1400 74 76.80 78 0.927 1136.15 76 78.90 81 0.995 1224.85
100 1300 74 75.45 77 0.669 1393.10 76 78.35 80 0.853 1106.10
100 1200 71 73.65 75 0.853 1271.80 74 76.85 79 1.195 1092.70
100 1100 69 71.05 73 1.071 1337.75 72 74.85 77 1.236 1170.10
100 1000 68 70.30 72 0954 1356.80 71 73.30 75 1.054 1304.65
100 600 50 52.40 54 1.020 1965.60 57 58.90 60 0.943 1655.35
100 500 44 46.60 49 1.158 2275.75 51 52.95 56 1.322 2132.70
100 400 34 36.50 38 1.118 2399.80 39 42.40 44 1.200 2207.05
100 300 25 27.55 29 0921 2702.65 30 32.70 35 1.145 2849.10
100 200 11 11.45 12 0.497 3552.15 13 14.70 17 1.100 3084.85
50 900 39 40.00 41 0447 376.90 40 41.05 42 0.669 340.45
50 800 39 39.80 41 0510 361.45 40 40.50 41 0.500 361.95
50 700 36 37.05 38 0.740 471.50 38 39.10 40 0.625 405.65
50 600 35 36.40 38 0.663 469.95 37 37.85 39 0.572 420.45
50 500 32 33.20 34 0.600 484.50 34 35.30 37 0.843 544.90
50 300 23 24.25 25 0.698 708.40 25 26.90 28 0.700 690.85
50 250 20 21.35 23 0.853 742.00 23 24.65 26 0.963 657.70
50 200 17 17.95 19 0.669 711.50 18 20.20 22 1.030 875.20
50 150 10 11.30 12 0.640 831.25 13 14.05 16 0921 788.75
50 100 3 3.00 3 0.000 875.90 3 3.75 5 0.622 902.10

Table 2 and Table 3 show the experimental results obtained
by running the SA-FVSP-NNS algorithm and the SA-
FVSP algorithm within 1000 and 10000 CPU time units
respectively. These two tables share the same structure.
Column 1 and 2 represent the number of vertices and
the number of arcs in the benchmark graphs respectively.
Column 3-6 show the experimental results of the SA-
FVSP-NNS algorithm. Column 3 is the minimum cardinality
of the feedback vertex set obtained during the 20 times’
running. Column 4 is the average cardinality and Column 5 is
the maximum cardinality. Column 6 shows the standard devi-
ation. Column 7-10 are structurally the same as Column 3-6,
but they show the experimental results of the SA-FVSP
algorithm.

We can observe from the experimental results that, no mat-
ter the time limit is 1000 or 10000 CPU time units, the aver-
age cardinalities of the feedback vertex sets obtained by the
SA-FVSP-NNS is significantly less than those obtained by
the SA-FVSP. In most of cases, the minimum cardinalities

VOLUME 5, 2017

obtained by the SA-FVSP are even larger than the maximum
cardinalities obtained by the SA-FVSP-NNS. Thus, it con-
veys a strong evidence that the SA-FVSP-NNS can obtain
better solutions in a given time limit than the SA-FVSP.

B. NO LIMITING RUNNING TIME

In this set of experiments, we compare the experimental
results of the SA-FVSP-NNS and the SA-FVSP without the
running time limit like Section V-A. Therefore, the two algo-
rithms will run without disturbance and halt after performing
maxFail unproductive stages. The parameter T, o, maxMv,
maxFail and 6 used in these experiments are equal to the
values in Table 1. All graphs in the benchmark are tested for
20 times.

Table 4 shows the experimental results of these two
algorithms when the running time limit is removed.
Column 1 and 2 again represents the number of vertices
and the number of arcs in the benchmark graphs respec-
tively. Column 3-7 show the experimental results of the

12361

IEEE Access

Z. Tang et al.: NNS-Based SA for the Directed FVSP

SA-FVSP-NNS algorithm. Column 3 is the minimum cardi-
nality of the feedback vertex set obtained during the 20 times’
running. Column 4 is the average cardinality and Column 5
is the maximum cardinality. Column 6 shows the standard
deviation. Column 7 shows the total running time of the
algorithms (The running time of other ancillary opera-
tions is excluded). The measurement unit of this column
is the CPU time unit. 1 second is equivalent to 1000 CPU
time units. Column 8-12 are structurally the same as
Column 3-7, but they show the experimental results of the
SA-FVSP algorithm.

We can observe from the experimental results that, even
if we do not limit the running time and let the algorithms
halt on their own, the average cardinalities of the feedback
vertex sets obtained by the SA-FVSP-NNS is also signifi-
cantly less than those obtained by the SA-FVSP. Moreover,
similar to the previous subsection, the minimum cardinalities
obtained by the SA-FVSP are even larger than the maximum
cardinalities obtained by the SA-FVSP-NNS in most cases.
Therefore, the experimental results conveys a strong evidence
that the SA-FVSP-NNS can acquire better solutions than the
SA-FVSP when there is no time limit. It is worth mentioning
that the SA-FVSP-NNS usually terminates later than the
SA-FVSP. This means that the SA-FVSP-NNS is more capa-
ble of breaking the consecutive failed stages and jumping out
of the traps of local optimum solutions, so it usually has more
expansive search range in the search space than the SA-FVSP.

VI. CONCLUSION

The simulated annealing (SA) based SA-FVSP algorithm
proposed by Garlinier et al. is one of the cutting-edge heuris-
tic algorithm for the feedback vertex set problem (FVSP)
in the directed graph. In this paper, we improved the
performance of this algorithm by applying nonuniform
neighborhood sampling (NNS) strategy and proposed the
SA-FVSP-NNS algorithm. NNS is a general strategy to
improve the performance of the SA metaheuristic. It assigns
different probabilities to different moves so that the moves
which are more likely to lead the current configuration to a
global optimum are prioritized in the sampling process.

To improve the SA-FVSP using this strategy, we proposed
the concept of the priority function @ and the sampling
function P. The former one estimates and scores the quality
of neighbors based on some practical heuristic rules of the
FVSP; the latter one converts the scores computed by the
priority function to sampling probabilities, which can then
be directly used to guide the nonuniform sampling process.
We also proposed a concrete priority function wy and a con-
crete sampling function Py . The definition of wy is based on
the concept of the greedy function in the GRASP, a previous
heuristic algorithm for the FVSP. The definition of Py is
based on the idea of group segmentation, which can prioritize
superior moves, and in the meantime, maintain randomization
and flexibility of the SA to some extent.

Experiments were conducted to compare the performance
of the SA-FVSP-NNS and the SA-FVSP. The experimental

12362

results indicated that the cardinality of the feedback vertex
set found by the SA-FVSP-NNS is significantly smaller than
the SA-FVSP no matter the running time is limited or not.

As for further studies, we want to explore how to modify
the parameters in the SA-FVSP-NNS to achieve the best
performance. In addition, we observe that the implementation
of NNS in the SA-FVSP-NNS relies heavily on the heuristic
rules used in the priority function. Thus, if we can find out
more effective and accurate heuristic rules from the abundant
existing research results on the FVSP and utilize them in the
priority function, the performance of the SA-FVSP-NNS can
be further improved. This will also be a subject of our future
work.

ACKNOWLEDGMENT

The authors would like to thank the Editor-in-Chief, the
Associate Editor, and the anonymous referees for their com-
ments and suggestions. In addition, they do appreciate the
help from Philippe Galinier, who is one of the authors of the
SA-FVSP algorithm.

REFERENCES

[1] P. Galinier, E. Lemamou, and M. W. Bouzidi, “Applying local search to
the feedback vertex set problem,” J. Heurist., vol. 19, no. 5, pp. 797-818,
2013.

[2] R. M. Karp, “Reducibility among combinatorial problems,” in Complex-
ity of Computer Computations. New York, NY, USA: Springer, 1972,
pp. 85-103.

[3] R.Bar-Yehuda, D. Geiger, J. Naor, and R. M. Roth, “Approximation algo-

rithms for the feedback vertex set problem with applications to constraint

satisfaction and Bayesian inference,” SIAM J. Comput., vol. 27, no. 4,

pp. 942-959, 1998.

A. Silberschatz, P. B. Galvin, and G. Gagne, Operating System Concepts.

Hoboken, NJ, USA: Wiley, 2015.

P. Festa, P. M. Pardalos, and M. G. Resende, “Feedback set problems,” in

Handbook of Combinatorial Optimization. New York, NY, USA: Springer,

1999, pp. 209-258.

[6] T.Orenstein, Z. Kohavi, and I. Pomeranz, “‘An optimal algorithm for cycle
breaking in directed graphs,” J. Electron. Test., vol. 7, no. 1, pp. 71-81,
1995.

[7] F. V. Fomin, S. Gaspers, and A. V. Pyatkin, “Finding a minimum

feedback vertex set in time O(1.7548"),” in International Workshop on

Parameterized and Exact Computation. Berlin, Germany: Springer, 2006,

pp. 184-191.

G.Even, J. S. Naor, B. Schieber, and M. Sudan, “Approximating minimum

feedback sets and multicuts in directed graphs,” Algorithmica, vol. 20,

no. 2, pp. 151-174, 1998.

[9] C. Demetrescu and I. Finocchi, “Combinatorial algorithms for feed-
back problems in directed graphs,” Inf. Process. Lett., vol. 86, no. 3,
pp. 129-136, 2003.

[10] J. Chen, Y. Liu, S. Lu, B. O’sullivan, and I. Razgon, “A fixed-parameter
algorithm for the directed feedback vertex set problem,” J. ACM, vol. 55,
no. 5, p. 21, 2008.

[11] J.Chen, F. V. Fomin, Y. Liu, S. Lu, and Y. Villanger, “‘Improved algorithms
for feedback vertex set problems,” J. Comput. Syst. Sci., vol. 74, no. 7,
pp. 1188-1198, 2008.

[12] K. A. Dowsland and J. M. Thompson, “Simulated annealing,” in Hand-
book Natural Computing. Heidelberg, Germany: Springer, 2012, pp. 1623—
1655.

[13] C. Blum and A. Roli, “Metaheuristics in combinatorial optimization:
Overview and conceptual comparison,” ACM Comput. Surv., vol. 35, no. 3,
pp. 268-308, 2003.

[14] Q.Feng,]J. Wang, and J. Chen, “Matching and weighted p,-packing: Algo-
rithms and kernels,” Theor. Comput. Sci., vol. 522, pp. 85-94, Feb. 2014.

[15] Y.Zhang, X. Sun, and B. Wang, “Efficient algorithm for k-barrier coverage
based on integer linear programming,” China Commun., vol. 13, no. 7,
pp. 16-23, Jul. 2016.

[4

=

[5

—

8

—

VOLUME 5, 2017

Z. Tang et al.: NNS-Based SA for the Directed FVSP

IEEE Access

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

B. Gu and V. S. Sheng, “A robust regularization path algorithm for
v-support vector classification,” IEEE Trans. Neural Netw. Learn. Syst.,
vol. 28, no. 5, pp. 1241-1248, May 2017.

M. R. Garey and D. S. Johnson, Computers and Intractability, vol. 29.
New York, NY, USA: Freeman, 2002.

Z. Tang, A. Liu, and C. Huang, “Social-aware data collection scheme
through opportunistic communication in vehicular mobile networks,”
IEEE Access, vol. 4, pp. 6480-6502, 2016.

J. Guo-Hong et al., “Algorithms for feedback set problems: A survey,”
Comput. Sci., vol. 38, no. 1, pp. 40-47, 2011.

P. M. Pardalos, T. Qian, and M. G. Resende, “A greedy randomized adap-
tive search procedure for the feedback vertex set problem,” J. Combinat.
Optim., vol. 2, no. 4, pp. 399-412, 1998.

M. G. Resende and C. C. Ribeiro, “Greedy randomized adaptive search
procedures: Advances, hybridizations, and applications,” in Handbook
Metaheuristics. Springer, 2010, pp. 283-319.

H. Levy and D. W. Low, “A contraction algorithm for finding small cycle
cutsets,” J. Algorithms, vol. 9, no. 4, pp. 470-493, 1988.

X. Cai,J. Huang, and G. Jian, ““A search algorithm for computing minimum
feedback vertex set of a directed graph,” Comput. Eng., vol. 32, no. 4,
pp. 67-69, 2006.

Y. S. Kardam, ““Metaheuristic techniques for solving optimization prob-
lems in graph theory,” Ph.D. dissertation, Dept. Math., Dayalbagh Edu.
Inst., Agra, India, Sep. 2014.

Z.Zhang, A. Ye, X. Zhou, and Z. Shao, “An efficient local search for the
feedback vertex set problem,” Algorithms, vol. 6, no. 4, pp. 726-746,2013.
S.-M. Qin and H.-J. Zhou, “Solving the undirected feedback vertex set
problem by local search,” Eur. Phys. J. B, Condensed Matter Complex
Syst., vol. 87, no. 11, pp. 1-6, 2014.

L. Brunetta, F. Maffioli, and M. Trubian, “Solving the feedback vertex
set problem on undirected graphs,” Discrete Appl. Math., vol. 101, no. 1,
pp. 37-51, 2000.

F. Carrabs, R. Cerulli, M. Gentili, and G. Parlato, “A tabu search heuris-
tic based on k-diamonds for the weighted feedback vertex set prob-
lem,” in Network Optimization. Heidelberg, Germany: Springer, 2011,
pp. 589-602.

F. Carrabs, C. Cerrone, and R. Cerulli, “A memetic algorithm for
the weighted feedback vertex set problem,” Network, vol. 64, no. 4,
pp. 339-356, 2014.

D. T. Connolly, “An improved annealing scheme for the QAP,” Eur. J.
Oper: Res., vol. 46, no. 1, pp. 93-100, 1990.

I. H. Osman, “Metastrategy simulated annealing and tabu search algo-
rithms for the vehicle routing problem,” Ann. Oper. Res., vol. 41, no. 4,
pp. 421-451, 1993.

J. W. Greene and K. J. Supowit, “Simulated annealing without rejected
moves,” IEEE Trans. Comput.-Aided Design Integr., vol. CAD-5, no. 1,
pp. 221-228, Jan. 1986.

S.-W. Lin, V. F. Yu, and S.-Y. Chou, “Solving the truck and trailer routing
problem based on a simulated annealing heuristic,” Comput. Oper. Res.,
vol. 36, no. 5, pp. 1683-1692, 2009.

S. Ropke and D. Pisinger, “An adaptive large neighborhood search heuris-
tic for the pickup and delivery problem with time windows,” Transp. Sci.,
vol. 40, no. 4, pp. 455472, 2006.

VOLUME 5, 2017

(35]

(36]

(37]

J. M. Thompson and K. A. Dowsland, “A robust simulated annealing
based examination timetabling system,” Comput. Oper. Res., vol.25,no0.7,
pp. 637-648, 1998.

S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, *“Optimization by simulated
annealing,” Science, vol. 220, no. 4598, pp. 671-680, 1983.

K. L. Chung and F. AitSahlia, Elementary Probability Theory: With
Stochastic Processes and An Introduction to Mathematical Finance. New
York, NY, USA: Springer, 2012.

ZHIPENG TANG received the bachelor’s degree
in 2016. He is currently pursuing the master’s
degree with the School of Information Science
and Engineering, Central South University, China.
He has authored three SCI papers. His research
interests include heuristic algorithms, the services-
based network, and the crowd sensing networks.

QILONG FENG received the Ph.D. degree in
computer science from Central South University,
China, in 2010. His current research interests
include computer algorithms and parameterized
algorithms.

PING ZHONG (M’ 13) received the Ph.D. degree
in communication engineering from Xiamen Uni-
versity, China, in 2011. She is currently a
Lecturer with the Department of Computer Sci-
ence and Technology, Central South University.
Her research interests include machine learning,
data mining, and networks protocol design. She is
a member of the ACM, the CCF, and the IEICE.

12363

