
Received May 15, 2017, accepted July 1, 2017, date of publication July 7, 2017, date of current version July 24, 2017.

Digital Object Identifier 10.1109/ACCESS.2017.2724065

Nonuniform Neighborhood Sampling Based
Simulated Annealing for the Directed
Feedback Vertex Set Problem
ZHIPENG TANG, QILONG FENG, AND PING ZHONG, (Member, IEEE)
School of Information Science and Engineering, Central South University, Changsha 410083, China

Corresponding author: Ping Zhong (ping.zhong@csu.edu.cn)

This work was supported by the National Natural Science Foundation of China under Grant 61402542.

ABSTRACT The feedback vertex set problem (FVSP), a combinatorial optimization problem, finds a
set of vertices that intersect all cycles of the directed graph. One of the cutting-edge heuristics for this
problem is a simulated annealing (SA)-based algorithm named the SA-FVSP. In this paper, we propose
an improved variant of the SA-FVSP by applying the nonuniform neighborhood sampling (NNS), namely,
the SA-FVSP-NNS. The NNS is a general strategy for improving the SA-based algorithm. Its basic idea is
to prioritize the neighbors which are closer to the global optimum by assigning them with higher sampling
probabilities. By doing this, these neighbors are more likely to be selected in the sampling process. To apply
this general strategy to the SA-FVSP, we propose the concepts of the priority function and the sampling
function, respectively. The priority function utilizes the known heuristic rules of the FVSP to estimate and
score the quality of neighbors, while the sampling function converts the scores computed by the priority
function to sampling probabilities, which can directly guide the NNS process. Experiments indicate that the
SA-FVSP-NNS algorithm outperforms the SA-FVSP.

INDEX TERMS Feedback vertex set, simulated annealing, nonuniform neighborhood sampling.

I. INTRODUCTION
Given a graph, a feedback vertex set is a set of vertices which
intersect all cycles of the graph. In other words, the given
graph will be acyclic if all vertices in the feedback vertex
set are removed [1]. Obviously, the feedback vertex set is not
unique in a graph. We call the one with minimum cardinality
the minimum feedback vertex set. The feedback vertex set
problem (FVSP) is a combinatorial optimization problem
which aims to find a minimum feedback vertex set for a given
graph.

The FVSP is well-known in theoretical computer sci-
ence for a long time because its decision version for a
directed graph is among the first 21 problems proven to be
NP-complete [2]. It also has many applications in var-
ious areas, such as Bayesian inference [3], Operating
systems [4], VLSI chip design [5]. Because of the signif-
icance of the FVSP, enormous research has been done to
tackle this problem, especially from the perspectives of exact
algorithms [6], [7], approximation algorithms [8], [9], and
parameterized algorithms [10], [11]. However, there are only
a few studies dedicating to solve the problem from the stand-
point of metaheuristics [1].

In 2013, Galinier et al. [1] proposed a metaheuristic based
algorithm for the FVSP, i.e. the Simulated Annealing for the
Feedback Vertex Set Problem (SA-FVSP), which is regarded
as the best existing heuristic algorithm for the FVSP in the
directed graph so far. The SA-FVSP is based on simulated
annealing (SA), which is a typical local search based meta-
heuristic [12]. Local search is a search strategy which finds
local optimums for a combinatorial optimization problem by
moving from one solution to another in the search space
using local changes [13]. In order to apply a local search
based metaheuristic algorithm (such as the SA) to a com-
binatorial optimization problem, we need to define a local
search approach and then incorporate it into themetaheuristic
algorithm. A local search approach can be defined as a triplet
including: the search space (i.e. the set of configurations),
the evaluation function and the move mechanism [1]. Con-
figurations are the representation of feasible solutions, and
all feasible configurations constitute the search space. The
evaluation function is the quantification of the optimization
target. The move mechanism defines how to move from a
solution to one of its neighboring solutions. A move of a ref-
erence configuration can transform this configuration to one

VOLUME 5, 2017
2169-3536
 2017 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

12353

Z. Tang et al.: NNS-Based SA for the Directed FVSP

of its neighbors in accordance with the movemechanism. The
SA-FVSP defines a practical local search approach based on
the topological ordering property of the directed graph, and
then incorporates it into the SA metaheuristic. The SA starts
from an initial configuration. Then it moves from a config-
uration to another to forage for the global optimum. In each
iteration, it randomly picks up a feasible move of the cur-
rent configuration, and then determine whether to apply the
move to the current configuration according to theMetropolis
criterion.

In this paper, we introduce the nonuniform neighborhood
sampling (NNS) strategy to the SA-FVSP, and propose
an improved variant of this algorithm, named the Simu-
lated Annealing for the Feedback Vertex Set Problem using
Nonuniform Neighborhood Sampling (SA-FVSP-NNS).
More specifically, in the SA-FVSP, a move is selected with
uniform probabilities in each iteration of the SA before it is
applied to the current configuration. This is effective but not
efficient because such a sampling process (i.e. the process
of choosing a feasible move) is totally blind. To mitigate
the blindness, we find that a number of underlying heuristic
rules for the FVSP has been observed by previous studies.
Based on some of them, we can predict that some moves are
more likely to lead the current configuration to a global opti-
mum than others. Thus, when randomly selecting a feasible
move in the sampling process, if we assign these superior
moves with higher probabilities, andmutatis mutandis, assign
those inferior moves with lower probabilities, the algorithm
can definitely find out local optimums more rapidly and
finally converge to better solutions. This idea is called
NNS strategy [12]. Therefore, in the SA-FVSP-NNS,
the concept of the priority function is introduced to esti-
mate and score the quality of moves, and the concept of
the sampling function is introduced to guide the assign-
ment of the sampling probability in accordance with the
output of the priority function. Based on these two func-
tions, the newly proposed algorithm prioritizes those supe-
rior moves to a certain degree in the sampling process.
Extensive experiments are conducted based on a recog-
nized benchmark proposed by Pardalos et al. to show the
superiority of the SA-FVSP-NNS when compared with the
SA-FVSP.

The rest of the paper is organized as follows. A litera-
ture review is first presented in Section II. The SA-FVSP is
introduced in Section III. The details of the SA-FVSP-NNS
are described in Section IV. Section V presents the experi-
mental results. Finally, some concluding remarks are made
in Section VI.

II. RELATED WORK
Optimization problems are ubiquitous in various fields of
computer science, such as theoretical computer science [14],
wireless sensor networks [15] andmachine learning [16]. The
goal of the problem is to search from all possible solutions
for the best solution. Combinatorial optimization problems
are those optimization problems whose solution space is

discrete. The feedback vertex set problem (FVSP) is a typical
combinatorial optimization problem.

The FVSP can be divided into several interrelated prob-
lems, whose common goal is to find a set of vertices with
minimum cardinality (or minimum weight) that intersect all
the cycles of a given graph. Depending on whether the given
graph is directed or undirected, we have the FVSP in the
directed graph or in the undirected graph. Similarly, depend-
ing on whether the given graph is weighted or unweighted,
we have the weighted or unweighted FVSP.

The FVSP is important in theoretical computer science
because it is NP-complete in general graphs [2], [17]. It also
has wide practical applications in various areas [3]–[5], [18].
As mentioned in Section I, many studies has been done
on this problem, including two comprehensive literature
reviews [5], [19]. However, there are only a few studies
focusing on designing heuristics for this problem [1].

Currently, there are five main heuristics for the unweighted
FVSP, i.e. the GRASP and its variant, the SA-FVSP,
the NewkLS_FVS and the SALS. A chronological literature
review is conducted below.

In 1998, Pardalos et al. [20] proposed the Greedy Ran-
domized Adaptive Search Procedure (GRASP) for the FVSP,
which is the first known metaheuristic based algorithm for
the FVSP in literature. It can be used in both the directed and
undirected graph. The GRASP is a randomized metaheuristic
which can produce high quality solutions for a wide range
of combinatorial optimization problems [21]. An iteration of
the GRASP consists of two consecutive searching phases,
i.e. the construction phase and the local search phase [13].
With regard to the GRASP for the FVSP, an initial solution,
i.e. a valid feedback vertex set, is constructed in the con-
struction phase; then the constructed initial solution is fine-
tuned to achieve the local optimum solution in the local search
phase. The GRASP is a multi-start algorithm, which repeats
this iteration for many times to prevent itself from trapping
into only one local optimum solution. In the construction
phase, in order to improve the quality of the initial solution,
the greedy function is introduced to estimate how likely a
vertex belongs to the minimum feedback vertex set (More
specifically, if a vertex is more likely to belong to a minimum
feedback vertex set, the greedy function will assign it with
a larger score), and those vertices with higher scores have
higher probabilities to be chosen into the initial solution.
As for the local search phase, as Pardalos et al. [20] pointed
out, the main difficulty of this phase is verifying whether a
graph is acyclic or not. Although the reduction rules proposed
by Levy and Low [22] is used in the algorithm to mitigate the
difficulty, this phase is still the performance bottleneck of the
algorithm.

In 2006, Cai et al. [23] improved the performance of the
GRASP for the FVSP by modifying the computation process
of the original algorithm, adding newly observed reduction
rules and introducing a new greedy function.

In 2013, two local search based heuristic algorithm for the
FVSP were proposed. The first one is the aforementioned

12354 VOLUME 5, 2017

Z. Tang et al.: NNS-Based SA for the Directed FVSP

SA-FVSP, which is based on the SA [1], [24]. The SA-FVSP
ingeniously utilizes the topological ordering property of the
directed acyclic graph to avoid the time-consuming process of
verifying whether a graph is acyclic or not repetitively, which
was considered inevitable before. Therefore, it can obviously
outperform the GRASP based algorithms (It is worth noting
that the experiments to compare the performance gap between
the GRASP and the SA-FVSP is elaborately designed so that
little bias can occur). However, because of the utilization of
the topological ordering property, the SA-FVSP can only be
used for the FVSP in the directed graph. The second algo-
rithm is the k-opt Local Search Algorithm with a Randomized
Scheme for the Feedback Vertex Set (NewkLS_FVS) [25],
which mainly focuses on the FVSP in the undirected graph.
The metaheuristic used in this algorithm, i.e. the k-opt local
search algorithm, is different from the SA-FVSP and the
GRASP for the FVSP, which changes more than one ver-
tex from the current solution each time. Nevertheless, this
algorithm does not propose an efficient method to elimi-
nate or avoid the process of repetitively verifying whether a
graph is acyclic or not, so it also wastes a large amount of
time on this operation just like the GRASP based algorithms.

In 2014, Qin and Zhou [26] proposed the Simulated
Annealing Local Searching Protocol for the Undirected
FVSP (SALS) based on the work of Galinier et al.. This
algorithm is only applicable to the undirected graph version
of the FVSP. It modifies the microscopic search rules of the
SA-FVSP by defining a constrained order for the vertices
outside the current configuration.

As for the heuristics for the weighted FVSP, there are three
existing algorithms, i.e. XTS [27], ITS [28] and MA [29].
Carrabs et al. have given an excellent review on the heuristic
algorithm for the weighted FVSP (see [29]).

The SA-FVSP-NNS improves the performance of the
SA-FVSP by introducing nonuniform neighborhood sam-
pling (NNS), which is a general strategy for improving the
performance of the SA metaheurisitc. In some cases, NNS is
made to simplify the neighborhood generation procedure,
while in others it is used to guide the search more effectively.
In fact, the sampling process of some problems may even
be naturally nonuniform [12]. There are already a number
of studies using this strategy to accelerate the SA based
algorithm [30]–[35].

Dowsland and Thompson [12] provided a comprehensive
review on this topic. We notice that Lin et al.’s [33] solu-
tion to the truck and trailer routing problem and Ropke and
Pisinger solution to a pick up and delivery problem [34]
share some similarities to the ideas behind the proposed
SA-FVSP-NNS. We all try to bias the sampling process to
some neighbors. In Lin et al.’s work, the algorithm gen-
erates several neighbors and uses the best of them as the
trial solution, instead of making the accept/reject decision on
every single neighbor. Unlike Lin et al.’s solution that uses
the best neighbor directly, Ropke et al. includes some kinds
of randomization in order to maintain an appropriate level
of flexibility for the SA. In the proposed SA-FVSP-NNS,

we define the sampling function taking into consideration the
requirements of both efficiency and flexibility. That is also the
reason why we introduce a parameter to randomize selection
in the sampling function.

III. SA-FVSP ALGORITHM
In this section, we briefly introduce the SA-FVSP, which
was proposed by Galinier et al. [1]. We first define the local
search approach that the SA-FVSP uses. Configurations and
the evaluation function are presented in Section III-A, and
the move mechanism is presented in Section III-B. Then,
in Section III-C, we incorporate the local search approach
into the SA metaheuristic and describe the pseudo-code of
the SA-FVSP.

A. CONFIGURATIONS AND EVALUATION FUNCTION
A directed graph can be denoted as G = (V ,E) where V is a
set of vertices and E ⊆ V × V is a set of arcs. A directed
graph with no directed cycles is called a directed acyclic
graph (DAG). Suppose V ′ is a subset of V , the subgraph of
G induced by V ′, denoted asG(V ′), is the graph whose vertex
set is V ′ and whose arcs are those arcs which belong to E and
have two endpoints in V ′, i.e. G(V ′) = (V ′,E ∩ (V ′ × V ′)).
Since V ′ is a subset of V , it is obvious that the induced

subgraph G(V ′) is a DAG if and only if V − V ′ is a feedback
vertex set of the original directed graph G. Thus, the FVSP
is equivalent to finding a vertex subset V ′ of maximum car-
dinality such that G(V ′) is a DAG. In the SA-FVSP, we only
consider this equivalent version of the FVSP.

A topological ordering of a directed graph is an ordering of
its vertices such that the starting point of every arc is in front
of the ending point of the arc in the ordering. An important
property of the topological ordering is that every DAG has
at least one feasible topological ordering, and conversely,
the existence of one topological ordering implies that the
graph is a DAG.

In the SA-FVSP, configurations are represented as the
topological ordering of the acyclic induced subgraph of G,
as formally defined in Def. 1:
Definition 1 (Configuration): In a sequence S, the number

of elements is denoted as |S|, and the i-th element is denoted
as S[i], for every i = 1, 2, . . . , qwhere q = |S|. The sequence
S = (S[1], S[2], . . . , S[q]) is a configuration if:
1) S[1], S[2], . . . and S[q] are vertices in the set V and are

all different.
2) ∀i, j, (1 ≤ i < j ≤ q)→ (S[j], S[i]) /∈ E (precedence

constraint)
In addition, we denote the set of the vertices that appear in

the sequence S asDom(S) = {S[1], S[2], . . . , S[q]}. A vertex
in V is described as numbered or unnumbered depending on
whether it belongs to the set Dom(S) or not.
We notice that every configuration S corresponds to an

induced DAG G(Dom(S)) and that V − Dom(S) is a cor-
responding feedback vertex set of G. Therefore, the opti-
mization target of the FVSP can be formalized as finding a
configuration S which can minimize |V −Dom(S)|. Def. 2 is
the definition of the evaluation function.

VOLUME 5, 2017 12355

Z. Tang et al.: NNS-Based SA for the Directed FVSP

Definition 2 (Evaluation Function): Assume S is a con-
figuration in the search space, the evaluation function f (S)
can be defined as

f (S) = |V − Dom(S)| (1)

B. MOVE MECHANISM
In the SA-FVSP, a move consists of two steps: inserting a new
vertex into a particular position of the current configuration
and then deleting the vertices which would now violate the
precedence constraint. Def. 3 is the formal definition of the
move.
Definition 3 (Move): Assume S is a configuration.

A move < v, i >, where v ∈ V − Dom(S) and i ∈
{1, 2, . . . , |S| + 1}, includes two steps: inserting v just
before S[i], and then removing from S the elements of
CV−(v, i) ∪ CV+(v, i), where:
• CV−(v, i) = {S[j] ∈ S : j ≥ i and (S[j], v) ∈ E}
• CV+(v, i) = {S[j] ∈ S : j < i and (v, S[j]) ∈ E}
Adopting the move < v, i > to S, the so-obtained con-

figuration is obviously still valid and can be referred as
S⊕ < v, i >. For a particular graph and one of its config-
uration S, all moves applicable to S consist of the move list
for S.

Instead of using the move list directly, the SA-FVSP
defines a refined move list, named the candidate list. The
candidate list is a subset of the move list with high-quality
moves inside. Def. 4 gives the definition of the high-quality
move.
Definition 4 (High-Quality Move): Assume S is a refer-

ence configuration. Assume
• I−(v) = {i : S[i] ∈ N−(v)} and I+(v) = {i : S[i] ∈
N+(v)}, where N−(v) and N+(v) are the sets of the in-
coming and out-going neighbors of the vertex v in the
graph respectively.

• i−(v) = max(I−(v)) + 1 if I−(v) 6= φ; otherwise,
i−(v) = 1;

• i+(v) = min(I+(v)) if I+(v) 6= φ; otherwise, i+(v) =
|S| + 1.

A high-quality move (v, i), where v ∈ V − Dom(S) and
i ∈ {i−(v), i+(v)}, includes two steps: inserting v just before
S[i], and then removing from S the elements of CV−(v, i) ∪
CV+(v, i).

Intuitively speaking, for a reference configuration S and
a vertex v ∈ V − Dom(S), the move list for S allows v to
be inserted into arbitrary positions of S, but the candidate
list for S restricts v to be inserted into only two positions,
i.e. the position just after its numbered in-coming vertices
(i.e. in the position before S[i−(v)]) and the position just
before its numbered out-going neighbors (i.e. in the position
before S[i+(v)]). This restriction can significantly reduce the
number of vertices which violate the precedent constraint
after inserting a new vertex. Thus, the number of moves in
the candidate list is far less than that in the move list. Besides,
Galinier et al. proved that both the candidate list and the move
list define the same local optimum solutions [1].

The performance of the move < v, i > can be defined as
δ(v, i) = f (S⊕ < v, i >)− f (S), which means its influence
on the evaluation function. Because a move will insert a new
vertex and then delete all conflicting vertices, we also have
that

δ(v, i) = −1+ |CV+(v, i)| + |CV−(v, i)|. (2)

C. ALGORITHM
Since an effective local search approach for the FVSP has
been proposed, we now can incorporate it into a meta-
heuristic. The SA-FVSP is based on the SA, which is
a typical local search based metaheuristic, proposed by
Kirkpatrick et al. [36]. Algorithm 1 is the pseudo-code of the
algorithm.

Algorithm 1 SA-FVSP
Input: a directed graph G; parameters T0, α, maxMv,

maxFail
Output: the best configuration S∗ found by the

algorithm
1 Set T := T0; nbFail := 0; S := (); S∗ := ();
2 repeat
3 Set nbMv := 0; failure := true;
4 repeat
5 Choose a move < v, i > uniformly randomly

from the candidate list;
6 Evaluate 1 := δ(v, i);
7 if 1 ≤ 0 or exp(−1/T) ≥ random(0, 1) then
8 Apply move < v, i > to configuration S;
9 Set nbMv := nbMv+ 1;

10 if f (S) < f (S∗) then
11 Set S∗ := S;
12 Set failure := false;
13 end
14 end
15 until nbMv = maxMv;
16 if failure = true then
17 Set nbFail := nbFail + 1
18 else
19 Set nbFail := 0
20 end
21 Set T := T × α;
22 until nbFail = maxFail;

At the beginning, the temperature is initialized to a param-
eter T0 and the configuration is initialized as an empty
sequence. There are two loops in the SA-FVSP. The inner
loop (lines 4-15) is corresponding to trials performed by the
SA: uniformly randomly choosing a move from the candi-
date list (line 5, called the sampling process); then using
the Metropolis criterion to determine whether the move is
accepted or not (line 7); applying the move to the current
configuration if the move is accepted (line 8-13). The outer
loop (line 2-22) is corresponding to stages of the algorithm.

12356 VOLUME 5, 2017

Z. Tang et al.: NNS-Based SA for the Directed FVSP

During a certain stage, SA-FVSP runs the inner loop repeat-
edly untilmaxMvt ‘‘actual’’ moves have been performed, and
then, decreases the temperature by multiplying α (line 21).
This process is repeated until maxFail stages have been run
without any improvement of the score of the current best
configuration S∗ (i.e. the value computed by the evaluation
function).

IV. SA-FVSP-NNS ALGORITHM
Wenotice that, in the sampling process of the SA-FVSP, every
feasible move are chosen from the candidate list with the
same probability. This sampling strategy is called uniform
neighborhood sampling. Although adopting uniform proba-
bilities is effective, it is not efficient. A natural idea is that
if we can predict which moves are superior (i.e. the moves
which can prompt the configuration to more rapidly converge
to a minimum feedback vertex set) by utilizing some under-
lying heuristic rules of the FVSP, we can improve the perfor-
mance of the SA-FVSP by prioritizing these superior moves
in the sampling process (more specifically, when choosing
a move from the candidate list, superior moves are assigned
with larger sampling probabilities whereas inferior moves are
assigned with smaller sampling probabilities). This idea is
called nonuniform neighborhood sampling (NNS), which is
a general technique for improving the performance of the SA
based algorithm [12].

In order to apply NNS to the SA-FVSP, we have to
answer two questions: how to estimate how superior a
move is, and how to convert the estimation to the sam-
pling probability, which can guide the sampling process
directly. We describe the solutions to these two problems in
the following Section IV-A and Section IV-B respectively.
In Section IV-C, we combine the SA-FVSP with NNS strat-
egy and propose the Simulated Annealing for the Feedback
Vertex Set Problem using Nonuniform Neighborhood Sam-
pling (SA-FVSP-NNS).

A. PRIORITY FUNCTION
When delving into combinatorial optimization problems,
we can usually find out some useful properties and heuristic
rules, some of which can be used to accelerate the optimiza-
tion process of local search based metaheuristics. For the
FVSP, we quantify this kind of properties and heuristic rules
as a function, which can estimate and score how superior a
move is (i.e. how likely a move makes the current configu-
ration approach a global optimum), and use this function to
guide the sampling process. We call this newly introduced
function the priority function, which is defined in Def. 5.
Definition 5 (Priority Function): A priority function

ω(S, µ) is a two-variable function whose input is the current
configuration S and a move µ in the candidate list for S, and
whose output is a numeric value, i.e. the score of the move µ.
Higher score means that the move µ is more likely to lead the
current configuration to a global optimum. More formally,
For two moves µ1 and µ2 in the candidate list for S, if µ1 is
more likely to lead S to a global optimum than µ2, we have
ω(S, µ1) ≥ ω(S, µ2).

Because the SA-FVSP tries to tackle this problem by find-
ing the largest induced acyclic subgraph, rather than finding
the minimum feedback vertex set directly (see Section III-A),
the priority function should assign the vertices which are
more likely to belong to the minimum feedback vertex set
with smaller scores, and mutatis mutandis, assign the vertices
which are less likely to belong to the minimum feedback
vertex with larger scores. Note that the concept of the greedy
function in the GRASP (see Section II) is just opposite
to the concept of the priority function, because the greedy
function gives larger scores to the promising vertices, rather
than unpromising ones. Therefore, we can directly trans-
form the greedy function to the priority function with minor
modification.

So far, the best known greedy function h(v) is proposed by
Cai et al. [23]. Here is its mathematical formula:

h(v) = deg−(v)+ deg+(v)− λ× |deg−(v)− deg+(v)| (3)

where v is a vertex in the graph, deg−(v) and deg+(v) are the
indegree and the outdegree of the vertex respectively and λ is
a parameter. Cai et al. suggested that the best performance
can be achieved when λ = 0.3 [23].

This greedy function is based on two intuitive heuristic
rules of the FVSP. The first is that if the indegree and out-
degree of a vertex are large, this vertex is more likely to
belong to the minimum feedback vertex set. The second is
that if the difference between indegree and outdegree of a
vertex is small, this vertex is more likely to belong to the
minimum feedback vertex set. λ plays the role of balancing
the effectiveness of these two heuristic rules.

Based on this greedy function, we define a feasible priority
function ωN for the SA-FVSP (see Def. 6).
Definition 6 (Concrete Priority Function): Suppose S is a

reference configuration, < m, i > is a move in the candidate
list for S, we can define a concrete priority function for the
SA-FVSP-NNS as

ωN (S, < m, i >) = −h(m) (4)
Owing to the minus sign before h(m), ωN conforms to the

definition of the priority function. We can also notice that
ωN is independent from the current configuration S and the
position where the vertex insert. This is a useful property
which will be used in Section IV-C.

B. SAMPLING FUNCTION
The priority function cannot be applied to the sampling pro-
cess directly because it does not conform to the probability
axiom [37]. Thus, we still need to convert the scores com-
puted by the priority function to probabilities, which can be
directly used in the sampling process. We call this kind of
probabilities the sampling probability. In Def. 7, we define a
new function similar to the priority function, named the sam-
pling function. This function directly outputs the sampling
probability of each move, rather than the score.
Definition 7 (Sampling Function): A sampling function

P(S, µ) is a two-variable function whose input is the current

VOLUME 5, 2017 12357

Z. Tang et al.: NNS-Based SA for the Directed FVSP

Algorithm 2 SA-FVSP-NNS
Input: a directed graph G; parameters T0, α, maxMv,

maxFail, θ
Output: the best configuration S∗ found by the

algorithm
1 Compute the values of ωN for every vertex;
2 Compute the values of PN based on ωN and θ ;
3 Set T := T0; nbFail := 0; S := (); S∗ := ();
4 repeat
5 Set nbMv := 0; failure := true;
6 repeat
7 Choose a move < v, i > from the candidate list

with the probability PN ;
8 Evaluate 1 := δ(v, i);
9 if 1 ≤ 0 or exp(−1/T) ≥ random(0, 1) then

10 Apply move < v, i > to configuration S;
11 Set nbMv := nbMv+ 1;
12 if f (S) < f (S∗) then
13 Set S∗ := S;
14 Set failure := false;
15 end
16 end
17 until nbMv = maxMv;
18 if failure = true then
19 Set nbFail := nbFail + 1
20 else
21 Set nbFail := 0
22 end
23 Set T := T × α;
24 until nbFail = maxFail;

configuration S and a move µ in the candidate list for S,
and whose output is an sampling probability. Moves will be
chosen with this probability in the sampling process. For a
certain reference configuration S0, P(S0, µ) must satisfy the
following two conditions:

1) P′(µ) = P(S0, µ) is a probability function, which
obeys the probability axiom.

2) For two moves µ1 and µ2, if ω(S0, µ1) ≥ ω(S0, µ2),
P(S0, µ1) ≥ P(S0, µ2).

The first condition guarantees that the output of the
sampling function is a probability. The second condi-
tion implies that superior moves are assigned with higher
probabilities.

The major problem is how to transform a priority func-
tion to a sampling function. Apparently, there are many
feasible approaches. The approach we use is based on group
segmentation, which is described as follows: group moves
with similar priorities together and then assign moves in the
same group with the same probability and moves in different
groups with different probabilities. This method can assure
that the superior moves are prioritized to some extent yet
inferior moves do not lose opportunities to be a dark horse.
Therefore, the SA still maintains a certain level of flexibility

TABLE 1. Parameters.

like the scheme proposed by Ropke et al. (see Section II).
Def. 8 gives the formal definition of this approach.
Definition 8 (A Concrete Sampling Function): For a given

reference configuration S, suppose the candidate list for S is
{< m0, i0 >,< m1, i1 >, . . . , < mz−1, iz−1 >} where
z is the number of moves in the candidate list. Without loss
of generality, we further suppose ω(< m0, i0 >) ≤ ω(<
m1, i1 >) ≤ . . . ≤ ω(< mz−1, iz−1 >).
Suppose a segmentation group is a set of moves which have

similar priorities. Themove< mk , ik >, where 0 ≤ k ≤ z−1,
will be assigned into the ρ(k)-th segmentation group. Below
is the formula of the function ρ(k):

ρ(k) = d
k
θ
e + 1 (5)

where 1 ≤ θ ≤ z is a parameter which controls the number
of moves in each group.

A sampling function PN based on the concept of the seg-
mentation group can be defined as

PN (S, < mk , ik >) =
ρ(k)∑z−1
j=0 ρ(j)

(6)

Note that, if θ = 1, all moves will be assigned with
different probabilities, and conversely, if θ = z, this sam-
pling function will assign uniform probabilities to eachmove.
Therefore, θ can be regarded as a parameter to control the
influence degree of nonuniform neighborhood sampling.

Like the priority function ωN , the sampling function PN is
also independent from the current configuration and the posi-
tion where the vertex inserts. We can see the benefits of this
property in the next section.

C. ALGORITHM
Since we already have a concrete sampling function, it is easy
to modify the original SA-FVSP to support NNS. In fact,
we just need to add the process of computing the sampling
probability and modify the sampling process to choose a
move from candidate list in accordance with the computed
sampling probability.

As have beenmentioned in Section IV-A and Section IV-B,
the priority function ωN and the sampling function PN do
not depend on the current configuration and the position
where the vertex inserts. That is to say, these two functions
only depend on the vertex. Therefore, we do not need to
compute them in every iteration. Instead, we can just compute

1Henceforward, n and m denote the number of vertices and the number of
the arcs in the benchmark graph respectively

12358 VOLUME 5, 2017

Z. Tang et al.: NNS-Based SA for the Directed FVSP

TABLE 2. Experimental results obtained by running 1000 CPU time units.

them for every vertex in advance to accelerate the algorithm.
Therefore, the process of computing the sampling probability
can be added before the loops of the simulated annealing.

The newly proposed algorithm is called the Simulated
Annealing for the Feedback Vertex Set Problem using Nonuni-
formNeighborhood Sampling (SA-FVSP-NNS). Algorithm 2
is its pseudo-code. We can notice that it shares nearly the
same structure with the original SA-FVSP. The only two
differences between the two algorithms are the newly added
sampling probability computation (see Line 1 and 2 of
Algorithm 2) and the sampling process (see Line 7 of
Algorithm 2).

V. EXPERIMENTAL ANALYSIS
In this section, experiments are conducted to compare the
performance of the SA-FVSP-NNS and the SA-FVSP. The
detailed performance comparison between the SA-FVSP and
the GRASP can be seen in the paper [1].

To achieve fairness, we do the followingmethods to control
experimental variables:

1) We use the same computer to test these two algo-
rithms, which is ThinkPad T420i with Intel Core i3-
2350M CPU, 4GB RAM and Windows 7 operating
system.

2) Different programmers usually have distinct program-
matic preferences, which may cause that different
implementations for the same algorithm have dif-
ferent performances. In order to eliminate this kind
of error. We completely re-implement the SA-FVSP
using C++. Then, because of the similar struc-
ture of the SA-FVSP and the SA-FVSP-NNS (see
Section IV-C), we carefully implement the SA-FVSP-
NNS by merely doing minor modifications on the code
of the SA-FVSP so that algorithm implementation and
code quality will not be a factor which bring about the
differences of the experimental results.

3) We use a publicly recognized benchmark, which
was generated by Pardalos et al. [20], to do exper-
iments. The experiments of the GRASP for the
FVSP and the SA-FVSP were also conducted on this

VOLUME 5, 2017 12359

Z. Tang et al.: NNS-Based SA for the Directed FVSP

TABLE 3. Experimental results obtained by running 10000 CPU time units.

benchmark, so we cannot use some favorable instances
to deliberately aggrandize the performance of the
SA-FVSP-NNS.
In this benchmark, there are 40 graph in total, which
can be grouped into four groups. Each group includes
10 graphs. These 10 graphs have the same num-
ber of vertices but different number of arcs. The
graphs in these four groups contain 50, 100, 500 and
1000 vertices respectively. This benchmark can be
downloaded from http://mauricio.resende.info/data/
index.html.

4) We keep the parameter T0, maxMv, α and maxFail the
same in the experiments of the two algorithms. Table 1
presents the value of these parameters. Garlinier et al.
have given a detailed explanation of how to select
appropriate parameters and why selecting these values
in their paper [1].

5) Every experiment runs 20 times with different random
seeds in order to reduce errors.

In Section V-A, we will compare the experimental
results of the two algorithms by limiting the running time.
In Section V-B, we will fix the parameters, run the two
algorithms without the running time limit and then compare
their obtained results.

A. LIMITING RUNNING TIME
In this set of experiments, we compare the experimental
results of the SA-FVSP-NNS and the SA-FVSP by limiting
the running time to certain amounts, i.e. 1000 and 10000 units
of the CPU time. Limiting the running time to 1000 CPU time
units can help us compare the performance gap when given
a short running time. Similarly, limiting the running time to
10000 CPU time units can help us compare the long-term
performance gap. The parameter T0, α, maxMv and θ used in
these experiments are equal to the values in Table 1. maxFail
is set to +∞ in order to prevent the program from stopping
before the time limit. All graphs in the benchmark are tested
for 20 times.

12360 VOLUME 5, 2017

Z. Tang et al.: NNS-Based SA for the Directed FVSP

TABLE 4. Experimental results obtained by running without the time limit.

Table 2 and Table 3 show the experimental results obtained
by running the SA-FVSP-NNS algorithm and the SA-
FVSP algorithm within 1000 and 10000 CPU time units
respectively. These two tables share the same structure.
Column 1 and 2 represent the number of vertices and
the number of arcs in the benchmark graphs respectively.
Column 3-6 show the experimental results of the SA-
FVSP-NNS algorithm. Column 3 is the minimum cardinality
of the feedback vertex set obtained during the 20 times’
running. Column 4 is the average cardinality and Column 5 is
the maximum cardinality. Column 6 shows the standard devi-
ation. Column 7-10 are structurally the same as Column 3-6,
but they show the experimental results of the SA-FVSP
algorithm.

We can observe from the experimental results that, no mat-
ter the time limit is 1000 or 10000 CPU time units, the aver-
age cardinalities of the feedback vertex sets obtained by the
SA-FVSP-NNS is significantly less than those obtained by
the SA-FVSP. In most of cases, the minimum cardinalities

obtained by the SA-FVSP are even larger than the maximum
cardinalities obtained by the SA-FVSP-NNS. Thus, it con-
veys a strong evidence that the SA-FVSP-NNS can obtain
better solutions in a given time limit than the SA-FVSP.

B. NO LIMITING RUNNING TIME
In this set of experiments, we compare the experimental
results of the SA-FVSP-NNS and the SA-FVSP without the
running time limit like Section V-A. Therefore, the two algo-
rithms will run without disturbance and halt after performing
maxFail unproductive stages. The parameter T0, α, maxMv,
maxFail and θ used in these experiments are equal to the
values in Table 1. All graphs in the benchmark are tested for
20 times.

Table 4 shows the experimental results of these two
algorithms when the running time limit is removed.
Column 1 and 2 again represents the number of vertices
and the number of arcs in the benchmark graphs respec-
tively. Column 3-7 show the experimental results of the

VOLUME 5, 2017 12361

Z. Tang et al.: NNS-Based SA for the Directed FVSP

SA-FVSP-NNS algorithm. Column 3 is the minimum cardi-
nality of the feedback vertex set obtained during the 20 times’
running. Column 4 is the average cardinality and Column 5
is the maximum cardinality. Column 6 shows the standard
deviation. Column 7 shows the total running time of the
algorithms (The running time of other ancillary opera-
tions is excluded). The measurement unit of this column
is the CPU time unit. 1 second is equivalent to 1000 CPU
time units. Column 8-12 are structurally the same as
Column 3-7, but they show the experimental results of the
SA-FVSP algorithm.

We can observe from the experimental results that, even
if we do not limit the running time and let the algorithms
halt on their own, the average cardinalities of the feedback
vertex sets obtained by the SA-FVSP-NNS is also signifi-
cantly less than those obtained by the SA-FVSP. Moreover,
similar to the previous subsection, the minimum cardinalities
obtained by the SA-FVSP are even larger than the maximum
cardinalities obtained by the SA-FVSP-NNS in most cases.
Therefore, the experimental results conveys a strong evidence
that the SA-FVSP-NNS can acquire better solutions than the
SA-FVSP when there is no time limit. It is worth mentioning
that the SA-FVSP-NNS usually terminates later than the
SA-FVSP. This means that the SA-FVSP-NNS is more capa-
ble of breaking the consecutive failed stages and jumping out
of the traps of local optimum solutions, so it usually has more
expansive search range in the search space than the SA-FVSP.

VI. CONCLUSION
The simulated annealing (SA) based SA-FVSP algorithm
proposed by Garlinier et al. is one of the cutting-edge heuris-
tic algorithm for the feedback vertex set problem (FVSP)
in the directed graph. In this paper, we improved the
performance of this algorithm by applying nonuniform
neighborhood sampling (NNS) strategy and proposed the
SA-FVSP-NNS algorithm. NNS is a general strategy to
improve the performance of the SA metaheuristic. It assigns
different probabilities to different moves so that the moves
which are more likely to lead the current configuration to a
global optimum are prioritized in the sampling process.

To improve the SA-FVSP using this strategy, we proposed
the concept of the priority function ω and the sampling
function P. The former one estimates and scores the quality
of neighbors based on some practical heuristic rules of the
FVSP; the latter one converts the scores computed by the
priority function to sampling probabilities, which can then
be directly used to guide the nonuniform sampling process.
We also proposed a concrete priority function ωN and a con-
crete sampling function PN . The definition of ωN is based on
the concept of the greedy function in the GRASP, a previous
heuristic algorithm for the FVSP. The definition of PN is
based on the idea of group segmentation, which can prioritize
superiormoves, and in themeantime,maintain randomization
and flexibility of the SA to some extent.

Experiments were conducted to compare the performance
of the SA-FVSP-NNS and the SA-FVSP. The experimental

results indicated that the cardinality of the feedback vertex
set found by the SA-FVSP-NNS is significantly smaller than
the SA-FVSP no matter the running time is limited or not.

As for further studies, we want to explore how to modify
the parameters in the SA-FVSP-NNS to achieve the best
performance. In addition, we observe that the implementation
of NNS in the SA-FVSP-NNS relies heavily on the heuristic
rules used in the priority function. Thus, if we can find out
more effective and accurate heuristic rules from the abundant
existing research results on the FVSP and utilize them in the
priority function, the performance of the SA-FVSP-NNS can
be further improved. This will also be a subject of our future
work.

ACKNOWLEDGMENT
The authors would like to thank the Editor-in-Chief, the
Associate Editor, and the anonymous referees for their com-
ments and suggestions. In addition, they do appreciate the
help from Philippe Galinier, who is one of the authors of the
SA-FVSP algorithm.

REFERENCES
[1] P. Galinier, E. Lemamou, and M. W. Bouzidi, ‘‘Applying local search to

the feedback vertex set problem,’’ J. Heurist., vol. 19, no. 5, pp. 797–818,
2013.

[2] R. M. Karp, ‘‘Reducibility among combinatorial problems,’’ in Complex-
ity of Computer Computations. New York, NY, USA: Springer, 1972,
pp. 85–103.

[3] R. Bar-Yehuda, D. Geiger, J. Naor, and R. M. Roth, ‘‘Approximation algo-
rithms for the feedback vertex set problem with applications to constraint
satisfaction and Bayesian inference,’’ SIAM J. Comput., vol. 27, no. 4,
pp. 942–959, 1998.

[4] A. Silberschatz, P. B. Galvin, and G. Gagne, Operating System Concepts.
Hoboken, NJ, USA: Wiley, 2015.

[5] P. Festa, P. M. Pardalos, and M. G. Resende, ‘‘Feedback set problems,’’ in
Handbook of Combinatorial Optimization. New York, NY, USA: Springer,
1999, pp. 209–258.

[6] T. Orenstein, Z. Kohavi, and I. Pomeranz, ‘‘An optimal algorithm for cycle
breaking in directed graphs,’’ J. Electron. Test., vol. 7, no. 1, pp. 71–81,
1995.

[7] F. V. Fomin, S. Gaspers, and A. V. Pyatkin, ‘‘Finding a minimum
feedback vertex set in time O(1.7548n),’’ in International Workshop on
Parameterized and Exact Computation. Berlin, Germany: Springer, 2006,
pp. 184–191.

[8] G. Even, J. S. Naor, B. Schieber, andM. Sudan, ‘‘Approximating minimum
feedback sets and multicuts in directed graphs,’’ Algorithmica, vol. 20,
no. 2, pp. 151–174, 1998.

[9] C. Demetrescu and I. Finocchi, ‘‘Combinatorial algorithms for feed-
back problems in directed graphs,’’ Inf. Process. Lett., vol. 86, no. 3,
pp. 129–136, 2003.

[10] J. Chen, Y. Liu, S. Lu, B. O’sullivan, and I. Razgon, ‘‘A fixed-parameter
algorithm for the directed feedback vertex set problem,’’ J. ACM, vol. 55,
no. 5, p. 21, 2008.

[11] J. Chen, F. V. Fomin, Y. Liu, S. Lu, and Y. Villanger, ‘‘Improved algorithms
for feedback vertex set problems,’’ J. Comput. Syst. Sci., vol. 74, no. 7,
pp. 1188–1198, 2008.

[12] K. A. Dowsland and J. M. Thompson, ‘‘Simulated annealing,’’ in Hand-
book Natural Computing. Heidelberg, Germany: Springer, 2012, pp. 1623–
1655.

[13] C. Blum and A. Roli, ‘‘Metaheuristics in combinatorial optimization:
Overview and conceptual comparison,’’ ACMComput. Surv., vol. 35, no. 3,
pp. 268–308, 2003.

[14] Q. Feng, J.Wang, and J. Chen, ‘‘Matching and weighted p2-packing: Algo-
rithms and kernels,’’ Theor. Comput. Sci., vol. 522, pp. 85–94, Feb. 2014.

[15] Y. Zhang, X. Sun, and B.Wang, ‘‘Efficient algorithm for k-barrier coverage
based on integer linear programming,’’ China Commun., vol. 13, no. 7,
pp. 16–23, Jul. 2016.

12362 VOLUME 5, 2017

Z. Tang et al.: NNS-Based SA for the Directed FVSP

[16] B. Gu and V. S. Sheng, ‘‘A robust regularization path algorithm for
ν-support vector classification,’’ IEEE Trans. Neural Netw. Learn. Syst.,
vol. 28, no. 5, pp. 1241–1248, May 2017.

[17] M. R. Garey and D. S. Johnson, Computers and Intractability, vol. 29.
New York, NY, USA: Freeman, 2002.

[18] Z. Tang, A. Liu, and C. Huang, ‘‘Social-aware data collection scheme
through opportunistic communication in vehicular mobile networks,’’
IEEE Access, vol. 4, pp. 6480–6502, 2016.

[19] J. Guo-Hong et al., ‘‘Algorithms for feedback set problems: A survey,’’
Comput. Sci., vol. 38, no. 1, pp. 40–47, 2011.

[20] P. M. Pardalos, T. Qian, and M. G. Resende, ‘‘A greedy randomized adap-
tive search procedure for the feedback vertex set problem,’’ J. Combinat.
Optim., vol. 2, no. 4, pp. 399–412, 1998.

[21] M. G. Resende and C. C. Ribeiro, ‘‘Greedy randomized adaptive search
procedures: Advances, hybridizations, and applications,’’ in Handbook
Metaheuristics. Springer, 2010, pp. 283–319.

[22] H. Levy and D. W. Low, ‘‘A contraction algorithm for finding small cycle
cutsets,’’ J. Algorithms, vol. 9, no. 4, pp. 470–493, 1988.

[23] X. Cai, J. Huang, andG. Jian, ‘‘A search algorithm for computingminimum
feedback vertex set of a directed graph,’’ Comput. Eng., vol. 32, no. 4,
pp. 67–69, 2006.

[24] Y. S. Kardam, ‘‘Metaheuristic techniques for solving optimization prob-
lems in graph theory,’’ Ph.D. dissertation, Dept. Math., Dayalbagh Edu.
Inst., Agra, India, Sep. 2014.

[25] Z. Zhang, A. Ye, X. Zhou, and Z. Shao, ‘‘An efficient local search for the
feedback vertex set problem,’’Algorithms, vol. 6, no. 4, pp. 726–746, 2013.

[26] S.-M. Qin and H.-J. Zhou, ‘‘Solving the undirected feedback vertex set
problem by local search,’’ Eur. Phys. J. B, Condensed Matter Complex
Syst., vol. 87, no. 11, pp. 1–6, 2014.

[27] L. Brunetta, F. Maffioli, and M. Trubian, ‘‘Solving the feedback vertex
set problem on undirected graphs,’’ Discrete Appl. Math., vol. 101, no. 1,
pp. 37–51, 2000.

[28] F. Carrabs, R. Cerulli, M. Gentili, and G. Parlato, ‘‘A tabu search heuris-
tic based on k-diamonds for the weighted feedback vertex set prob-
lem,’’ in Network Optimization. Heidelberg, Germany: Springer, 2011,
pp. 589–602.

[29] F. Carrabs, C. Cerrone, and R. Cerulli, ‘‘A memetic algorithm for
the weighted feedback vertex set problem,’’ Network, vol. 64, no. 4,
pp. 339–356, 2014.

[30] D. T. Connolly, ‘‘An improved annealing scheme for the QAP,’’ Eur. J.
Oper. Res., vol. 46, no. 1, pp. 93–100, 1990.

[31] I. H. Osman, ‘‘Metastrategy simulated annealing and tabu search algo-
rithms for the vehicle routing problem,’’ Ann. Oper. Res., vol. 41, no. 4,
pp. 421–451, 1993.

[32] J. W. Greene and K. J. Supowit, ‘‘Simulated annealing without rejected
moves,’’ IEEE Trans. Comput.-Aided Design Integr., vol. CAD-5, no. 1,
pp. 221–228, Jan. 1986.

[33] S.-W. Lin, V. F. Yu, and S.-Y. Chou, ‘‘Solving the truck and trailer routing
problem based on a simulated annealing heuristic,’’ Comput. Oper. Res.,
vol. 36, no. 5, pp. 1683–1692, 2009.

[34] S. Ropke and D. Pisinger, ‘‘An adaptive large neighborhood search heuris-
tic for the pickup and delivery problem with time windows,’’ Transp. Sci.,
vol. 40, no. 4, pp. 455–472, 2006.

[35] J. M. Thompson and K. A. Dowsland, ‘‘A robust simulated annealing
based examination timetabling system,’’Comput. Oper. Res., vol. 25, no. 7,
pp. 637–648, 1998.

[36] S. Kirkpatrick, C. D. Gelatt, andM. P. Vecchi, ‘‘Optimization by simulated
annealing,’’ Science, vol. 220, no. 4598, pp. 671–680, 1983.

[37] K. L. Chung and F. AitSahlia, Elementary Probability Theory: With
Stochastic Processes and An Introduction to Mathematical Finance. New
York, NY, USA: Springer, 2012.

ZHIPENG TANG received the bachelor’s degree
in 2016. He is currently pursuing the master’s
degree with the School of Information Science
and Engineering, Central South University, China.
He has authored three SCI papers. His research
interests include heuristic algorithms, the services-
based network, and the crowd sensing networks.

QILONG FENG received the Ph.D. degree in
computer science from Central South University,
China, in 2010. His current research interests
include computer algorithms and parameterized
algorithms.

PING ZHONG (M’13) received the Ph.D. degree
in communication engineering from Xiamen Uni-
versity, China, in 2011. She is currently a
Lecturer with the Department of Computer Sci-
ence and Technology, Central South University.
Her research interests include machine learning,
data mining, and networks protocol design. She is
a member of the ACM, the CCF, and the IEICE.

VOLUME 5, 2017 12363

