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ABSTRACT Mental stress has become a social issue and could become a cause of functional disability during
routine work. In addition, chronic stress could implicate several psychophysiological disorders. For example,
stress increases the likelihood of depression, stroke, heart attack, and cardiac arrest. The latest neuroscience
reveals that the human brain is the primary target of mental stress, because the perception of the human brain
determines a situation that is threatening and stressful. In this context, an objectivemeasure for identifying the
levels of stress while considering the human brain could considerably improve the associated harmful effects.
Therefore, in this paper, a machine learning (ML) framework involving electroencephalogram (EEG) signal
analysis of stressed participants is proposed. In the experimental setting, stress was induced by adopting
a well-known experimental paradigm based on the montreal imaging stress task. The induction of stress
was validated by the task performance and subjective feedback. The proposed ML framework involved
EEG feature extraction, feature selection (receiver operating characteristic curve, t-test and the Bhattacharya
distance), classification (logistic regression, support vector machine and naïve Bayes classifiers) and tenfold
cross validation. The results showed that the proposed framework produced 94.6% accuracy for two-level
identification of stress and 83.4% accuracy for multiple level identification. In conclusion, the proposed
EEG-based ML framework has the potential to quantify stress objectively into multiple levels. The proposed
method could help in developing a computer-aided diagnostic tool for stress detection.

INDEX TERMS Absolute power, amplitude asymmetry, coherence, EEG, machine learning, mental stress
levels, phase lag, relative power, support vector machine, t-test.

I. INTRODUCTION
Stress is commonly recognized as a state in which an
individual is expected to perform too much under sheer pres-
sure and inwhich he/she can onlymarginally contendwith the
demands. These demands can be psychological or social. It is
known that psychosocial stress exists in daily life, which has
resulted in poor quality of life by affecting people’s emotional
behavior, job performance, mental and physical health [1].
Psychosocial stress is a leading cause of several psychophys-
iological disorders. For example, it increases the likeli-
hood of depression [2], stroke [3], heart attack and cardiac
arrest [4]–[6].

The cure of stress requires it to be quantized into lev-
els first. Clinically, stress has been evaluated using ques-
tionnaires and interviews, which are subjective methods.
Alternatively, stress-related physical and physiological
changes have also been utilized as objective indicators

of stress [7]. For example, physically, stress changes the
pupil dilation [8], blink rate [9] and facial gestures [10].
On the other hand, stress causes changes in the auto-
nomic nervous system (ANS) [11]. Therefore, physiolog-
ical biomarkers of stress from the ANS exist in the form
of heart rate (HR) and heart rate variability (HRV) [12],
respiration [13], and skin conductance [14]. According to
the latest neuroscience, the human brain is the main tar-
get of mental stress [15] because the perceptions of the
human brain determine whether a situation is threatening
and stressful. To obtain the cortical response to stress,
non-invasive neuroimaging modalities, such as electroen-
cephalography (EEG), furnish the most suited modalities to
measure functional changes in the brain. Importantly, EEGs
have shown implication association with other stress indica-
tors such as HR and HRV in general [16] and specifically in
stress [17].
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As far as the assessment of stress from EEG signals is
concerned, various studies have extracted several electro-
physiological features from EEG signals and employed
classification algorithms with the highest accuracy of 96%
for classification between two levels of stress [18]. These
results validate that EEG is a potential assessment tool for
stress. In recent studies, changes in the EEG absolute power
and in connectivity measures such as coherence and mutual
information have been shown to vary due to stress [19].
Similarly, asymmetry in EEG alpha power has been shown to
be influenced byHRVbiofeedback during stress therapy [20].
Another study discussed EEG alpha asymmetry and revealed
stress-related disorders in a virtual reality environment [21].
EEG eigenvalue decomposition was utilized for stress level
classification [22]. Another study proposed an EEG-based
brainwave balancing index to assess the stress level of uni-
versity students during their studies [23]. The time course
of psychological stress was investigated through event-
related potentials in a successfully designed stress-elicitation
paradigm [24]. This study indicated that stress occurred in the
early stages of cognitive processing. In the context of objec-
tively identifying and differentiating stressful conditions from
other conditions using EEG-based methods, various compu-
tational techniques have been used, such as support vector
machine [25], [26], K-nearest neighbors (KNN) [22], [27],
artificial neural networks (ANNs) [28], [29] and random
forest [30]. Not only has stress been identified using EEG
signals alone but also EEG signals have been fused with
other modalities, such as skin conductance [30], functional
near-infrared spectroscopy (fNIRS) [25] and electrocardio-
graphy (ECG) [31], in an aim to improve the identification
of stress.

We hypothesize that EEG has the potential to objectively
identify the levels of stress if proper analysis is conducted.
We propose a machine learning-based objective framework
for the identification of stress levels based on EEG signals
from normal subjects during mental stress. In this paper,
we present a novel methodology to detect mental stress lev-
els by exploring quantitative differences between stress and
control conditions as well as four levels of stress conditions.
We have extracted five features from EEG signals: abso-
lute power, relative power, coherence, amplitude asymmetry
and phase lag. Our machine learning framework allowed
for standardization of the extracted features followed by
feature selection using the receiver operating characteris-
tic (ROC) curve, the t-test and the Bhattacharya distance.
The selected features were applied to three classifiers: logis-
tic regression (LR), support vector machine (SVM) and
naïve Bayes (NB) classifiers. Finally, the model valida-
tions were provided by cross-validation to avoid classifier
over-fitting.

The structure of this paper is the following: Section II
describes the detailed methodology, and the achievements
and results are presented in section III. In section IV, a dis-
cussion of the results is provided, and the study’s conclusions
are presented in section V.

FIGURE 1. Experiment flow (a) mental stress condition and (b) control
condition.

II. MATERIALS AND METHODS
A. STUDY PARTICIPANTS
Forty-two healthy subjects, including eleven females
(19-25 years of age), were selected for this study. They were
selected based on having no previous medical record or head
injury and not using any medication that might increase car-
diac activation. The subjects were further scrutinized based
on the results of the perceived stress scale (PSS) [32]. PSS is
a ten-item inventory that grades the perception of an individ-
ual’s stress into four levels based on the experiences of one
past month. Four subjects who were placed in the fourth level
of the PSS scale were excluded from participation because
they already had stress. Data from six subjects were corrupted
due to bad connections between the EEG cap and the scalp
and had to be excluded. Ten subjects could not appear in
both sessions. Finally, data from twenty-two subjects who
participated in both experimental sessions were included in
this paper. The subjects were asked to perform fasting for at
least two hours before starting the experiment. Each subject
signed an informed consent, agreeing to participate and was
given an honorarium of RM 40 for his/her contribution.
The experimental design had been approved by the ethics
committee at Hospital Universiti Sains Malaysia (HUSM),
Malaysia.

B. EXPERIMENT DESIGN
In this study, a computer-based mental arithmetic task (MAT)
was employed to induce stress that was based on the paradigm
of the Montreal Imaging Stress Task (MIST) [15]. The MIST
was chosen because it has shown the capability of induc-
ing reliable stress that involves the hypothalamic pituitary
adrenal (HPA) axis [33], [34]. The tasks were presented
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using the E-Prime 2.0 software (Psychology Software Tools,
Pittsburgh, PA) [35]. The pictorial elaboration of the experi-
mental design is shown in Fig. 1. The experiment had three
main components: stress, control and rest. The stress condi-
tion was induced by placing a deadline on solving a task (time
pressure) accompanied with negative comments. In con-
trast, the control condition consisted of doing MAT without
the extra challenge of time pressure or negative comments.
The MIST paradigm has a unique feature of comparing the
stress condition with a control condition of a similar nature.
The rest condition included an eyes-open task while sitting
comfortably.

Because each study participant has gone through both
stress and control conditions, the conditions were performed
on two separate days with a gap of at least seven days, to min-
imize the learning effect on the performance. In addition,
to eliminate the expected effects of these sessions on the
results, half of the subjects underwent the stress condition
followed by the control condition while the other half of the
subjects underwent those conditions in the opposite order.
Both the stress and control condition had their own rest
condition in the beginning.Moreover, a habituation phase and
a recovery phase were also provided to the subjects. Before
the stress condition, a practice session was provided to the
subjects to observe their performance in solving the MAT.
Hence, the time that a subject was given to solve the MAT
during the stress condition was shorter than his/her average
response time during the practice session.

Both the stress and control conditions were divided into
four difficulty levels of 5 minutes of duration. TheMAT com-
prised simple arithmetic calculations of up to two digit num-
bers (maximum 99) that involved four operands (+,−,×,÷).
The answer to every MAT was a single digit number. Level 1
included either addition or subtraction of two numbers
(e.g., 5+3). Level 2 included paired multiplication with
either addition or subtraction of three numbers (e.g., 4∗6-16).
Level 3 entailed multiplication with addition and subtraction
among four numbers (e.g., 9-4∗6-21). Level 4 included divi-
sion along with previous operations to be performed among
four numbers (e.g., 57/3-9-6).

In the stress condition, the arithmetic task was presented
along with negative comments. Moreover, in the stress con-
dition, due to having a limited time to solve the MAT, the per-
formance accuracy remained below 50%. To induce stress
on the subject, after every MAT, a feedback display message
appeared on computer screen, such as ‘‘correct’’ or ‘‘incor-
rect’’ or ‘‘no response’’, according to the response to the
task. In addition, the average performance of the subject at a
given level as well as the response time to solve the MAT are
displayed. To continue inducing stress, after every fewMATs,
the subjects were reminded to maintain the performance
accuracy above an arbitrary threshold, which was described
to him/her as the overall performance of other subjects.
Additionally, in the stress condition, after a certain number
of trials in every level, a stressful interrupt popped up that
showed negative comments such as ‘‘Don’t guess answers’’,

‘‘Your performance is below average’’, ‘‘Don’t panic. You
have been given sufficient time to answer. Don’t GUESS and
don’t give WRONG answers’’, ‘‘You are under observation
from outside’’, ‘‘You have disappointed us with your perfor-
mance’’. In the control condition, there was no time limit to
solve the MAT. The feedback display only revealed either
‘‘correct’’ or ‘‘incorrect’’ based on the response to the task.

After every interval of stress and control conditions, two
minutes of idle time was granted to allow the subjects to
perhaps feel comfortable while performing the task. During
the break, the subjects were provided with a feedback ques-
tionnaire asking their insights about the preceding interval.
In the experiment, the scores from the feedback question-
naires along with the task performance scores (percentage of
correct responses) validated the induction of stress.

TABLE 1. Performance in every level of the stress and control conditions.

Table I shows the task performance in every level of the
stress and control conditions. The task performance in the
stress condition was significantly (based on a t-test with
P< 0.001) different from the control condition in every level.
Moreover, the task performance in every level of stress was
also significantly different from the other stress levels (based
on ANOVA and Tukey-Kramer post hoc test).

TABLE 2. Average response time of the tasks in every level of the stress
and control conditions.

Table II shows the response time of the tasks in every
level of the stress and control conditions, as computed from
E-Prime. Like the task performance, the response time of
the tasks under the stress conditions was also significantly
different from that of the control conditions in every level
of stress as well as being different in every level of stress
compared with all other levels of stress.

Table III shows the subjective rating of the allocated time
to solve the task. Based on the response during the task,
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TABLE 3. Average of the subjective response time of the tasks in every
level of the stress and control conditions.

it can be concluded that our experiment successfully induced
stress.

C. EEG DATA ACQUISITION
The EEGs were recorded from 128 channels using a Net
Amps 300 amplifier (Electrical Geodesic Inc. (EGI), USA).
The Ag/AgCl electrodes were mounted into an elastic net.
All the electrodes were referenced to the Cz position. The
impedance of all the electrodes was maintained below 50 K�
throughout the recording. The signals were digitized at
500 Hz with a notch filter at 50 Hz. The EEG amplifier was
placed inside the experiment room. The amplified and digi-
tized EEG signal was transmitted to Net Station 4.43 record-
ing software operating on the computer placed outside the
experiment room via fiber optic cables.

The experiment was performed in an isolated room where
the subject was sitting alone in front of a computer screenwith
the installed E-Prime. To control the experiment, the experi-
menter observed the acquired EEG signals as well as the task
performance of the subject on a duplicate screen from outside
the experiment room. The triggers from the E-Prime were
sent to the Net Station to automatically start/stop the EEG
recording as well as to mark the events through a TCP/IP link.
Prior to the experimental set up, a timing test was performed
to synchronize the clocks of the two computers that were
running E-Prime and Net Station.

D. EEG ARTIFACT REDUCTION
EEG signals were pre-processed offline by employing a
0.1-Hz filter to remove the DC artifacts and a 50-Hz notch fil-
ter to remove the line noise. Nineteen EEG channels accord-
ing to the 10-20 system were selected against the average
mastoid reference. Pre-processing of EEG signals was per-
formed in Net Station 4.43. For further processing and feature
extraction, EEG data were exported to Neuroguide [36]. Fur-
ther processing was performed at a sampling rate of 128 Hz.
The eye-blink and muscle artifacts were manually removed
by discarding that portion of the recording from the data.
Both eye-blink and muscle artifacts were detectable by visual
inspection. For example, the eye-blinks created a peak at
approximately 10 Hz, while the muscle artifacts appeared at
a higher frequency in the power spectral density graph of the
EEG signals. The internal consistency and reliability of the
cleaned EEG data were measured by computing the split-
half reliability, and test-retest reliability measures that were
above 90% for every EEG channel. To perform the analysis,
sixty seconds of cleaned EEG data were selected from each
level of the stress and control conditions.

FIGURE 2. Proposed ML framework.

E. PROPOSED ML FRAMEWORK
For the identification of stress levels, three analytical cases
were performed. In case one, each of the four levels of stress
was compared with the initial level of control (a binary classi-
fication), and in case two, every level of stress was compared
with its respective level of control (a binary classification),
and in case three, each level of stress was compared with
all the other levels of stress (one vs. all classification). For
every case, the proposed framework, as shown in Fig. 2, was
applied.

Figure 2 shows an overview of the proposed ML method,
which involves a description of the EEG feature extraction,
selection, classification and validation. For the feature extrac-
tion, one minute of artifact-free EEG epochs were selected
from the stress and control conditions per level per subject.
The feature extraction has been implicated into many fea-
tures such as absolute and relative power, coherence, ampli-
tude asymmetry and phase lag. The features were arranged
column-wise in a matrix, and each column was denoted as xi,
where i= 1. . .Nc. The rows of the matrix represent stress
conditions with 2 physiological conditions per patient; the
matrix was termed the EEG data matrix. The matrix was
denoted by L = [(xi, yi), i=1 . . .Nc] and included both
the feature space matrix and the corresponding output class
labels, y= [Stress, Controls]. A detailed description for each
sub-process is provided in the respective subsections.
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1) EEG FEATURE EXTRACTION
a: ABSOLUTE POWER (AP)
In this paper, the EEG absolute power was estimated by
first converting the EEG signal to frequency domain using
fast Fourier Transform (FFT). The FFT was applied using a
tapered cosinewindow of 256 sampleswith 75%overlapping.
The cosine window is defined in (1)
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In this study, the EEG absolute power was computed for
each channel, which included the frontal (Fp1, Fp2, F3, F4,
F7, F8, Fpz), temporal (T3, T4, T5, T6), parietal (P3, P4,
P7, P8), occipital (O1, O2), and central (C3, C4) channels.
Moreover, the values were computed for frequency bands
between 1 to 45 Hz, such as the delta (1 to 4 Hz), theta
(4 to 8 Hz), alpha 1 (8 to 10 Hz), alpha 2 (10 to 12 Hz), beta
1 (12 to 15 Hz), beta 2 (15 to 18 Hz), beta 3 (18 to 25 Hz),
gamma 1 (30 to 35 Hz), gamma 2 (35 to 40 Hz) and gamma3
(40 to 45 Hz) bands. The EEG power in different frequency
bands and scalp locations were features during the proposed
machine learning process.

b: RELATIVE POWER (RP)
The relative power finds the rhythmicity in the EEG signals.
The relative powerwas derived from the absolute power of the
frequency bands as the power in a specific frequency band
divided by the total power [37], as shown in (2).

Relative power =
Power in band
Total power

× 100% (2)

In this paper, the features of RP were computed for all fre-
quency bands of absolute power across 19 electrodes. These
features were computed for every subject and in every level
of the experiment.

c: COHERENCE
Coherence is a brain connectivity measure that reports the
degree of association between two brain locations. The idea
in measuring the coherence in this study was to indicate
impurities in the coherences between the stress and con-
trol conditions. Mathematically, it can be represented as
follows [37]:

Coherence =

∣∣H2
uv

∣∣
|Hu| |Hv|

(3)

In this representation, the numerator is the cross-spectrum
between the two signals, and the two terms in the denom-
inator represent the auto-spectra of the individual signals.
This representation interprets the Pearson correlation coef-
ficient for the variables in the frequency domain. For further

knowledge about coherence, please refer to [38]. The coher-
ence was computed between 171 electrode pairs for each of
the frequency bands for every subject in every level of the
experiment.

d: PHASE LAG
The phase difference is also a measure of connectivity that
describes the lead or lag between two EEG signals from
different locations. The phase is the arctangent of the ratio
of quadrature components derived from the FFT. The phase
of a particular signal is generally defined as follows [37]:

Phase = Arc tan
(
b
a

)
(4)

where b represents the ‘‘imaginary’’ or ‘‘out-of-phase’’
component, and a represents the ‘‘real’’ or ‘‘in-phase’’ com-
ponent of the signal. The real and imaginary components of
the signals were computed from the FFT. Then, the phase
difference between the signals from the two locations is com-
puted by subtracting their individual phases, as shown in (5):

Phase difference = Arc tan
(
b2
a2

)
− Arc tan

(
b1
a1

)
(5)

The phase difference was computed in radians and con-
verted to degrees. The absolute phase delay was computed
by squaring and then taking the square root of the squared
difference.

The phase difference was also computed for 171 location
pairs for each of the frequency bands for every subject in
every level of the experiment.

e: AMPLITUDE ASYMMETRY
The asymmetry is also a measure of the connectivity, and it
reflects the relative stimulation between two brain locations.
The asymmetry was found by taking the difference between
the signals’ amplitudes and, then, normalizing it to the sum
of their amplitudes, as shown in (6), where M and N are the
instantaneous amplitudes of the given signals.

Asymmetry =
M − N
M + N

(6)

The amplitude of the asymmetry was computed for
171 pairs of locations of each of the frequency bands for every
subject in every level of the experiment.

2) EEG DATA MATRIX AND Z-SCORE STANDARDIZATION
The feature extraction implicated in the EEG data matrix
involved the number of rows (data points = 44). The matrix
might not be centered and could be unequally distributed.
Hence, the data standardization was performed by involving
the z-score standardization. The standardization was per-
formed by computing the values column-wise by subtracting
each element value with its column-wise mean and dividing
by the corresponding standard deviation.
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3) EEG FEATURE SELECTION
The extracted features might be either irrelevant (due to
low feature-class correlations) or redundant (due to high
feature-feature correlations). For this paper, feature selection
was achieved by first selecting those features that had high
feature-class correlations. Second, we sorted the selected fea-
tures using a rank-basedmethod that assigns a weight value to
each feature, as shown in (7) [39]–[41]. For this purpose, three
feature selection criteria, the ROC, t-test and Bhattacharya
distance [40], were used.

r = z× (1− α × ρ) (7)

The z-value for each feature corresponds to the absolute
value of the feature selection criterion. For the ROC, z corre-
sponds to the area between the empirical ROC curve and the
random classifier slope and could vary from 0 and 0.5, which
indicates a bad to good classification ability, accordingly.
A high z-value (equal to or close to 0.5) corresponded to
the ability of a feature to discriminate from other features
within classes. For the t-test, z corresponds to the absolute
value two-sample T-test with a pooled variance estimate.
For Bhattacharya, z is the minimum achievable classification
error or the Chernoff bound. In (7), α is the scalar weight
(from 0 to 1) for rho, which is the average value of the cross-
correlation coefficient between the candidate feature and all
the already picked features. A large value of rho overshadows
the significance statistic. This arrangement means that the
higher the value of rho is, the higher the correlation of the
feature with previously selected features and hence the likely
it is to be excluded from the output list.

In this way, the features were arranged in descending order,
i.e., the top-ranked features were listed at the top of the list.
Furthermore, only the top-ranked features were selected for
training and testing the classifier models. To find the mini-
mum number of features that would be sufficient to train the
classifier models without over-fitting, an empirical process
was adopted. In this iterative procedure, the classification
performances of the classification models for each of the
feature subsets based on the top 1, 2, 3, 4, 5, 10, 15, and
20 features were observed. Finally, the highest classification
performances were reported.

4) CLASSIFICATION MODELS
In this study, the LR classifier was used to model the rela-
tionship between the reduced set of features and the corre-
sponding treatment outcomes (stress and control), y=[stress,
Control], according to (8) [42]. For the LR classifier, the coef-
ficient estimations were based on the maximum likelihood
method. The LR classifier resulted in a likelihood value l(x),
where 0 ≤ l(x) ≤ 1, whichwas an indication of the condition,
associated with either stress or control. If l(x) was greater
than the threshold = 0.5, then the condition was declared to
be stress, and otherwise, it was associated with the control
group.

F(z) = E(Y/x) =
1

1+ e−z
(8)

where Y indicates the class labels, which are assigned the
value of either ‘Stress’ or ‘Controls’. In addition, x represents
a combination of different EEG features. To obtain the LR
model from the logistic function, we used (9):

z = α + β1X1 + β2X2 + . . .+ βkXk (9)

where z is a linear combination of α plus β1 multiplied
by X1, plus β2 multiplied by X2, and so on until plus βk
multiplied with Xk , where the Xk are the independent vari-
ables, andα, and βi are constant terms that represent unknown
parameters. Furthermore, by replacing the value of z from (9)
to (8), the following (10) represents the logistic function:

F(z) = E(Y/x) =
1

1+ e−(α+
∑
βiXi)

(10)

In terms of a response and non-response, the risk of a
person to be a non-responder or a responder is estimated
and is represented by Y or l(x). The LR classifier resulted
in a likelihood value of l(x), where 0 < l(x) ≤ 1, which
was an indication of the subjects’ association with either
the stress or controls category. If l(x) was greater than the
threshold= 0.5, then the condition was declared as ‘Stressed’
and, otherwise, as ‘control’.

The second classification model that was employed was
the SVM classifier with a linear kernel [43]. It can classify
the feature space based on a ‘hyperplane’ that separated the
stress and control conditions according to the class labels. The
SVM is a high efficiency classifier model and is used here for
comparison purposes. According to the SVM, a linear deci-
sion boundary can be found based on this high-dimensional
space. The use of a linear kernel instead of a nonlinear kernel
reduced the risk of over-fitting the data and improved the
performance for our data and significantly reduced the overall
model complexity. In summary, the LR classifier generated
probability values to categorize stress or controls, and the
SVM developed a hyperplane to achieve the maximum clas-
sification accuracy.

The third classification model was the NB classifica-
tion [44], which is based on generating the conditional pos-
terior probabilities for each sample while involving the target
condition, i.e., stress vs. control. The classifier was formed
by assigning the sample to the class for which the sample had
higher posterior probabilities.

In this study, all the three classifier models were imple-
mented in Matlab. Table IV shows the specific values of
the parameter assigned for each classifier during training
and testing. Regarding the LR classifier, the link function
showed the relationship between the EEG features and the
clinical outcomes. The value was set as the ‘logit’ since the
classifier that was used was logistic regression. A two-class
classification assumes a binomial distribution; this aspect was
set as binomial because the data were supposed to originate
from 2 classes, i.e., stress and control. The offset value was
set to 1, whereas the mathematical model of the LR classi-
fier included a constant term. Regarding the SVM classifier,
the C values were assigned as 0.787 for the stress class and
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TABLE 4. Values of the parameter assigned for each classifier during
training and testing while discriminating the stress and control
conditions.

1.3684 for the control class. The values were computed with
formula (N/2×N1) and (N/2×N2), respectively. The variable
‘N’ denoted the total number of study participants; N1 indi-
cated the number of stressed subjects, and N2 indicated the
number of controls. Other parameters, such as ‘Degree of
polynomial’, ‘No. of classes’, and ‘Kernel function’, were
assigned as 1, 2, and ‘Linear’, respectively. The parameters
for the Naïve Bayesian were assigned with a normal uniform
distribution for the stress and control classes.

5) VALIDATION OF CLASSIFICATION MODELS
After the classifier design, a fair evaluation requires an assess-
ment of its performance over a range of selected features and
classifier designs (with suitable coefficient values until con-
vergence), which corresponds to many subjects. To address
this consideration, we evaluated the classification perfor-
mance based on 10-fold cross validation by dividing the data
sample points (Study participants) into 10 equal segments.
During each round, 9 of the segments were utilized as the
training subset, and the remaining 1 was the test subset.
Ten-fold cross validation provides a fair test of validation in
cases where the data points are limitedwhile utilizing features
for both testing and training the classifier models.

For each feature subset, 100-times runs of the simulations
were performed involving 10-fold cross validation to achieve
the box plot representations of the accuracies, sensitivities
and specificities. Since the individual iterations resulted in
100 different values of the performancemetrics (the accuracy,
sensitivity and specificity), the final confusion matrix was
computed by averaging over 100 times. The performance
metrics computed from the confusion matrix were presented
by (11-13). The sensitivity of a classification model corre-
sponds to the percentage of true cases (TP) that are cor-
rectly classified as cases defined by (11). The specificity of

a classification model refers to the percentage of true non-
cases (TN) that are correctly classified as non-cases, as
described by (12). The accuracy of a classification model
illustrates the percentage of correctly classified cases and
non-cases among all the example points, as depicted in (13).

Sensitivity =
TP

TP+ FN
(11)

Specificity =
TN

TN + FP
(12)

Accuracy =
TP+ TN

TP+ TN + FP+ FN
(13)

III. RESULTS
The best performances of the feature sets for the identifi-
cation of stress in case one are shown in Table V. For the
identification of levels 1-3, the relative power produced the
best performance with the t-test and NB in level 1 (accuracy
94.0%, sensitivity 95.0% and specificity 91.7%), with the
t-test and SVM in level 2 (accuracy 93.9%, sensitivity 96.7%,
and specificity 92.5%) and with the t-test and NB Level 3
(accuracy 94.6%, sensitivity 98.3% and specificity 93.3%).
For the identification of level 4, the amplitude asymmetry
produced the best performance with the t-test and NB (accu-
racy 91.7%, sensitivity 94.2% and specificity 90.0%).

The best performance of every feature set in case
two is shown in Table VI. It has been observed that
the maximum performance was shown by the relative
power, in levels 1, 3 and 4, and absolute power, in level 1.
Moreover, the maximum performance was achieved with the
t-test across every level and with the NB classifier across
levels 1-3 and LR at level 4. The overall accuracy for the case
two identification of stress was 94.0% in level 1.

IV. DISCUSSION
This paper provides a framework for the identification of
stress at multiple levels using EEGs. For this purpose,
an experimental paradigm, based on MIST, was designed
that induced four levels of stress based on time pressure,
distraction and evaluative pressure, to mimic social pressure.
For the comparison of the four levels of stress, four identical
control conditions were available with the same task diffi-
culty as the stress conditions. By the same task difficulty,
we mean that the nature of the arithmetic task was the same.
The findings on the task performance and response time
validate the experiment paradigm to induce stress, as shown
in Tables I-III.

For the identification of stress, the analysis was conducted
for three cases. In case one, four levels of stress were individ-
ually identified in comparison with the initial control condi-
tion, as a two-class problem. Case two was also a two-class
problem, in which every individual level of stress was iden-
tified using the similar level of stress. Case three, however,
was a multiclass identification of stress, in which every level
of stress was identified from the other levels of stress.

The extracted features from the EEG signals were the abso-
lute power, relative power, coherence, amplitude asymmetry
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TABLE 5. Highest performance of every feature in combination with the
classifier and feature selection method in every level of stress with
respect to the first level of control.

TABLE 6. Highest performance of every feature in combination with the
classifier and feature selection method in every level of stress with
respect to the similar control condition.
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and phase-lag. Before presenting them to the classifier, these
features were standardized using the z-score followed by a
rank-based feature selection approach for which three tech-
niques, ROC, t-test and Bhattacharya distance, were used.
Finally, for the classification, LR, SVM and naïve Bayes
classifiers were used. The results showed that in identifying
the four level of stress in case one, the maximum accuracies
were found to be 94.0%, 93.9%, 94.6% and 90.6%, respec-
tively (Table V). In case two, the maximum accuracies in
identifying the levels of stress were 94%, 93.1%, 92.5% and
92.0%, respectively (Table VI). To identify the level of stress
from the other levels of stress in case three, the maximum
accuracies were 83.43%, 77.28% 75.61% and 75.47%,
respectively (Table VII).

Despite the rapid development of physical and physiolog-
ical biomarkers of stress, limited reports discuss the appli-
cation of EEG signals for the assessment of stress. In the
earlier review about the psychophysiological biomarkers of
stressors, EEGwas not included as a biomarker of stress [45],
even though EEG signals can more effectively illustrate the
stress levels. As discussed in an earlier study, EEG signals
illustrated relaxation (contrary to stress) levels, which heart
rate and blood pressure failed to represent [46]. Exposure
to physiological biomarkers other than EEG is probably
observed because stress, after originating in the amygdala,
ultimately initiates responses in the ANS [47]. As summa-
rized in Table VIII, the employment of EEGs for the assess-
ment of stress started as late as 2010.

For the induction of stress in the experimental condi-
tions, various experimental tasks have been used in studies,
for example, an arithmetic task or a Stroop task. However,
whether these tasks induced stress was neither validated nor
discussed in many of these studies. For example, the arith-
metic task and the Stroop task were utilized to induce high
and low levels of stress besides the rest condition as no
stress [18]. The tasks that basically produce a cognitive load
can be used to induce stress by following certain paradigms.
For example, the arithmetic task was presented under social
evaluative pressure in the Trier social stress task [48] as
well as under time pressure in the Montreal imaging stress
task (MIST) [15] and the Stroop task, inwhichGaussian noise
causes visual fluctuations [49] to induce stress. In this sce-
nario, the validation that the achieved results in the presented
studies were due to the induction of stress was unanswered.

The outcome of a classifier strongly depends on the num-
ber of samples used for training and testing. The previous
studies achieved accuracy based on a small number of sam-
ples, and usually, the reported outcomes had the highest
accuracy, i.e., the best outcome of only one subject. For
example, the reported accuracy of 96% in [18] was achieved
from one out of ten subjects. In our study, the achieved
results are based on twenty-two subjects. This number of
subjects is higher than the number of subjects in the previous
studies. Moreover, the reported outcome of the classifier

TABLE 7. Highest performance of every feature in combination with the
classifier and feature selection method in every level of stress with
respect to the other levels of stress.
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TABLE 8. Comparison between our results and the results of recent EEG
based methods.

(accuracy, sensitivity and specificity) was themedian value of
all the subjects/repetition of a classifier. Moreover, amongst
the studies that compared more than two levels of stress,
the performance of our proposed framework (accuracy of
83.43%) outperformed other preceding findings (e.g. accu-
racy of 75.22% and 67.06% in [52] for recognizing three and
four levels of stress, respectively).

An EEG signal is highly sensitive to noise and artifacts.
Although there exist several artifact removal techniques, such
as independent component analysis (ICA), which separates
the artifact space from the signal space and reconstructs the
EEG signal, still the risk of artifacts cannot be completely
removed. Moreover, to compute the coherence and phase
lag from an EEG signal, ICA is not recommended because
the reconstruction of an EEG signal in turns harms the raw
digital samples and ultimately distorts the computations of
the coherence and phase lag [56]. Therefore, for our dataset,
we adopted the manual cleaning of the EEG signal from
artifacts through visual inspection, i.e., discarding the portion
of EEG signal affected by artifacts and selecting only the cor-
rect EEG portion for analysis. Split-half reliability and test-
retest reliability measures were followed to provide internal
consistency and reliability of the signals.

Al-Shargie et al. [50], [25] discussed the fusion of EEG and
fNIRS for the detection of stress with higher accuracy. Their
accuracy with prefrontal EEG signals was 91.7% [25] and
89.9% [1], which increased to 95.1% and 97%, respectively,
when fNIRS data were fused with EEG. Our analysis showed
a maximum accuracy of 94.58%, which is slightly lower than
the result that fusion of the EEG and fNIRS produced. Our
experimental condition to induce stress was likeMIST. Based
on our results, it can be concluded that the EEG signal alone
is capable of classifying stress from controls if a thorough
analysis is conducted. Hence, the cumbersome routine of
fusing two modalities as well as the expensive cost of fNIRS
can be avoided.

Possibly, our proposed ML model is confounded with
some outliers’ other than the relevant patterns extracted from
the brain’s activity. We have ruled out this concern by (1)
properly adopting artifact removal techniques as mentioned
before, (2) standardizing the extracted features based on
z-scores, (3) randomly selecting each data point such that
each data point in the feature space can be used for training
and testing of the classification. Considering these precau-
tions, we can conclude that the results shown here are unbi-
ased and a true representation of the information from the
recorded EEG data in the stress condition.

V. CONCLUSION
Accurate and reliable identification of stress is essential
and requires a valid experimental methodology and analysis
framework. The main contribution of this paper lies in devel-
oping an experimental paradigm for successfully inducing
stress at multiple levels and providing a framework involving
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EEG data analysis for the identification of stress at multi-
ple levels. The proposed framework identified stress with
a maximum accuracy of 94.6% between 2 levels of stress
and the control and 83.43% between stress and the other
levels of stress. Our results suggest that EEG signals have the
potential to reliably identify stress levels. However, multiple
levels of stress require further analysis and validation. The
compactness of the EEG system makes it a strong modality
for clinical use for the diagnosis of mental stress.
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