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ABSTRACT Many metaheuristic algorithms have been proposed to solve combinatorial and numerical
optimization problems. Most optimization problems have high dependence, meaning that variables are
strongly dependent on one another. If a method were to attempt to optimize each variable independently,
its performance would suffer significantly. When traditional optimization techniques are applied to high-
dependence problems, they experience difficulty in finding the global optimum. To address this problem, this
paper proposes a novel metaheuristic algorithm, the entanglement-enhanced quantum-inspired tabu search
algorithm (Entanglement-QTS), which is based on the quantum-inspired tabu search (QTS) algorithm and
the feature of quantum entanglement. Entanglement-QTS differs from other quantum-inspired evolutionary
algorithms in that its Q-bits have entangled states, which can express a high degree of correlation, rendering
the variables more intertwined. Entangled Q-bits represent a state-of-the-art idea that can significantly
improve the treatment of multimodal and high-dependence problems. Entanglement-QTS can discover
optimal solutions, balance diversification and intensification, escape numerous local optimal solutions by
using the quantum not gate, reinforce the intensification effect by local search and entanglement local search,
and manage strong-dependence problems and accelerate the optimization process by using entangled states.
This paper uses nine benchmark functions to test the search ability of the entanglement-QTS algorithm. The
results demonstrate that Entanglement-QTS outperforms QTS and other metaheuristic algorithms in both its
effectiveness at finding the global optimum and its computational efficiency.

INDEX TERMS Quantum-inspired tabu search (QTS), quantum entanglement, metaheuristic algorithms,
function optimization.

I. INTRODUCTION
Metaheuristic algorithms, which are general and global
optimization approaches that have been applied to many
combinatorial optimization problems, play a major role in
computational intelligence. These optimization algorithms
originated from the observations of natural phenomena and
were developed into search algorithms. For example, genetic
algorithm (GA) [1] adopts the principle of biological evo-
lution, particle swarm optimization (PSO) [2] imitates the
behavior of birds foraging, and quantum-inspired evolution-
ary algorithm (QEA) [3] is based on the concept and principle
of quantum computing.

Quantum-inspired evolutionary algorithms, [4] (QIEAs,
based on the concept of quantum mechanics [6]–[8], not
quantum algorithms) constitute an emerging branch of
evolutionary computation [5]. QIEAs solve the problem of
premature convergence that is common in traditional evolu-
tionary algorithms, and uses fewer populations to obtain the
optimal solution. Compared with conventional evolutionary

algorithms, QIEAs can more easily balance exploration and
exploitation. First proposed by Han and Kim [3], QEA have
two major characteristics: quantum-inspired bits (Q-bits) and
quantum-inspired gates (Q-gates). A Q-bit is a probabilistic
representation. Q-bit individuals express a linear superposi-
tion of all possible states in a search space. Q-gates allow indi-
viduals to move toward a better solution and find the global
optimum. However, some solvable problems persist, such as
the Q-gates not being general and the situation of the algo-
rithm becoming trapped in local optima not being improved.
Hence, QIEAs have combined the features of QEA with the
advantages of other algorithms to address these concerns:
examples include quantum-inspired particle swarm optimiza-
tion (QPSO), [9], [10], the quantum-inspired immune clonal
algorithm (QICA), [11], the quantum-inspired differential
evolution (QDE) algorithm [12], and the quantum-inspired
tabu search (QTS) algorithm [13], [14]. The last of these
(i.e., QTS) is a relatively new algorithm that applies a novel,
effective, and efficient global search strategy.
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The QTS algorithm includes both Q-bits and Q-gates.
It retains the advantages of QIEAs, but the methods used for
the Q-gates differ from those used in traditional methods;
QTS uses the best and worst solutions to simultaneously
move individuals toward the best solution and away from
the worst solution. This simultaneous guidance is why QTS
quicker and more efficient than other heuristic algorithms.
QTS has been applied to many complex combinatorial opti-
mization problems, such as the 0/1 knapsack problem [14],
stock market trading [15]–[17], reversible logic circuit syn-
thesis [18], and function optimization [19], to demonstrate
its incomparable ability to seek and find the global optimum.
However, QTS is limited when solving certain function opti-
mization problems that all exhibit high dependency, which
is similar to quantum entanglement. To improve the global
search ability, this paper adopts the concept of quantum
entanglement and the QTS algorithm to solve global opti-
mization problems more effectively and efficiently.

Many function optimization problems have high depen-
dency, meaning that variables are strongly dependent on one
another. If a method were to attempt to optimize each variable
independently, its performance would suffer significantly.
The results of the present study indicate that this dependency
is present in function optimization problem as well as in
many other types of optimization problem. Although certain
optimization problems appear to be independently overcome,
they are actually all tied in constraints. For example, in the
0/1 knapsack problem, the decisions regarding which items
are placed in the knapsack appear to be independent. How-
ever, when an item is chosen, that choice affects the remaining
space in the knapsack, and therefore certain other items can-
not be placed in the knapsack; that constitutes dependency.
Similar to dependency, each particle in a entangled state
cannot be described independently, meaning that the state of
any entangled bit affects the states of the other entangled bits.

This paper uses entangled states to enhance the capa-
bility of QTS. This novel approach is referred to as the
entanglement-enhanced quantum-inspired tabu search algo-
rithm (Entanglement-QTS). Entanglement-QTS differs from
other QIEAs in that its Q-bits have entangled states, that
can express a high degree of correlation, rendering the rela-
tionships of the variable more intertwined. The novel idea
of that Q-bit have entangled states offers three important
contributions. Firstly, it allows variables to be described and
considered collectively, and facilitates solving the problem
of strong dependency. Secondly, it expedites the diffusion
of Q-bits which have good performance to accelerate the
optimization speed. Thirdly, it also affords some strength of
diversification. Because it considers multiple variables and
changes the values of them, it frees the algorithm to test
more than one place. Furthermore, the quantum NOT gate
is used to prevent the algorithm from becoming mired in
local optima, and local search and entanglement local search
can discover better solutions more quickly, thus enhancing
the convergence properties and increasing the strength of
intensification.

This paper uses various function optimization prob-
lems to test the searching ability of Entanglement-QTS
algorithm, and these problems, including high-dependency
problems that traditional methods are unable to suitably
address. Because very few traditional methods consider
interaction among variables, the idea of entanglement is a
novel and effective means of managing strong-dependency
problems. The results presented here indicate that the
Entanglement-QTS algorithm outperforms the other meth-
ods. The Entanglement-QTS algorithm retains the advan-
tages of QTS (namely a balance between exploration and
exploitation), offers rapid searching that is both efficient and
effective, applies entangled Q-bits to address the dependency
problem, uses a combination of normal and entanglement
local searches to discover more quickly, and uses the quantum
NOT gate to avoid becoming trapped in local optima.

The rest of this paper is organized as follows:
Section II offers an overview of evolutionary computation.
Sections III and IV introduce quantum computing and our
basic idea of quantum entanglement, respectively. Section V
details our algorithm. Performance evaluation is discussed in
Section VI. Finally, Section VII presents the conclusion.

II. RELATED WORK
Many metaheuristic algorithms have been proposed, most
of which use function optimization problems to test their
performance. Metaheuristic algorithms do not guarantee the
discovery of the global optimum every time, but are efficient
and effective methods for solving complicated engineering
problems; they often provide solutions within a reasonable
time frame.

Different types of metaheuristic algorithm have been pro-
posed with promising performance, such as GA [1], [22],
[23], differential evolution (DE) [25]–[30], PSO [31]–[39]
artificial immune system (AIS) [45], [46], artificial bee
colony (ABC) algorithm [40]–[44], harmony search (HS)
[47]–[49], and estimation of distribution algorithms (EDAs).
GA uses selection, crossover and mutation to enable genes
to improve through multiple generations of evolution. How-
ever, the search ability of GA is not powerful enough, and
it exhibits difficulty in solving complex problems. In addi-
tion, as the number of generations increases, each group
of genes becomes similar in appearance; which causes pre-
mature convergence. DE uses a simple cycle of stages that
include mutation, recombination and selection similar to the
methods used by GA. DE [25] uses the difference vector
between two individuals and scales the vector to generate the
next generation of individuals. To enhance its performance,
several variants of DE have been proposed [26]–[30]. How-
ever, DE is limited in that it easily becomes trapped by local
optima, and the speed of convergence varies. First proposed
by Kennedy and Eberhart, PSO simulates the social behavior
of bird flocking or fishing schooling. PSO uses three types
of force to avoid premature convergence. It has robust search
ability, is simple to implement, and is computationally fast.
Many different methods have been designed to improve the
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performance of PSO and analyze its search ability [31]–[39].
However, PSO has a few drawbacks, particularly its lack of
a mechanism to prevent it from becoming trapped at local
optima. The ABC [40]–[44] algorithm, based on the intel-
ligent behavior of honey bee swarms, is popular and has
been discussed in many recent studies. It uses three groups of
bees (employed bees, onlookers, and scouts) to improve the
process of locating a food source. The ABC algorithm avoids
becoming trapped at local optima and can locate optimal
solutions efficiently. However, bottlenecks are experienced
when ABC is applied to certain multimodal functions; in
addition, ABC lacks a powerful exploratory capacity. The
AIS [45], [46] was inspired by the immune system, in which
a swarm of cells and molecules protects the body against
diseases. AIS has four common techniques include negative
selection, clonal selection theory, artificial immune network
and clonal selection algorithm. The solution quality of AIS is
high because AIS has the memory to retain good solutions
and then find a better one. However, AIS is complicated, and
computationally expensive. HS [47]–[49] is a derivative-free
real parameter optimization algorithm that was inspired by
a search for a perfect state of harmony. It exhibits powerful
exploratory ability, but its exploiting ability is less favorable.
EDAs use different probabilistic models by estimated dis-
tributions of individuals of previous generations to generate
new promising individuals. EDAs [4], [50]–[52] shows great
competitive performance on optimization problemswith rela-
tively low computational cost. However, EDAs suffer certain
difficulties when presented with multimodal problems.

Recently, QIEAs have been proposed to prove their search
ability have good balance between exploration and exploita-
tion. QIEAs can be regard as a type of EDA [4], [50], [51].
First proposed in [3], QEA [3], [53], [54] can explore a
search space with fewer individuals and exploit the global
solution efficiently. The key elements of QEA are Q-bits
and Q-gates, which address the balance between exploration
and exploitation. Because the design of Q-gates remains
unstandardized, substantial development opportunities exist.
Many studies (QIEAs) have combined QEA with other
heuristic methods such as PSO, immune clonal algorithm,
gravitational search, cuckoo search algorithm,
electromagnetism-like mechanism [60] and tabu search,
to develop QPSO [9], [10], QICA, quantum-inspired
gravitational search algorithm (QGSA), quantum-inspired
cuckoo search algorithm (QICSA) [56] or cuckoo search
based on quantum mechanism [57], quantum-inspired
electromagnetism-like mechanism (QEM) [58], [59] and
QTS [14], all of which perform strongly. These appro-
aches (QIEAs) combine the features of QEA with the
advantages of other algorithms. However, QIEAs still have
certain drawbacks. Many iterations are required to fine-tune
the angle at which to drive the individual toward a better
solution, and extricating the algorithm from local optima can
be difficult. As discussed previously, eachmetaheuristic algo-
rithm has its own strengths and weakness. Compared with
other metaheuristic algorithms, QIEAs have many attractive

features, including stronger search abilities, lower computa-
tional costs, and easier implementation.

The QTS is a novel, simple and powerful metaheuris-
tic method. Unlike other QIEAs, QTS uses both the best
and worst solutions to drive the individual not only toward
a better solution but also far away from a worse solu-
tion. QTS is effective and efficient, and often can rapidly
discover the global optimum. Many applications of the
QTS algorithm [14]–[21] have been proposed to demonstrate
its promising and incomparable search ability. Hence, QTS is
used as a base algorithm in this study.

Despite the robust effectiveness of QTS, it still pos-
sesses limits. When QTS or other metaheuristic methods
are applied to high-dependency problems, they experience
difficulty in finding the global optimum. This paper proposes
the Entanglement-QTS method, which uses quantum entan-
glement to enhance the ability of QTS to solve problems
that have high dependency among each variable. A review
of the literature has indicated that no substantial research
has considered the dependency of each variable as this study
does. The entangled Q-bit is a state-of-the-art idea that could
significantly improve the treatment of multimodal and high-
dependency problems. Moreover, a quantum NOT gate is
used to help the algorithm jump out of the local optima, and
local search and entanglement local search can intensify the
search ability.

III. QUANTUM COMPUTING
Quantum computing is an emerging research field. Quantum
computers were first proposed in the 1980s and have since
received abundant research attention. Quantum computers
provide powerful abilities to solve optimization problems.

Quantum computing has two primary principles: superpo-
sition and entanglement [7]. In traditional computers, each bit
can be in only one state at a time, either 0 or 1. A qubit, which
is the smallest unit of information in quantum computing, can
be in a state of superposition of the 0 and 1 states. A qubit state
|ψ〉 is a combination of two basis vectors as shown in Eq. 1,
where α and β are complex numbers.

|ψ〉 = α|0〉 + β|1〉 (1)

|0〉 and |1〉 can be denoted as two column vectors (Eq. 2).

|0〉 =
[
0
1

]
, |1〉 =

[
1
0

]
(2)

Because of the linear superposition of individual possible
states, |α|2 and |β|2 represent the probabilities that the qubit is
located in the 0 and 1 state, respectively. The sum of |α|2 and
|β|2 follows the rule of probability, and can be represented as
shown in Eq. 3.

|α|2 + |β|2 = 1 (3)

A qubit can be represented as a pair of numbers (Eq. 4).[
α

β

]
(4)
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If there are n qubits in a quantum system, all qubits can be
represented in the following form (Eq. 5).[

α1 α2 α3 . . . αn
β1 β2 β3 . . . βn

]
(5)

According to Eq. 3, for each |αi|2+ |βi|2 = 1, i = 1, 2 . . . n.
All entangled states are special cases of superposed states.

In an entangled state means, the measuring of one qubit also
determines the states of the qubits with which it is entangled
at the same time, regardless of the distance between the
qubits. Common examples of entangled states can be denoted
as Eq. 6.

|φ00〉 =
1
√
2
(|00〉 + |11〉)

|φ01〉 =
1
√
2
(|00〉 − |11〉)

|φ10〉 =
1
√
2
(|01〉 + |10〉)

|φ11〉 =
1
√
2
(|01〉 − |10〉) (6)

For example, |φ00〉 in Eq. 6 signifies that there is
a 50% chance exists that this qubit can be measured in the
|00〉 or |11〉 state. When the first qubit is measured and the
result is |0〉, and the state of second qubit is determined as |0〉,
the result of this observation is |00〉. If the second qubit is
in state |1〉 and the first state of that qubit is determined
to be |1〉, then the result of this observation is |11〉. These
two entangled qubits possess an unseen bond. The principle
of quantum entanglement is that the quantum state of each
particle cannot be described independently of the others, even
when the particles are far apart.

IV. BASIC IDEA: ENTANGLEMENT STATE
This section details with examples the concept of entangled
states and how to bring it about; it also gives some examples
in detail.

QTS has been applied to many NP-complete problems.
When solving these problems, a remarkable phenomenon
has been observed. Although the problems’ variables may
seem independent, they are often dependent on one another
because the problem contains constraints by which all vari-
ables are bound. In this section, the 0/1 knapsack, deploy-
ment, and stock selection problems are used to illustrate
this phenomenon. In the 0/1 knapsack problem, whether to
choose an item appears to be an independent decision. How-
ever, because the carrying weight of the knapsack is limited,
the decision to choose or ignore an item affects the ability
to choose or ignore other items. When the choice to take a
particular item is made, the current and available weight of
the knapsack affects future decisions regarding item pack-
ing. In the deployment problem of wireless sensor networks,
deploying a sensor in the topology affects the locations of
sensors that are yet to be deployed. If the sensors are too far
apart, the coverage rate may not be achieved, and if they are

TABLE 1. Settings of item 6 to 9 of 0/1 knapsack problem.

too close together, the deployment may be inefficient. There-
fore, when the location of one sensor is decided, the potential
locations of other sensors should maintain a certain distance
from one another. In the stock selection problem, a limited
amount of money is available to purchase stocks; the decision
to buy a particular stock affects the subsequent decisions.
The aforementioned examples indicate that most variables
in combinatorial problems exhibit dependency because when
deciding on the value of one variable, affect decisions about
the others.

The literature details how approaches to solve the depen-
dency problem are determined. QTS performed very well
when applied to the 0/1 knapsack problem [14]. In an exper-
iment performed with 100 items, multiple optimal solutions
existed. For example, if the remaining capacity of the knap-
sackwas 15, two solutions could achieve the optimal solution.
One was to pick the two items weighing 6 and 9, and the
other solution was to choose items weighing 7 and 8. Both
approaches achieved the objective, which was to meet the
weight restriction while packing as much weight as possible.
The profits of these twomethods were also the same (i.e., 25).
Table 1 illustrates the weight and profit of the items. This
case illustrates dependency: if an item weighing 6 is chosen
first, then an item weighing 9 must be chosen next. If items
weighing 7 or 8 are chosen instead, the optimal solution
cannot be achieved. However, if the itemweighing 7 is chosen
first, then the item weighing 8 must be chosen next. This
phenomenon is similar to the concept of entanglement in
quantum mechanics. Based on Eq. 6, this situation can be
formulated in the following Eq. 7.

|ϕ〉 =
1
√
2
(|1001〉 + |0110〉) (7)

Here, |ϕ〉 indicates that if the first qubit is measured and the
result is |1〉, then the next three qubits are |001〉. However,
if the first qubit is discovered to be |0〉, then the next three
qubits are |110〉. If the item weighing 6 is chosen, then the
states of the remaining items are determined; the itemsweigh-
ing 7 and 8 are not chosen and the item weighing 9 is taken.
If the item weighing 6 is not chosen, then the states of the
remaining items are determined; the items weighing 7 and 8
are chosen whereas the item weighing 9 is not. As a result,
states |1001〉 or |0110〉 are optimal solutions. Their neighbor
solutions, |1010〉, |0101〉. . . , are local optima.
Most NP-complete problems exhibit strong dependency

because their variables are bound with an invisible line,
namely their constraints. The capacity of the knapsack is
limited in the 0/1 knapsack problem; when one item is placed
in the knapsack, the choice of possible other items is affected
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because the knapsack has weight restrictions. In the deploy-
ment problem, the constraint involves using as few sensors
as possible while still satisfying the coverage rate. The stock
selection problem limits the investment amount; when one
stock is chosen, the next investment decision is affected.
Regarding function optimization, many functions exist, such
as in Griewank and Rosenbrock; therefore, discovering an
optimal solution when independently optimizing each vari-
able becomes difficult. The Griewank function: f (x) = 1 +
1

4000

d∑
i=1

x2i −
∏d

i=1 cos(
xi√
i
), is designed to deal with the

algorithm which optimize each variable independently. The

Rosenbrock function: f (x) =
d−1∑
i=1

(100(xi+1−x2i )
2
+(xi−1)2),

it can obviously find each value of variable will influence
other value of variables. Traditional approaches that opti-
mize each variable independently fall easily into local optima
and find it difficult to solve such problems well. Therefore,
the idea of entanglement is a novel and effective means
of managing strong dependency. Entanglement can consider
multiple variables or multiple dimensions simultaneously.
In contrast with traditional approaches, entanglement moves
and changes variables collectively to better locations. In this
paper, function optimization problems are used to evaluate
the ability of the Entanglement-QTS algorithm to manage
strong dependency, escape from local optima, and obtain
optimal solutions.

V. THE ENTANGLEMENT-QTS ALGORITHM
This section details the proposed Entanglement-QTS algo-
rithm,which is a powerful search algorithm that can locate the
global optimum effectively and efficiently. It uses entangled
states to solve high-dependency problems and accelerate the
optimization. Also, it uses local search and entanglement
local search to increase the strength of intensification as
well as the quantum NOT gate to escape from local optima.
Algorithm 1 presents themain procedure of the Entanglement-
QTS algorithm for solving the function optimization prob-
lem. Parameter t is the generation number, and the detailed
description of each step is given as follows.

In the encoding step, binary strings are used to represent
real numbers to allow this encoding method to solve both
numerical and combinatorial optimization problems. Com-
puter is binary system, it cannot use binary bits to represent
all real numbers. Hence, if a problem requires an extremely
small value, then it can addmore bits to represent this number,
just as IEEE 754 does (e.g., float and double). Suppose six
bits are used as the length of the binary string and there are
two dimensions. In addition, the domain of the function is
between−3 and 3. Table 2 provides an example of two binary
strings to represent the real numbers 2.5 and −1.25.
1) Initialize Quantum Matrix Q(t) (line 2 of the

Entanglement-QTS algorithm): The quantum matrix is com-
posed of n ∗ d Q-bits, and each Q-bit has the probabil-
ity of existing in different states, as defined in Eq. 1. The

Algorithm 1 Entanglement-Enhanced Quantum-Inspired
Tabu Search Algorithm
1: t ← 0
2: Initialize quantum population Q(t)
3: while not termination-condition do
4: t ← t + 1
5: Make neighborhood set N by measuring of Q(t − 1)
6: Repair s ∈ N and evaluate f (s)
7: Detect whether algorithm stuck in a local optimum
8: if stuck then
9: Use quantum NOT gate
10: end if
11: Entanglement
12: Local search
13: Entanglement local search
14: Select the best solution sb and worst solution sw

among N
15: Update Q(t) by sb and sw

16: end while

TABLE 2. Encoding real numbers 2.5 and −1.25 as binary strings.

TABLE 3. Example of |β|2 in Q(0) for string length n=6 and
dimension d=3, respectively.

matrix Q(0) can be expressed as:


q11 q

2
1 . . . q

n
1

q12 q
2
2 . . . q

n
2

...
...
. . .

...

q1d q
2
d . . . q

n
d

, where
n signifies the length of the binary string that represents the
value of the variable and d is the number of dimensions.

Each qkl is initialized as

[ 1
√
2
1
√
2

]
, which indicates that this

Q-bit will have the same probability of collapsing into either
a ‘‘0’’ or ‘‘1’’ state. Suppose n = 6 and d = 3; then the
|β|2 means the probability of the Q-bit is located in the 1 state
and |β|2 of Q(0) are given in Table 3.

2) The remaining steps, involving lines 4-15 of the
Entanglement-QTS algorithm, are executed cyclically until
the termination condition is satisfied. The terminal condi-
tion in heuristic algorithms can be achieved in many ways.
The Entanglement-QTS algorithm has two terminal condi-
tions (line 3 of the Entanglement-QTS algorithm): when the
optimal solution is achieved, or when run-time generation (g)
achieves a set value.
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TABLE 4. Example of random numbers which prepare to produce
solution s.

3) In this algorithm, a new generation of neighborhood
solutions (line 5 of the Entanglement-QTS algorithm) is
obtained by measuring the quantum matrix. This step is
inspired by quantum computing: when measuring a quantum
bit, the probability of |α|2 to be seen 0 and |β|2 to be seen 1
but only one of its quantum states can be decided. In this
step, measuring Q(t − 1) repeatedly m times will obtain a
neighborhood set N = {s1, s2, . . . , sm}, which m is the num-
ber of population. Solution s can be produced by following
Measure(s), Algorithm 2, and formed as a binary matrix,

where s =


x11 x

2
1 . . . x

n
1

x12 x
2
2 . . . x

n
2

...
...
. . .

...

x1d x
2
d . . . x

n
d

.

Algorithm 2 Procedure Measure(s)
1: for j = 1 to d do
2: for k = 1 to n do
3: R ∈ random number U[0,1]
4: if R < |β|2 then
5: xkj ← 1
6: else
7: xkj ← 0
8: end if
9: end for
10: end for

In the beginning, this algorithm needs to prepare n∗ d ran-
dom numbers rkj with values between 0 and 1. Subsequently,
a random number, rkj , is compared with the probability |βkj |

2

of each quantum matrix. |βkj |
2 refers to the probability to

measure |qkj | into |1〉 as Eq. 1 demonstrates. Therefore, if rkj
less than |βkj |

2, set xkj = 1; otherwise set xkj = 0. Each xkj is

either 1 or 0 to indicate which value of number is selected.
For example, to produce s, n∗d (6∗3) random numbers must
be prepared, as shown in Table 4, and compared with |βkj |

2

of each qkj , which all initialize with 0.5. If a random number
is less than |βkj |

2, then xkj is set as 1; otherwise xkj is set as 0.

The results of binary strings are given in Table 5.
4) In accordance with line 6 of the Entanglement-QTS

algorithm, repair s ∈ N to conform to a feasible domain
and evaluate its fitness by using the objective function f (s).
The Repair(x) procedure, Algorithm 3, keeps each variable
within the domain range. When the variable of xd is greater
than the positive domain or less than the negative domain,

TABLE 5. Example of a solution s obtained by measuring Q(0).

TABLE 6. Example of a solution after repairing.

it should be repaired within the domain. When xd is out of
domain, x jd in xd should be discarded randomly until xd is
within the domain range. The first number cannot be chosen,
as it presents the sign of the number. Each variable should be
guaranteed within the domain. The fitness value is calculated
using each benchmark function. For example, if the domain
of the function is between −3 and 3, the solution (Table 5)
produced in the previous step must be repaired because the
binary string in dimension 1 represents the value 3.5, which is
greater than 3. Therefore, a bit should be chosen randomly in
dimension 1. If the x41 is chosen, then x

4
1 is set to 0 and its value

is recalculated. After repair, the value in dimension 1 is 3,
which is within the domain (Table 6). This step is repeated
until all dimensions are within their respective domains.
Before evaluating the fitness function, the Entanglement-
QTS procedure must run Procedure Repair(xd ) to confirm
that each solution is feasible.

Algorithm 3 Procedure Repair(xd )

1: xd = x1d + x
2
d + · · · + x

n
d

2: set the out − domain false
3: if xd > pdomain or xd < ndomain then
4: set the out − domain true
5: end if
6: while out − domain do
7: select random j, j 6= 1 and x jd = 1
8: xd ← xd − x

j
d

9: x jd ← 0
10: xd = x1d + x

2
d + · · · + x

n
d

11: if xd < pdomain and xd > ndomain then
12: set the out − domain false
13: end if
14: end while

5) Detect whether the algorithm is stuck at a local
optimum (line 7 of Entanglement-QTS algorithm). Algo-
rithms become stuck at local optima when the best solution
is not updated within a certain number (η) of generations.
If the algorithm falls into a local optimum, each dimension
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TABLE 7. Example of |β|2 in dimension 1 of Q(t). Suppose quantum NOT
gate is applies to q3

1 and q5
1.

TABLE 8. Example of |β|2 after using quantum NOT gate in q3
1 and q5

1 in
dimension 1 of Q(t + 1).

TABLE 9. Probability of using quantum NOT gate (δ) in each Q-bit.

has probability δ1 of applying quantum NOT gate X to
escape from this state. A quantum NOT gate is defined as

X =
[
0 1
1 0

]
. Eq. 8 details the process of applying a quantum

NOT gate to a Q-bit |ψ〉 = α|0〉 + β|1〉.

X |ψ〉 = X (α|0〉 + β|1〉) = α|1〉 + β|0〉 =
[
β

α

]
(8)

When a quantum NOT gate is applied to a Q-bit, the proba-
bilities of choosing 0 and 1 are exchanged. Table 7 provides
an example by showing the values of |β|2 in dimension 1 of
Q(t) before using a quantum NOT gate, whereas Table 8
displays |β|2 values after using quantum NOT gate in q31
and q51. Therefore, the |β|

2 values of q31 and q
5
1 in dimension 1

of Q(t) are 0.9 and 0.3, respectively. In the next generation
Q(t + 1), q31 and q

5
1 become 0.1 and 0.7, respectively. Hence,

using a quantum NOT gate changes the quantum matrixQ(t),
thus allowing population to escape from the current state to
increase the probability of the algorithm jumping from a local
optimum.

Note that the encoding method used in this study
alters the bits on the left-hand side, and the value
changes a lot. Thus, the bits on the left-hand side are
called the most significant bits (MSBs), whereas those
on the right-hand side are designated as the least signif-
icant bits (LSBs). The probability of using the quantum
NOT gate decreases linearly. An example is given in Table 9.
If there are five Q-bits in a dimension, the probability of
using the quantum NOT gate 0.30 in the LSBs 0.05 (δ2) in
the MSBs, which means that the LSBs are more likely to
change state than the MSBs are. Because the MSBs represent
high real values, the strength of intensification is reduced
whenMSBs changing states frequently, resulting in increased
difficulty in discovering the global optimum.

6) Entanglement is the primary contribution of this
paper (line 11 of the Entanglement-QTS algorithm). The
purpose of the Entanglement(x) (Algorithm 4) procedure is
to solve strong-dependency problems. When variables in a
function are addressed independently, obtaining the global
optimum becomes more difficult. Thus, entangled state
|φ00〉 =

1
√
2
(|00〉 + |11〉) described in section III is used

to address a problem dependently. The entanglement step
not only entangles Q-bits in different dimensions, but also
entangles Q-bits in different orders. Each method results in
a different effect. The dependency of dimensions means that
it needs to consider multiple values of dimension because
changing the value in one dimension may affect other dimen-
sion values. The dependency of orders means that the Q-bits
in the same order but in different dimensions may need to
refer to each other’s values. In this study, both dimensions
and orders of Q-bits are entangled, hence we can consider
the relationship between variables comprehensively. Firstly,
when this algorithm runs the entanglement step, it selects an
entanglement method. If it chooses to entangle the dimen-
sions, then d1 and d2, which are selected randomly, are entan-
gled; when a Q-bit is measured in d1 and the result x jd1 is 1,
then x jd2 is set as 1. If the value of x

j
d2 is determined to be 0,

then x jd1 is 0. The principle is that when a Q-bit is mea-
sured in dimension d2, the other Q-bit in dimension d1 (with
which the first Q-bit is entangled) possesses the same value.
If the algorithm chooses to entangle the orders, then the n1th
and n2th order of Q-bits are entangled. Therefore, when the
Q-bits in n2th order are determined, so are the Q-bits in
n1th order.
This method is elaborated in Entanglement(x),

Algorithm 4. Each dimension / order has probability (ρ) of
entangling with other dimensions / orders. Firstly, any two
dimensions di and dj are chosen and entangled. When the
Q-bits in dj are measured to produce xj, then xi of the other
dimension di is the same as xj. However, when the algorithm
entangles orders, it randomly choose the two orders and
entangle them; regardless of which dimensions these Q-bits
are in, they are described together. Examples of entangling
dimensions and orders are given in Table. 10, 11 and 12, 13.
After entanglement, s′ is obtained. In evaluating entangled
state s′, it is removed if it did not outperform s. If the
entanglement solution (s′) did surpasses outperform s, then
s is replaced with s′. The entanglement condition is such
that when this solution performs the entanglement, a better
performance is yielded and it repeats this method until it
cannot find a better solution for several iterations.

Adding an entanglement step improves the QTS algorithm
substantially in relation to solution quality and computational
cost. The entangled state |φ00〉 = 1

√
2
(|00〉 + |11〉) makes

three important contributions. Firstly, it describes and con-
siders variables together and can solve the problem of strong
dependency very well. Secondly, it can promote the diffusion
of Q-bits which have good performance to accelerate the
optimization speed. Thirdly, it affords some escape capacity.
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TABLE 10. Step 1 of entangling dimensions. Dimensions 1 and 2 are
chosen to be entangled.

TABLE 11. Step 2 of entangling dimensions. If a bit state is obtained in
dimension 2, the same state will be obtained in dimension 1.

TABLE 12. Step 1 of entangling orders. The 4th and 5th orders are chosen
to be entangled.

Because it moves multiple Q-bits by a considerable amount
at once, it frees the algorithm to test beyond the local area.
Not only can the entanglement procedure solve problems
with dependency, it can also possess both capabilities of
exploration and exploitation.

Algorithm 4 Producer Entanglement(s)
1: s = [x1, x1, . . . , xd ]
2: s′← s
3: while entanglement-condition do
4: if dimension entanglement then
5: select random i and j dimensions from s′ where
j 6= i

6: xi← xj
7: else
8: select random i and j orders of Q-bits from s′

where j 6= i
9: x i← x j

10: end if
11: end while
12: /* In this algorithm, it minimizes the function value.*/
13: if f (s′) < f (s) then
14: s← s′

15: end if

7) The purpose of the local search procedure (line 12 of
Entanglement-QTS algorithm) is to search the regions adja-
cent to the solution to find a better location that gives a better
fitness value; the principle is similar to the hill climbing
algorithm. The Hamming distance can be used to calculate

TABLE 13. Step 2 of entangling orders. The states of these two orders of
bits will be the same.

distance in the binary string. For example, the algorithm
selects one bit and changes its state, meaning that the local
area is defined as one Hamming distance. If the new state
possesses more fitness than that of the old state, the old state
is discarded and the new one is adopted. The aforementioned
procedure is repeated until the local areas of all bits have
been checked; this method is elaborated in Local Search(s),
Algorithm 5. To reduce the computational cost in this paper,
note that only the best solution uses the procedure of local
search.

The local search of the proposed algorithm is a valuable
step because better solutions can be discovered more quickly,
thus enhancing the convergence properties, increasing the
strength of intensification, and also complementing the entan-
glement step.

Algorithm 5 Procedure Local Search(s)
1: /* Using Hamming distance to define neighbor */
2: s = x1, x1, . . . , xd
3: s′← s
4: for j = 1 to d do
5: for k = 1 to n do
6: if xkj = 1 then
7: xkj ← 0
8: else
9: xkj ← 1
10: end if
11: if f (s′) < f (s) then
12: s← s′

13: end if
14: end for
15: end for

8) This entanglement local search procedure (line 13 of
Entanglement-QTS algorithm) uses entanglement states such
as 1
√
2
(|011〉+|100〉), 1

√
2
(|0111〉+|1000〉), and 1

√
2
(|01111〉+

|10000〉), which are different from the entangled states of
Algorithm 4 alreadymentioned. This procedure reversesmul-
tiple bits simultaneously. Although NOT gate can reverse
bits, it just considers and reverses one bit at one time. Not
only can an entanglement local search consider multiple bits
and change them collectively, it can also be a local search.
In the encoding step of the proposed method, in which each
binary string represents a real value, something interesting
occurs. For example, when there are six bits and the domain
is −3 to +3, string [001111] represents the value 1.875, and
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string [010000] represents the value 2, even though the Ham-
ming distance between these two strings is 5 and their real
values are similar. Therefore, this paper proposes the Entan-
glement Local Search Algorithm as given in Algorithm 6.
This uses the distance between the two real values, meaning
that the distance represented by the right-most bit ([000001]),
which is 0.125 in this example, is defined as the local area.

Entanglement local search differs from the traditional local
search in that not only can the former facilitate a local search,
it also affords a way to jump from a local optimum. In rela-
tion to real values, it is a way to enhance the intensifica-
tion search. In relation to binary strings, it is a powerful
way to jump from local optima, thereby strengthening the
ability to diversity. Entanglement local search combines the
strength of exploration and exploitation very well. To reduce
the computational cost in this paper, only the best solution
uses the entanglement local search. The entanglement step
provides a significant improvement in solution quality. The
local search and entanglement local search step can then rein-
force the intensification effect. Therefore, using Local Search
and Entanglement Local Search can effectively reduce the
computational cost because they both accelerate the search
for the global optimum.

Algorithm 6 Procedure Entanglement Local Search(s)
1: /* Using real value to define neighbor */
2: s = [x1, x1, . . . , xd ]
3: s′← s
4: for j = 1 to d do
5: /* Using Two’s complement */
6: R ∈ random number U[0,1]
7: if R < 0.5 then
8: xj← xj + xnj
9: else
10: xj← xj − xnj
11: end if
12: if f (s′) < f (s) then
13: s← s′

14: end if
15: end for

9) Of all the neighborhood solutions, choose the solution
s ∈ N that stores the best fitness value in sb, and the
worst fitness value in sw (line 14 of the Entanglement-QTS
algorithm). In the next step, sb and sw are used to update the
quantum matrix.

10) The final step is to update the quantum matrix (line 15
of Entanglement-QTS algorithm), which gives rise to the next
generation of solutions moving toward the best solution while
avoiding the worst solution. The updating step thus increases
the probability of choosing the best solution and decreases
the probability of choosing the worst solution. When a Q-bit
qk ∈ Q changes its original state, its new state corresponds
to Table 14. If sb and sw are the same, this situation is
tabu; qk ∈ Q is not rotated. If sb and sw differ, qk applies

TABLE 14. Move-gate lookup table.

TABLE 15. Best solution sb.

TABLE 16. Worst solution sw .

TABLE 17. Updated |β|2 of quantum matrix.

the move-gate (Q-gate) U(4θ ) =
[
cos(4θ ) −sin(4θ )
sin(4θ ) cos(4θ )

]
to

rotate to a new state, which may acquire improved neigh-
borhood solutions by measuring q in the next iteration.
The 4θ are designed in compliance with the application
problem.

On the implement side, the quantum matrix is updated
by adding or subtracting the value (µ) of |β|2 to
increase or decrease the probability of choosing the best or the
worst solution. Tables 15 and 16 illustrate the best and worst
solutions stored in sb and sw, respectively. For example, if the
value of x52 and x62 in the best solution are 1 and in the
worst solution are 0, then in the next generation an increased
probability of obtaining 1 rather than 0 at x52 and x62 exists.
The set value is therefore added to q52 and q62. Following
Algorithm 2, if the value of |β|2 is higher, the chance of
obtaining 1 increases. However, if a greater probability of
obtaining 0 than 1 is desired, such as x21 and x31 , in the next
generation, the value of q21 and q

3
1 decrease. Table 17 displays

the quantum matrix after it has been updated.
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VI. EXPERIMENTAL RESULTS
In this section, the performance of the Entanglement-QTS
algorithm is evaluated. For these experimental results, this
paper uses the number of calculating fitness functions as the
comparison criterion. The population and generation num-
bers are given to inform the reader about the algorithmic
parameters, but they cannot represent all function evalu-
ations because many algorithms may have a local search
mechanism. Hence, only the number of function evaluations
can reveal the total computational cost. In addition, it com-
pares the level of function value, optimization algorithms
are designed to find the minimum value of these functions.
Hence, in this field, it compares the effectiveness and effi-
ciency of algorithms that which one can use fewer function
evaluations and find the minimum value of functions. In other
words, it compares which algorithm can incur the lowest
computational cost in finding the best solution in a huge solu-
tion space. The parameter set is presented in section VI-A.
To evaluate the search abilities of the Entanglement-QTS
algorithm, nine functions with different effects−include uni-
modal functions, multimodal functions, and functions with
dependency of two variables−were evaluated to test the pro-
posed optimization algorithms. A detailed description and the
results of the Entanglement-QTS algorithm are presented in
section VI-B. The Entanglement-QTS algorithm is compared
in section VI-C with other powerful metaheuristic meth-
ods [9], [11], [19], [35], [40], [45], [47], [53] to demonstrate
its effectiveness and efficiency, and section VI-D details a
performance analysis. The proposed algorithm was imple-
mented in C++.

A. CONDITION OF ENTANGLEMENT-QTS
Table 18 displays the parameter setting of the Entanglement-
QTS algorithm. The Q-bits for all test functions were set to
32 bits (per variable). The population size was set to 30, and
the terminal conditions were set to the number of genera-
tions reaching 500 or the optimal solutions being located.
During the entanglement step, each dimension or each bit
location had a probability of 0.3 to entangle with other dimen-
sions or locations. After entanglement, if the performance
of the new solution was better than that of the old one,
the entanglement stepwas repeated until no improvement was
observed over five consecutive iterations. During the local
search step, only the best solution discovered other neighbor
solutions, and if the neighbor solution was better, then the
original one was replaced. This procedure continued until
each bit was checked. During the updating step, the value
of |β|2 was set to 0.3. Here, the algorithm became trapped
at local optima, meaning that the best solution had not been
updated within 5 consecutive generations. The algorithm
applied the quantum NOT gate to escape from local optima.
The probability of a solution for each dimension was 0.2,
and the MSBs had a probability of 0.05 to use the quantum
NOT gate (δ); the probability increased linearly by 0.05 each
bit until the LSB was reached. Each result used an average

TABLE 18. Parameter settings of Entanglement-QTS.

of 100 independent runs. Sections VI-B and VI-C present the
experimental results.

B. BENCHMARK AND PERFORMANCE
OF ENTANGLEMENT-QTS
Each function has different properties, such as unimodal,
multimodal, global optimum near the bounds, global opti-
mum not on the bounds, and interdependence among the vari-
ables, to evaluate the optimization algorithms. Hence, nine
functions were prepared (Table 19) to test whether the pro-
posed algorithm can not only solve problems with dependent
variables but also other problems with different properties.
The dimensions of each function were set to 30, 40, and 50.
The f1, f7, and f8 functions were unimodal, meaning that no
local optima existed; these functions tested the intensification
ability of each algorithm. The f2, f3, f4, f5, and f6 functions
were multimodal, meaning that they contained more than two
local optima. The global optimum in f6 was near the bounds of
the domain. These functions tested the algorithm’s ability to
diversify and escape from local optima. Moreover, the vari-
able in f3, f5 and f9 exhibited strong dependency, meaning
that discovering the global optimum would be difficult for an
algorithm that optimized each variable independently. High-
dimensional, strongly dependent, and multimodal problems
are also more difficult to solve well.

Table 20 represents the performance of Entanglement-
QTS algorithm in three dimensions regarding the nine test
functions. Table 20 provides the following data to present
multiple properties of the proposed algorithm : 1) the best
fitness in 100 runs [column (b)]; 2) the average fitness
value of the best solution and the standard deviation of the
best fitness [column (m)]; 3) the mean number of func-
tion evaluations and the standard deviation of evaluations
[column (e)]; Columns (b) and (m) indicate that a high-
quality solution can be discovered for multiple types of func-
tion; the Entanglement-QTS algorithm performed strongly.
Column (m) demonstrates that the Entanglement-QTS algo-
rithm is stable and can locate the global optimum most of
the time. As seen in column (e), the proposed algorithm used
relatively few evaluations to determine the global optimum,
indicating that the entanglement and local search steps accel-
erated the optimal speed efficiently and effectively.

The proposed algorithm has powerful and stable search
ability. In the f6 problem, the global optimum is near
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TABLE 19. Classic benchmark functions.

FIGURE 1. Color bars indicate fitness value: best fitness (dark blue) to worst fitness (dark red). (a) The contour plot of function f 6.
(b) The contour plot of function f 4.

the bounds of the domain, as shown in the contour plot
in Fig. 1(a). The Entanglement-QTS algorithm demonstrates
its diversification; it does not become trapped in a sec-
ond minimum. In f1, f7, and f8, the Entanglement-QTS
shows its intensification; it can always locate the lowest
point in these continuous functions. The Entanglement-QTS
algorithm can escape the local optima easily, as seen in
f2 and f4 shown as Fig. 1(b), that contain numerous local
optima. The proposed algorithm can also solve problems
with strong dependency in each variable, as in f3, f5 and
f9. The Entanglement-QTS can balance diversification and
intensification, escaping from local optima and managing the
strong-dependency problem.

C. COMPARISON
This section firstly presents information on the performance
of the proposed Entanglement-QTS algorithm. The pro-
posed algorithm is also compared with QIEAs (QEA [53],
QICA [11], QPSO [9], and QTS [19]), and other powerful
swarm algorithms and evolutionary algorithms [ABC [40],
Vaccine-AIS [45], Harmony search (HS) [47] and Bare bones
PSO (BBPSO) [35])], all of which are major optimization
methods in evolutionary computation. The results of com-
pared algorithms are referred from the papers just cited, and
the values of parameters such as population and generation
are given in the captions of the result tables. Brief descriptions
of these eight algorithms are given here.
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TABLE 20. Performance of Entanglement-QTS.

TABLE 21. Comparisons between QEA and Entanglement-QTS. The results of QEA are referred from [53]. The population of QEA [53] is set to 100 and the
termination is set to be 1500 generations for f2 and f7, 2000 generations for f3, 5000 generations for f4, 20000 generations for f5 and 9000 generations
for f6. The dimensions of these functions are all set to 30.

1) QEA [53] is a searching algorithm based on the
evolutionary algorithm and the principle of quantum com-
putation. It can treat the balance between exploration
and exploitation more easily than can a conventional
genetic algorithm. Many QEA variants now exist. In [53],
QEA uses two different operators which are rotation
gate (QEA w/R) and Hε gate (QEA w/Hε) to converge. QEA
in [53] is compared with classical evolutionary program-
ming (CEP) and fast EP (FEP) [24], and the results show that

the QEA is better than either CEP and FEP. The comparison
between QEA and Entanglement-QTS is made in Table 21.

2) QICA [11] is an optimization algorithm based on the
concept of quantum computing and a novel immune clonal
algorithm. Quantum bits are used to represent the antibod-
ies, and a quantum rotation gate is applied to accelerate
convergence. A quantum not gate and quantum recombi-
nation are adopted to improve search efficiency. In [11],
QICA was compared with the standard immune clonal

VOLUME 5, 2017 13247



S.-Y. Kuo, Y.-H. Chou: Entanglement-Enhanced Quantum-Inspired Tabu Search Algorithm

TABLE 22. Comparisons between SICA, QICA and Entanglement-QTS. The results of SICA and QICA are referred from [11]. The initial antibody population
of QICA is set to 10, the clonal size is 30, and the mutation probability is set to 0.5. The number of Q-bits is set as the number of dimensions. The
dimensions of these functions are all set to 30.

TABLE 23. Comparisons between HPSO [32], QPSO [9] and Entanglement-QTS. The results of HPSO and QPSO were referred from [9]. The population
sizes of HPSO and QPSO are both set to 80, and termination is set to approach the global optimum or a maximum number of
iterations of 5,000. The dimensions of these functions are all set to 40.

TABLE 24. Comparisons between QTS, PSO and Entanglement-QTS. The results of PSO and QTS were referred from [31] and [19]. The population
of PSO is 30 and its number of iterations is more than 1000. The population, iteration, and angle of QTS are referred from [19].
The dimensions of these functions are all set to 30.

algorithm (SICA), FEP, DE, TS, and ant colony optimiza-
tion (ACO), and showed better performance. The comparison
between QICA and Entanglement-QTS is made in Table 22.

3) QPSO [9] has stronger search ability than does tradi-
tional PSO, because QPSO applies the principle of quan-
tum computing. The PSO formula is used to update the
Q-gate. This algorithm also uses two special implementa-
tions, namely self-adaptive probability selection and chaotic
sequence mutation, to escape from local optima and solve the
premature convergence problem. In [9], QPSOwas compared
with the GA, the immune algorithm, and four PSO variants
such as HPSO [32], and QPSO showed the superior perfor-
mance. The comparison between QPSO and Entanglement-
QTS is made in Table 23.

4) QTS [14] is a powerful searching algorithm based on
the Tabu search and the principle of quantum computation.
QTS uses the best and worst solutions to simultaneously
move individuals toward the best solution and away from

the worst solution. QTS is quicker and more efficient than
other heuristic algorithms. It can find the global optimum
efficiently and effectively, and excels at solving traditional
NP-complete problems. In [19], function optimization was
used to test the performance of QTS in comparison with
PSO and a modified evolutionary algorithm; QTS showed
its great search ability. The comparison between QTS and
Entanglement-QTS is made in Table 24.

5) ABC [40] is a global search algorithm based on the
intelligent behavior of honey bee colony. This algorithm is a
classic example of a swarm system. It contains three groups of
bees−employed bees, onlookers, and scouts−each of which
has its own ability to search the solution space. In [40],
ABC was compared with GA, PSO, and particle swarm
inspired evolutionary algorithm (PS-EA) that is a hybrid algo-
rithm of EA and PSO [61]; the experimental results showed
that ABC outperformed the three methods. The comparison
between ABC and Entanglement-QTS is made in Table 25.
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TABLE 25. Comparisons between ABC and Entanglement-QTS. The results of ABC are referred from [40]. In [40], the population of ABC1 and ABC2 were
set to 125. The termination criterion of ABC1 is set to be 500 generations for 10 dimensions, 750 generations for 20 dimensions, and 1,000 generations
for 30 dimensions. The termination criterion of ABC2 is set to be 1,000 generations for 10 dimensions, 1,500 generations for 20 dimensions, and
2,000 generations for 30 dimensions.

TABLE 26. Comparison between OGA/Q [23], Vaccine-AIS [45] and Entanglement-QTS. The results of Vaccine-AIS and OGA/Q are referred from [45]. The
vaccine size of Vaccine-AIS is set to 30 and the termination was set to approach a maximum number of iterations of 1,000. The dimensions of these
functions are all set to 30.

TABLE 27. Comparison between EHS [47], IHS [48], GHS [49] and Entanglement-QTS. The results of EHS, IHS and GHS are referred from [47]. The
dimensions of these functions are all set to 50. EHS, IHS and GHS are constrained to 400,000 evaluations.

6) Vaccine-AIS [45] is an optimization method based on
the concept of an artificial immune system (AIS). As an
emerging branch of evolutionary computation, AIS imitates
the behavior of cells in the living body that are fighting
against disease. It also uses the vaccine operator to enhance
its exploration of global and local optima. In [45], Vaccine-
AIS was compared with two existing algorithms, namely
artificial immune network and orthogonal genetic algorithm
with quantization [23]; Vaccine-AIS found the global opti-
mum using the fewest evaluations. The comparison between
Vaccine-AIS and Entanglement-QTS is made in Table 26.

7) HS [47]–[49] is a derivative-free real parameter opti-
mization algorithm that was inspired by searching for a per-
fect state of harmony. It is a global optimization technique
that has better exploratory power than that of traditional HS.
In [47], HS was compared with most recently published HS
variants such as GHS [49], IHS [48] and other well-known
optimization algorithms. The comparison between HS and
Entanglement-QTS is made in Table 27.

8) PSO [33]–[35] is a global search technique that simu-
lates the behavior of a flock of birds or a shoal of fish. PSO
plays a major role in swarm intelligence. BBPSO [34], [35]
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TABLE 28. Comparison with CLPSO [33], BBPSOwJ [34] and SMA-BBPSO [35]. The particles of CLPSO, BBPSOwJ and SMA-BBPSO are set to 30. The
termination criterion of CLPSO, BBPSOwJ and SMA-BBPSO were set to 1500 iterations. The dimensions of these functions are all set to 30.

uses a probability distribution to replace the old formula that
was based on velocity. BBPSO can explore a wider range of
solution space than can standard PSO. This paper [35] also
applies BBPSO with a scale matrix to improve the premature
convergence problem of BBPSO. The comparison between
PSO and Entanglement-QTS is made in Table 28.

D. PERFORMANCE ANALYSIS OF FUNCTION
OPTIMIZATION PROBLEM
As seen in Tables 21-28, the results for the Entanglement-
QTS algorithm demonstrate much better performance than
the other optimization algorithms, both in terms of solution
quality and computational cost. The proposed method uses
less computational resources to find better solutions than do
QEA, QICA, QPSO, QTS, ABC, Vaccine-AIS, HS, and PSO.
Tables 21-28 give the comparison results.

Table 21 compares the Entanglement-QTS algorithm with
QEA. Our method outperformed QEA, the results in f4
revealing that Entanglement-QTS algorithm can escape from
local area more effectively than can QEA. The proposed
algorithm’s performance in f5 illustrates that the proposed
entanglement enhanced method can solve a strongly depen-
dent problem. Table 22 compares the Entanglement-QTS
algorithm with QICA. The results indicate that the proposed
method applies fewer evaluations than does QICA to locate
the global optimum. This is because the Entanglement-QTS
algorithm uses the best and worst solutions to guide the quan-
tum matrix to efficiently search for the global optimum, and
an entanglement step with a local search step to accelerate the
search. Table 23 compares the Entanglement-QTS algorithm
with QPSO. The results show that in relation to standard
deviation, the proposed method show more stable. Table 24
compares the Entanglement-QTS with QTS. We improve the
search ability of traditional QTS and add mechanics, address-
ing the problem of many local optima and strong dependency
of each variable.

Table 25 compares the Entanglement-QTS algorithm
with ABC. The results for f3 and f5 demonstrate that
the Entanglement-QTS algorithm can manage the depen-
dency problem in a more favorable manner than can ABC.
QIEAs use probabilistic representation to indicate the entire
solution space; the proposed algorithm has a stronger

diversification ability in f6, meaning that compared with
ABC, the Entanglement-QTS algorithm discovers more
solution space. Table 26 compares the Entanglement-QTS
algorithm with Vaccine-AIS. The results demonstrate that
both the Entanglement-QTS algorithm and Vaccine-AIS can
find the global optimum, but that the Entanglement-QTS
algorithm has a lower computational cost because it uses
a Q-gate and an entangled state to enhance its search. Table 27
compares the Entanglement-QTS algorithm with HS. Each
function dimension is 50. The results indicate that although
HS exhibits a powerful exploratory ability, its exploiting abil-
ity performs unfavorably. The Entanglement-QTS algorithm
has demonstrated its powerful searching ability in terms of
diversification and intensification. Table 28 compares the
Entanglement-QTS algorithm with BBPSO. BBPSO pos-
sesses a strong searching capability, but falters when address-
ing strongly dependent problem. The Entanglement-QTS
algorithm excelled at solving strong-dependency problem.

In summary, the Entanglement-QTS algorithm outper-
formed other optimization algorithms. It includes advantages
of QIEAs, such as balancing diversification and intensifi-
cation and utilizes the spirit of swarm intelligence, which
applies information regarding the best and worst solution to
guide the updating process. The main contribution of this
paper is the addition of the entangled state to manage strongly
dependent problems. The entangled state can solve high-
dependency problems, cross dimensions to improve solution
quality greatly, accelerate the search, and use fewer evalu-
ations to find the global optimum. In addition, it uses the
quantum NOT gate to escape from local optima effectively
and local search (traditional and entanglement) mechanisms
to intensify the search. The Entanglement-QTS is a powerful
search algorithm.

VII. CONCLUSION
This paper indicates that most NP-complete problems exhibit
strong dependency because their variables are bound by an
invisible line, namely their constraints. To address this prob-
lem, this paper proposed a novel and powerful optimiza-
tion method called the Entanglement-QTS algorithm, which
combines QTS and the features of entanglement in quantum
computing. QTS is an efficient and effective evolutionary
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algorithm based on Tabu search and features of quantum
superposition. Entanglement is a phenomenon in quantum
computing in which the state of quantum bits cannot be
described independently.

This study applied the Entanglement-QTS algorithm to
solve benchmark function problems with many local optima
and strong dependency, in order to test its searching abilities.
The Entanglement-QTS algorithm demonstrated its power-
ful search capabilities when solving such problems. Firstly,
the Entanglement-QTS algorithm applies QTS to discover
solutions efficiently and effectively and balance diversifi-
cation and intensification. Secondly, the Entanglement-QTS
algorithm uses entangled Q-bits to manage function vari-
ables that depend strongly on each other. The entangled
state is a state-of-the-art concept that is the most signif-
icant contribution of this paper. The entangled state can
solve high-dependency problems, cross the dimensions to
improve the quality of solution greatly, accelerate the search,
and use fewer evaluation to determine the global optimum.
Thirdly, the Entanglement-QTS algorithm uses (traditional
and entanglement) local search mechanisms to intensify
the search speed and the quantum NOT gate to effectively
escape from local optima. The experiment results indi-
cate that the Entanglement-QTS algorithm improve QTS
greatly and outperforms other global optimization algo-
rithms such as QIEAs (QEA, QICA, and QPSO), and other
powerful swarm algorithms and evolutionary algorithms
(OGA, ABC, Vaccine-AIS, HS and BBPSO). This work
has proposed a new and promising metaheuristic algorithm
called Entanglement-QTS not only to solve combinatorial
optimization problems efficiently and effectively, but also
do manage the strong-dependency problems that are very
complex and difficult to solve by traditional optimization
algorithms.

There are several issues for future study such as using
different states of entanglement and analysing their effects,
and applying Entanglement-QTS tomany combinatorial opti-
mization problems and multi-objective problems.
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