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ABSTRACT Virtual training has received a considerable amount of research attention in recent years due
to its potential for use in a variety of applications, such as virtual military training, virtual emergency
evacuation, and virtual firefighting. To provide a trainee with an interactive training environment, human
action recognition methods have been introduced as a major component of virtual training simulators.
Wearable motion capture suit-based human action recognition has been widely used for virtual training,
although it may distract the trainee. In this paper, we present a virtual training simulator based on 360◦

multi-view human action recognition using multiple Kinect sensors that provides an immersive environment
for the trainee without the need to wear devices. To this end, the proposed simulator contains coordinate
system transformation, front-view Kinect sensor tracking, multi-skeleton fusion, skeleton normalization,
orientation compensation, feature extraction, and classifier modules. Virtual military training is presented
as a potential application of the proposed simulator. To train and test it, a database consisting of 25 military
training actions was constructed. In the test, the proposed simulator provided an excellent, natural training
environment in terms of frame-by-frame classification accuracy, action-by-action classification accuracy,
and observational latency.

INDEX TERMS Human action recognition, Kinect sensor, virtual training simulator.

I. INTRODUCTION
In recent years, the demand for Virtual Reality (VR)
services has risen due to advancements in VR technology.
The market for VR services is expanding beyond that for
gaming [1], education [2], and rehabilitation services [3].
In this vein, the use of VR technology in virtual train-
ing has attracted considerable research attention. To reduce
the cost of training and improve its the effectiveness, var-
ious industries, such as the military and firefighting, have
attempted to develop virtual training simulators. To pro-
vide a trainee with an interactive and immersive environ-
ment, it is necessary for a virtual training simulator to
recognize actions performed by the trainee. For this rea-
son, human action recognition methods have been intro-
duced as a major component of successful virtual training
simulators [4]–[6].

Most research on virtual training simulators thus far has
been based on wearable motion capture suit-based human
action recognition to obtain precise information concerning
human action, which is needed to synchronize the content
in accordance with the action. For example, in [7], a dis-
mounted soldier training system (DSTS) was introduced,
where it is mandatory for a trainee to wear a motion cap-
ture suit consisting of a head-mounted display and sev-
eral motion capture sensors. In [8], a wearable simula-
tion interface for military training was proposed. For train-
ing, the trainee had to attach three-axis motion sensors to
his/her body to track movement. Quantum3D’s Expedition,
one of the most well-known commercial products for vir-
tual training simulators, also requires the trainee to wear a
motion capture suit to record motion information [9]. How-
ever, this can distract the trainee from the virtual training.
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Moreover, the motion capture suit provides accurate joint
position data only in the early stage of the training because
small positioning errors generated by the motion capture
sensors accumulate over the training period. Since training
time can be extensive depending on the training scenario,
error accumulation may result in inaccurate pose estimation
and action recognition, which can degrade the performance of
the simulator.

To overcome this drawback, several studies on virtual train-
ing simulators have been conducted using a motion capture
camera. Furthermore, most research using this approach has
employed a Kinect sensor because of its low price and accept-
able accuracy for data concerning the human skeleton [10].
For example, Wang et al. [11] proposed an intelligent solider
combat training (ISCT) system consisting of a Kinect sensor,
a projection screen, a projector, and a BB gun mounted on a
motion platform. In the ISCT system, the trainee’s position
and posture are captured by the Kinect sensor. According to
this information, the virtual enemy can disappear or appear
on the projection screen during training. In [12], a virtual
assembly training systemwas proposed consisting of a screen
monitor and a Kinect sensor mounted on a screen monitor.
The trainee stood in the front of the monitor and practiced
virtual assembly training. During the training, the trainee’s
hand gestures were recorded by the Kinect sensor. In [13],
a virtual snowboard-training simulator was proposed where
the trainee’s pose was captured using a Kinect sensor, follow-
ing which a virtual coach showed an expert’s pose based on
the trainee’s pose data. In [14], a virtual rehabilitation training
system for people with restricted mobility was introduced,
where a Kinect sensor was used to track the movements
of the user. The user could also watch the movement of
his/her character in virtual worlds. In [15], a firearms training
simulator using a Kinect sensor was introduced. The Kinect
sensor was used to recognize the trainee’s gesture. Based
on the recognized gesture, the simulator provided a gunshot
target on the screen monitor.

Since the trainee in [11]–[15] did not need a wearable
motion capture suit, he/she could focus on the training. How-
ever, the Kinect sensor captures human skeletal data under
the assumption that the user is facing it. If the user is not, it
is difficult to guarantee that it achieves an acceptable degree
of accuracy on human skeletal data. Further, in [11]–[15],
the Kinect sensor was in a fixed position. Therefore, the
trainee had to stand facing the sensor during his/her training
in [11]–[15].

To exploit this advantage of the Kinect sensor and over-
come the aforementioned inconvenience, we explore the use
of multiple Kinect sensors for human action recognition in
virtual training. Themain goal of this simulator is to provide a
realistic environment while increasing the degrees of freedom
of user mobility by implementing 360◦ multi-view human
action recognition. Each Kinect sensor provides data con-
cerning the human skeleton with acceptable accuracy in real
time under the assumption that the user is facing it. Accord-
ingly, to use this feature and capture the entire body of the

FIGURE 1. Interior (a), top view (b), and blueprint (c) of the studio.

trainee without occlusion, multiple Kinect sensors are used
in the proposed simulator. Nevertheless, there are practical
issues that need to be addressed: how do we track the Kinect
sensors that the user is facing (front-view Kinect sensors),
how dowe unite multiple skeletal data obtained frommultiple
Kinect sensors into one skeletal data item, how do we render
the skeleton data invariant to the body size and orientation
of the trainee, what kind of features and classifier need to
be used to recognize the trainee’s action? To solve these
problems, we provide an effective solution verified through
a rigorous practical test.

For a realistic and immersive virtual training environment,
we built the studio shown in Fig. 1. It consisted of six Kinect
sensors, eight projectors, and an omni-directional treadmill
in a dome-shaped structure. The six Kinect sensors were
mounted on the wall of the dome in a ring to capture the
entire body of the trainee. The configuration of the 360◦

multiple Kinect sensors enables the proposed simulator to
capture more precise skeleton data for the trainee, regardless
of his/her direction of motion. The skeleton data is used
to recognize the trainee’s actions which are then synchro-
nized with the VR contents projected onto the wall of the
dome through the projectors. The omni-directional treadmill
is controlled to place the trainee at the center of the dome to
maximize the degrees of freedom for user mobility. There-
fore, the trainee is unconcerned about location, and can move
wherever he/she wants over the omni-directional treadmill.
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He/She hence undergoes more realistic and immersive virtual
training.

This paper makes the following main contributions:
(1) Implementation of a practical virtual training simula-
tor using multiple Kinect sensors. To this end, 360◦ multi-
view human action recognition is presented that contains
coordinate system transformation, front-view Kinect sensor
tracking, multi-skeleton fusion, skeleton normalization, ori-
entation compensation, feature extraction, and classifiermod-
ules. (2) A more realistic and immersive virtual training
experience.Compared to conventional methods, the proposed
virtual training simulator is based on 360◦ multi-view human
action recognition. Therefore, it is possible for it to cap-
ture the dynamic action of the trainee, and the recognized
action is synchronized with VR contents. It enables the
trainee to experience realistic and immersive virtual training.
(3) A thorough practical test to highlight the usefulness of the
proposed virtual training simulator. To achieve this, we built
a database consisting of 25 military training actions. The pro-
posed virtual training simulator provided an excellent, natural
training environment in terms of frame-by-frame classifica-
tion accuracy, action-by-action classification accuracy, and
observational latency on the military training action database.

II. RELATED WORK
A. SENSOR-BASED HUMAN ACTION RECOGNITION
Previous studies on sensor-based human action recognition
were conducted using one accelerometer [16]–[18]. In [16],
the acceleration signal was obtained from an accelerometer
attached to the chest of the user. From the acceleration signal,
the authors found that a state of weightlessness obtained
for a short while when the user ran and jumped. Based on
this, they proposed a weightlessness feature to recognize
walking, jumping, still (not moving), and running. In [17],
classification accuracy according to the attached position of
the accelerometer was analyzed for 15 actions. Furthermore,
the simulation results indicated that the classification results
can be varied depending on the position of the accelerom-
eter, even for the same action. To solve this problem,
Khan et al. [18] proposed a two-level classification method.
The method first classified whether the accelerometer was
attached to the upper or lower body using the calculated
acceleration signal. Themethod then chosen one between two
classifiers for the upper body and the lower body according
to the classification result, and used this to recognize seven
actions.

However, the single accelerometer-based methods
in [16]–[18] are ineffective when required to recognize a
variety of complex actions. For this reason, some stud-
ies have used multiple accelerometers [19], [20]. In [19],
five accelerometers were attached to the hip, wrist, arm,
ankle, and thigh of the trainee. The acceleration signals
were transformed using a fast Fourier transform (FFT), and
several features, such as mean value, energy, and frequency-
domain entropy, were calculated using the FFT coefficients to

recognize 20 actions. In [20], 30 actions were recognized
by using time- and frequency-domain measures of five
accelerometers, which were attached to the hip, wrist, arm,
ankle, and the thigh of the trainee.

Other studies have focused on combining accelerometers
with other sensors. For example, in [21], an eWatch consisting
of an accelerometer, a light sensor, a temperature sensor, and
a microphone was introduced. Six eWatches were placed on
the wrist, belt, necklace, trouser pocket, shirt pocket, and bag
of the trainee. Classification accuracy on different combina-
tions of sensor data was calculated. In the results, the best
performance was achieved when all sensor data were used
for action recognition. In [22], eight wearable sensors, each
consisting of an accelerometer and a gyroscope, were used to
recognize 12 actions. The sensors were placed on the upper-
left arm, belt, the wrists, the knees, and the ankles of the
trainee. Recognition performance was evaluated for different
sets of activated sensors. The best performance was recorded
when all sensors were activated.

Ease of use is the most important factor in designing a
virtual simulator. From this perspective, sensor-based meth-
ods above have the following problem: it is inconvenient to
charge and replace the batteries of sensors during training.
In particular, if some batteries are worn out, training should
be stopped to charge or replace them. In such a case, the user
feels inconvenient in interaction with the simulator. For this
reason, we do not consider sensor-based approaches.

B. VISION-BASED HUMAN ACTION RECOGNITION
Human action recognition has been extensively investigated
in computer vision in the last few decades. For example,
Thurau and Hlavác [23], Yang et al. [24], Maji et al. [25],
Gupta et al. [26], Yao et al. [27], and Le et al. [28] explored
human action recognition in still images. To recognize actions
of in images, the human’s pose was used as a feature
in [23]–[25]. However, even if the two poses are identical,
they can convey different meanings according to context. For
example, if a human in an image is running to kick a ball, the
methods in [23]–[25] may recognize it as ‘‘running’’ and not
‘‘kicking.’’ For this reason, Gupta et al. [26], Yao et al. [27],
and Le et al. [28] considered interactions between human and
object. They extracted contextual cues to model the context.
Moreover, based on the context, the action of the human was
recognized in [26]–[28].

Human action recognition in video clips has also been
studied. To extract discriminative and robust features from
video data, several handcrafted features, such as vol-
ume local binary pattern (VLBP) [29], 3D scale-invariant
feature transform (3D-SIFT) [30], 3D speeded up robust
features (SURF3D) [31], the histogram of optical flow
(HOF) [32], and the histogram of 3D-oriented gradients
(HOG3D) [33], have been proposed. The use of such hand-
crafted features has yielded good classification accuracy for
human action recognition in video clips [34]. This has led to
a large body of research on the design of handcrafted features
for human action recognition.
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Instead of designing features by hand, some research
groups have focused on a learning methodology to auto-
matically extract features. In this approach, several learning
algorithms, such as genetic programming (GP) and convo-
lutional neural networks (CNNs), have been widely used.
For example, in [35], a GP-based feature learning method
was proposed where the color and the optical flow infor-
mation extracted from RGB sequences were used as input
data. Each candidate feature was randomly formulated as a
tree structure. For a given input data, the candidate features
were evolved through selection, crossover, and mutation at
every iteration along the direction of maximizing recogni-
tion accuracy. When all iterations had been completed, the
best feature was selected from among the candidate features.
In [36], to obtain discriminative features fromRGB and depth
sequences, a restricted graph-based GP (RGGP) method
was proposed. Each candidate feature was represented as a
three-layer tree structure: input, filtering, and feature pooling
layers. For the sake of variety, various candidate features were
generated by randomly assembling the filtering and pooling
operators in the filtering and pooling layers, respectively.
A linear support vector machine (SVM) classifier was used to
recognize human action. A fitness function was formulated as
the classification error rate of the SVM classifier. Each can-
didate feature was updated using three processes (crossover,
mutation, and selection) while the RGGP ran. Finally, the
feature that most significantly minimized the fitness function
was selected as the best for action recognition.

CNNs have been widely used to find features learned
automatically from video data. For example, in [37], a 3D
CNN model for action recognition was proposed. Since,
in conventional 2D CNN models, 2D convolution opera-
tions are applied only to the spatial domain, only spatial
features can be extracted through the corresponding mod-
els. However, in each convolutional layer of a 3D CNN
model, a 3D convolution operation is employed to extract
spatial and temporal features simultaneously from video data.
In [38], to address the questions of where, what, and how
action was performed in video sequences, a CNN-based deep
action parsing (DAP3D-Net) structure was introduced. The
DAP3D-Net consisted of six convolutional layers, four pool-
ing layers, and two fully connected layers. A Euclidean
square loss layer was also connected to the second fully
connected layer to find a bounding box for a human agent.
A softmax loss layer was connected to the second fully con-
nected layer to predict the probabilities of actions occuring.
Two cross-entropy loss layers were connected to the first and
second fully connected layers to predict the action attributes.
In [39], human action recognition in depth sequences was
studied. To directly learn a feature from raw depth sequences,
a 3D-based deep convolutional neural network (3D2CNN)
was proposed. For human action recognition, Liu et al. [39]
used skeleton joint information as well as features learned
from the 3D2CNN. Two features were entered into two SVM
classifiers, and the outputs were fused to recognize actions.

C. SKELETON-BASED HUMAN ACTION RECOGNITION
Several recent studies on human action recognition have
explored approaches that utilize information concerning the
user’s skeletal joints. Human pose estimation has also been
actively researched to obtain more precise joint informa-
tion from RGB, depth, and RGB-depth data [40]–[43]. The
Kinect sensor, which can simultaneously capture real-time
RGB, depth, and 3D skeletal joint information, has recently
received considerable attention for a wide range of com-
puter vision applications. In particular due to its convenience
in acquiring 3D skeleton data with acceptable accuracy, a
large amount of research has been conducted on skeleton-
based human action recognition using the Kinect sensor.
This research can be categorized into two groups, where one
consists of methods that use a single Kinect sensor and the
other of techniques that employ multiple Kinect sensors.

Examples of the first group include [44]–[47]. In order
to recognize actions from 3D user skeleton data, several
features, such as joint velocity, joint angle, and angular veloc-
ity, have been used in [44]–[46]. However, in the methods
proposed there, since the Kinect sensor was in a fixed posi-
tion, the user had to face it while standing. In this state, the
action performed by the user was recognized. Therefore, the
classification accuracy can significantly vary depending on
the position of the Kinect sensor. In order to overcome this
problem, in [47], histograms of 3D joint locations (HOJ3D)
were proposed for view-invariant human action recognition.
TheHOJ3Dwere computed using 3D joint locations provided
by the Kinect sensor, and were clustered into several posture
visual words. A discrete hidden Markov model (HMM) was
trained using the posture visual words and used to recognize
the actions of the user.

In the second group of research on skeleton-based human
action recognition using the Kinect sensor, multiple Kinect
sensors were utilized to recognize human actions [48]–[50].
Azis et al. [48] proposed a two-view human action recogni-
tion system where skeleton data obtained from two Kinect
sensors were fused based on their joint tracking status. The
temporal change in the fused skeleton data according to
actions was modeled as a sequence. The actions of the user
were then classified through a sequence matching process.
In [49], skeleton data obtained from two Kinect sensors were
employed to enhance action recognition performance. Based
on the distance between each Kinect sensor and the centroid,
some reliable sensors were selected. The reliability of the
skeleton data obtained from these Kinect sensors was then
calculated. Based on the overall reliability of each skeleton
data item, the fused data were obtained as the weighted
average of the skeleton data. Following this, the approach
in [48] was applied to recognize the actions of the user.
In [50], a wireless Kinect sensor network system for a VR
boxing game was proposed, where two Kinect sensors were
used to detect the actions of the user. Instead of fusing the
skeleton data obtained from the Kinect sensors, the system
in [50] selected the results of the best sensor. To do so, the
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FIGURE 2. Block diagram of the proposed simulator.

effectiveness of each Kinect sensor was calculated based on
the distance as well as orientation between it and the user. The
motion information captured by the selected Kinect sensor
was inputted into the VR boxing game system.

Our work belongs to skeleton-based human action recog-
nition using multiple Kinect sensors. In our proposed training
simulator, we take advantage of multiple Kinect sensors that
can obtain precise user skeleton data regardless of his/her
direction. In past work [48], [49], only two Kinect sensors
were used to recognize the user’s actions, even if the skeleton
fusion methods used had been originally developed for two or
more Kinect sensors. The Kinect sensors were placed in front
of the user as well On the other hand, in our work, six Kinect
sensor are used, and we observed that when the user did not
face a Kinect sensor, the left and right sides of the skeleton
provided by it were reversed. This observation is absent
from [48], [49], and the skeleton fusion methods in [48]
and [49] were developed without considering this issue. For
this reason, it is undesirable to apply these methods to our
simulator. Further, some issues are encountered in the imple-
mentation of the proposed simulator. The implementation is
described in detail in the next section.

III. IMPLEMENTATION OF THE PROPOSED VIRTUAL
TRAINING SIMULATOR
Fig. 2 shows a block diagram of the proposed virtual training
simulator. It is composed of multiple Kinect sensors, personal
computers, and a main server. Each Kinect sensor is physi-
cally connected to a personal computer via a universal serial
bus (USB), and the trainee’s skeleton data are transmitted to
the personal computer via the USB.Moreover, data from each
personal computer are transmitted to the main server through
a transmission control protocol/internet protocol (TCP/IP)
connection. In the main server, the Kinect sensors, which
face the trainee, are detected. Once the Kinect sensors are
found, skeleton data from them are united into one. To render
the unified skeleton data invariant to such factors as body
size and orientation of the trainee, skeleton normalization and
orientation compensation algorithms are executed. Following
these processes, features for human action recognition are
extracted from skeleton data. Using these feature data, an
SVM classifier generates the corresponding action classifica-
tion result. A detailed description of each process is presented
in the following subsections.

FIGURE 3. Skeleton joint information provided by the Kinect sensor.

A. COORDINATE SYSTEM TRANSFORMATION
The Kinect sensor consists of an RGB camera, an
infrared (IR) camera, and IR emitters. The RGB camera is
used for color image acquisition, whereas the IR camera and
the IR emitters extract depth information. The frame rate of
the color and depth images is approximately 30 frames per
second (fps). Developers can also acquire human skeleton
data for 25 joints at 30 fps using the Kinect for Windows
software development kit (SDK) offered byMicrosoft. In this
paper, human skeleton data consisted of the tracking state and
the coordinate values of each joint.

Fig. 3 shows the skeletal joint information provided by
the Kinect sensor. Human skeleton data is transmitted via
the USB interface to its personal computer. The coordinate
system of each Kinect sensor is transformed into the world
coordinate system as follows:[

X̂i Ŷi Ẑi
]T
= Ri [Xi Yi Zi]T + Ti, (1)

where X̂i, Ŷi, and Ẑi are coordinates of the world coordinate
system, and Xi, Yi, and Zi are coordinates of the coordinate
system of the ith Kinect sensor. The superscript (·)T indicates
the transpose operation. Parameter Ri is a 3× 3-dimensional
rotation matrix of the ith Kinect sensor, and Ti is a
3× 1-dimensional translation matrix of the ith Kinect sensor.
To obtain Ri and Ti at each Kinect sensor, a calibration pro-
cedure is initially performed using a calibration board and an
IR camera. Conventionally, calibration is performed using an
RGB camera and a calibration checkboard with a chessboard
pattern [51]–[53]. However, the joint information provided by
the Kinect sensor is represented in the IR camera’s coordinate
system. Moreover, the IR camera and the RGB camera are
separate from each other in the Kinect sensor. Therefore, to
obtain more accurate Ri and Ti, we utilize an IR camera-
based calibration procedure. Fig. 4 shows the calibration
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FIGURE 4. Calibration board and the infrared (IR) dots detected by each
Kinect sensor.

board consisting of six IRmarkers and the IR dots detected by
each Kinect sensor. Once the personal computer receives the
IR image of the six IR dots from the corresponding Kinect
sensor, each personal computer computes Ri and Ti using
spatial relation information between 2D pixel coordinates of
each IR dot and the 3D coordinates of the corresponding IR
marker on the calibration board.

B. FRONT-VIEW KINECT SENSOR TRACKING
Once the coordinate system transformation is complete, each
skeleton is aligned with respect to the origin of (0, 0, 0)
the IR marker on the calibration board placed at the center
of the omni-directional treadmill. Fig. 5 shows the results
of the visualization of the transformed skeletons when the
six Kinect sensors, arranged in a ring, capture the trainee
standing at the center of the ring. Although the coordinate
system of each Kinect sensor is transformed into the world
coordinate system, the transformed skeletons are not unified
into one in this coordinate system, as shown in Fig. 5(a).
Further, the Kinect sensor captures human skeleton data
under the assumption that the user faces it. If not, the Kinect
sensor (back-view Kinect sensor) may provide incorrect
human skeleton data. As shown in Figs. 5(e)-(g), the left and
right sides of the human skeleton provided by the back-view
Kinect sensors are reversed. If such incorrect skeletons are
entered into the SVM classifier, for example, the classifica-
tion result for ‘‘throw high left’’ may be recognized as ‘‘throw
high right.’’ Therefore, to solve this problem, in our previous
work [54], we proposed a front vector-tracing (FVT) method
that ascertains front-view Kinect sensors at each frame.
In the proposed simulator, the FVT method is employed to
find front-view Kinect sensors.1

Fig. 6 shows the procedure of finding the front-viewKinect
sensors through the FVT method. Let v(i)s be the vector from
the left to the right shoulder joint of the human skeleton

1In color marker-based tracking methods [55]–[57], each marker of a
different color is attached to different parts of the human body. The color
markers are extracted from images and their patterns are used to compute
the position and orientation of the camera. These methods can be used to
find the front-view Kinect sensor. However, in our proposed simulator, the
targets are projected onto the wall of the dome using the eight projectors
mounted on the ceiling of the dome. To enable the trainee to experience a
more realistic and immersive environment, the lights in the dome are turned
off during training. The brightness of the indoor space is too low for the
sensors to correctly detect markers. For this reason, we did not adopt color
marker-based methods.

captured by the ith Kinect sensor. Let v(i)p be the front-view
vector of the skeleton captured by the ith Kinect sensor. v(i)p is
obtained by rotating v(i)s counterclockwise by 90◦. The two
vectors v(i)s and v(i)p are obtained per frame at each Kinect
sensor.

Having chosen the front-view Kinect sensors, the fused
skeleton can be obtained using skeleton data captured by
them. However, since they are not identified at the outset,
the fused skeleton needs to be initialized. In the proposed
simulator, initial information pertaining to the skeleton is
obtained by making the user face a dedicated Kinect sensor at
the beginning, which is also used as the initial fused skeleton.
Let vf be the front-view vector of the fused skeleton. Suppose
that the first Kinect sensor is the dedicated sensor. Then, vf
is initialized as v(1)p . The two Kinect sensors, on either side
of the dedicated Kinect sensor, are regarded as the front-view
Kinect sensors.

In the next frame, the direction and orientation of the
user can be changed according to his/her motion. Further-
more, the front-view Kinect sensors can be changed. Since
the six sensors are uniformly aligned at 60◦ as shown in
Fig. 1(b), three Kinect sensors are always selected as front-
view sensors. Accordingly, the fused skeleton is sequen-
tially obtained using the skeleton data captured by the three
front-view Kinect sensors. In order to continue tracking the
front-view Kinect sensors, the inner product of v(i)p and vf
is used to determine whether the ith Kinect sensor is the
front-view Kinect sensor. If the value of the inner product is
positive, the ith Kinect sensor becomes the front-view sensor
as shown in Fig. 6(a). Conversely, if it is negative, it becomes
the back-view Kinect sensor as shown in Fig. 6(b). This
identification process is performed per frame for each Kinect
sensor, and the front-view Kinect sensors are temporally trac-
jed. In the multi-skeleton fusion module, the fused skeleton
is obtained by using skeleton data from the front-view Kinect
sensors. The procedure of skeleton fusion is described in the
next subsection.

C. MULTI-SKELETON FUSION
Let F be the set of indices of the Kinect sensors determined
by the FVTmethod, f be the index of an element in F , f ∈ F ,
j be the joint index, j ∈ {0, . . . , 24}, sj,f be the tracking state
of the jth joint of the f th Kinect sensor, dj,f be the distance
between the jth joint of the f th Kinect sensor and the f th Kinect
sensor, Pj,f =

[
xj,f , yj,f , zj,f

]
be a vector representation of

the position of the jth joint of the f th Kinect sensor, and P̄j =[
x̄j, ȳj, z̄j

]
be a vector representation of the position of the jth

joint of the fused skeleton.
In the multi-skeleton fusion of the proposed simulator, P̄j is

determined by solving the following optimization problem:

min
P̄j

∑
f ∈F

λ(sj,f ) · µ(dj,f )· ‖ P̄j − Pj,f ‖ (2)

where λ(sj,f ) and µ(dj,f ) are weights that depend on
sj,f and dj,f , respectively.
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FIGURE 5. Visualization results of the transformed skeletons. The marker with the circle ‘‘o’’ represents the left side of the human skeleton. The marker
with the asterisk ‘‘*’’ represents the right side of the human skeleton.

FIGURE 6. Procedure to find a front-view Kinect sensor through the front
vector tracing (FVT) method. (a) The i th Kinect sensor is a front-view
Kinect sensor. (b) The i th Kinect sensor is a back-view Kinect sensor. The
marker ‘‘•’’ represents the Left Shoulder joint. The marker ‘‘F’’ represents
the Right Shoulder joint.

The tracking state of each joint is categorized as tracked,
inferred, or not tracked. If it is categorized as tracked, the
joint is well tracked; if it is classified as inferred, the joint is
occluded, and if classified as not tracked, the joint is com-
pletely invisible. Therefore, according to the tracking state,

we define λ(sj,f ) as follows:

λ(sj,f ) =


1.0 if sj,f is tracked
0.5 if sj,f is inferred
0.0 if sj,f is not tracked

(3)

In [58], it was shown that the accuracy of detecting the
position of each joint depends on its distance from the Kinect
sensor. Based on the measurement results in [58], we define
µ(dj,f ) as

µ(dj,f ) = 1−
(
0.4946 e0.7 dj,f − 1.1457

5.7316− 1.1457

)
(4)

where 0.4946 e0.7 dj,f is the average error-fitting function
whose function value specifies the average error in the skele-
ton joint according to distance dj,f . Since an optimal sens-
ing range of 1.2 to 3.5 m is recommended by Microsoft,
0.4946 e0.7 dj,f is normalized using 1.1457 (5.7316), which is
the minimum (maximum) value of the error at 1.2 m (3.5 m).
Then, using (3) and (4), the position of the jth joint of the fused
skeleton in (2) can be calculated as

P̄j =

∑
f ∈F λ(sj,f ) · µ(dj,f ) · Pj,f∑

f ∈F λ(sj,f ) · µ(dj,f )
. (5)

D. SKELETON NORMALIZATION
The coordinates of the skeleton joints depend on the body
sizes of the trainees. Variation in body size may cause mis-
classification of two motion sequences even if they represent
the same motion. Therefore, the joint position data of the
fused skeleton should be normalized to be invariant to the
size of the body of the trainee. Thus, we use a kinematic
tree consisting of 25 nodes and 24 edges. The nodes and
edges represent the joints and limbs, respectively. Based on
the kinematic tree, we define 24 limbs as described in Table 1
and designate the Spine Base joint (j = 0) as the root node
of the kinematic tree. We also determine the length of each
limb of the fused skeleton as the average of the limbs of
30 test subjects.

Let Ll be the length of the l th limb, l ∈ {1, . . . , 24}, and ml
and nl be the indices of the starting and ending joints of the l th

limb, respectively, as shown Table 1. Let Nj, j = 0, . . . , 24,
be the position of the jth joint of the normalized skeleton.

12502 VOLUME 5, 2017



B. Kwon et al.: Implementation of a Virtual Training Simulator

TABLE 1. Twenty-four limbs and their lengths.

Algorithm 1 Skeleton Normalization

1: Input: P̄j, j = 0, . . . , 24, Ll , ml , nl , l = 1, . . . , 24
2: Output: Nj, j = 0, . . . , 24
3: N0 = P̄0
4: for l = 1 to 24 do
5: vl = P̄nl − P̄ml
6: v̄l = Ll ·

vl
‖vl‖

7: Nnl = Nml + v̄l
8: end for
9: Terminate.

Based on the 24 limbs in Table 1, the joint coordinates of
the fused skeleton are normalized using Algorithm 1. The
normalization process starts from the root node (the Spine
Base joint) and sequentially progresses in order of the limbs
as listed in Table 1. Using the starting and ending positions
of the joints of the limb, limb vector vl is obtained. vl is then
normalized by the norm of its magnitude while its original
direction is preserved. It is also scaled by a given length Ll in
Table 1 as v̄l . The end joint is updated using the starting joint
and v̄l . Having executed this procedure for all limbs, we can
obtain the normalized skeleton. Fig. 7 shows an example of
the result of skeleton normalization.

E. ORIENTATION COMPENSATION
The user’s location in the world coordinate system changes
dynamically according to his/her movement. To render skele-
ton data invariant to the absolute location of the user in the
world coordinate system, we place the Spine Base joint at the
origin of theworld coordinate system as shown on the left side
of Fig. 8. The positions of the other joints are also modified
as

Nj = Nj − N0, j = 1, 2, . . . , 24. (6)

Algorithm 2 Orientation Compensation
1: Input: Nj = [xj, yj, zj], j = 0, . . . , 24
2: Output: N̄j = [x̄j, ȳj, zj], j = 0, . . . , 24
3: for j = 1 to 24 do
4: Nj = Nj − N0
5: end for
6: Set N̄0 to the origin (0, 0, 0).
7: Find the vector v = (vx , vy) from Right Hip joint to Left

Hip joint.
8: vx = x12 − x16
9: vy = y12 − y16
10: Calculate rotation angle α.
11: α = arcsin

(
−vx/

√
v2x + v2y

)
12: for j = 1 to 24 do
13: x̄j = cos(α) · xj − sin(α) · yj
14: ȳj = sin(α) · xj + cos(α) · yj
15: end for
16: Terminate.

FIGURE 7. Example to illustrate the result of skeleton normalization.

FIGURE 8. An example of orientation compensation.

Then, for view-invariant action recognition, the vector from
the Right Hip joint (j = 16) to the Left Hip joint (j = 12) of
the skeleton is set parallel to the x-axis of theworld coordinate
system as shown on the right side of Fig. 8. Algorithm 2
shows the pseudocode for orientation compensation, where
N̄j is the position of the jth joint of the skeleton after orienta-
tion compensation.

F. FEATURE EXTRACTION
Once the skeleton normalization and orientation compensa-
tion are complete, the skeleton becomes invariant to the user’s
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body size, his/her absolute location, and viewpoint. By using
this skeleton, feature extraction for human action recognition
is carried out at each frame. The extracted features are as
follows:

1) 3D Joint Position: It has been reported that the 3D
joint position information of the skeleton is useful for human
action recognition [59]–[61]. In the proposed simulator, the
3D position information of 24 joints, excluding the Spine
Base joint, is used for human action recognition. Since the
Spine Base joint is placed at the origin through orientation
compensation, its position is always (0, 0, 0) regardless of
the movement of the user. Therefore, we do not use its posi-
tion information as a feature for human action recognition.
The eventual feature dimensions of the 3D Joint Position
are 24× 3 = 72.

2) Unit Displacement: The velocity of each joint has been
used for human action recognition in many studies [62]–[64].
It is calculated from two consecutive records of joint posi-
tions. However, since the agility of each user is different, the
joint velocities of the same motion can also vary from person
to person. Moreover, since the speed of motion of the test
person may be erratic, the joint velocities may not be stable
features. Therefore, to achieve satisfactory performance, we
define Unit Displacement by

Dj[n] =
N̄ j[n]− N̄ j[n− 1]

‖N̄ j[n], N̄ j[n− 1]‖
, j = 1, 2, . . . , 24, (7)

where n is the frame index, and ‖δ1, δ2‖ indicates the
Euclidean distance between positions δ1 and δ2. Since N̄ j[n]−
N̄ j[n − 1] is normalized by the Euclidean distance of
‖N̄ j[n], N̄ j[n − 1]‖, the Unit Displacement in (7) is against
changes in the agility and speed of the user, and contains
only the direction of movement of the joint. The the number
of feature dimensions of Unit Displacement for 24 joints
is 24× 3 = 72.

3) Joint Angle: We define 17 Joint Angles as Tait-Bryan
angles and use them as features for human action recognition.
The components of these angles are as follows: (1) the yaw
angle between the 1st and 4th limbs, (2) the roll and (3) yaw
angles between the 6th and 9th limbs, (4) the roll and (5) yaw
angles between the 7th and 14th limbs, (6) the roll and (7)
yaw angles between the 9th and 10th limbs, (8) the roll and (9)
yaw angles between the 14th and 15th limbs, (10) the roll and
(11) yaw angles between the 2nd and 19th limbs, (12) the roll
and (13) yaw angles between the 3rd and 22th limbs, (14) the
roll and (15) yaw angles between the 19th and 20th limbs,
and (16) the roll and (17) yaw angles between the 22th and
23rd limbs. Using the two connected limb vectors defined in
Table 1, the Joint Angles are calculated at each frame. The
number of feature dimensions of the Joint Angle is 17.

4) Angular Velocity: Let k ∈ {1, . . . , 17} be the angle index
and Ak [n] be the angle value of the k th angle at frame n. Then,
using two consecutive records of joint angles, the Angular
Velocity of the k th angle at frame n is calculated as

Vk [n] =
Ak [n]− Ak [n− 1]

n− (n− 1)
, k = 1, 2, . . . , 17. (8)

The number of feature dimensions of Angular Velocity
is 17.

Although the above four features (3D Joint Position, Unit
Displacement, Joint Angle, and Angular Velocity) can reflect
momentary characteristics of action, this may be not suf-
ficient for them to reflect the temporal characteristics of
action. To capture these, we employ a simple moving aver-
age (SMA). For SMA calculation, each feature is temporarily
stored in a buffer over B frames. Moreover, the SMA for each
feature is calculated at each frame using B previously stored
features as follows:

SMA[n] =
f [n]+ f [n− 1]+ · · · + f [n− (B− 1)]

B
, (9)

where f [n] = [N̄1[n], . . . , N̄24[n],D1[n],
· · ·,D24[n],A1[n], . . . , A17[n],V1[k], . . . ,V17[k]] is a 1 ×
178-dimensional concatenated feature vector at frame n. The
size of the buffer B was set to 30 in the experiment.

The total number of dimensions of the features extracted at
each frame is (72+ 72+ 17+ 17)× 2 = 356. The extracted
features are entered into the SVM classifier for training and
classification.

G. SVM CLASSIFIER
To classify actions based on the momentary and temporal
characteristics of action, an SVM is used as classifier in
our proposed simulator. However, since it was originally
designed for binary classification, it can be used only in two-
class scenarios. To extend the usefulness of SVM, multi-class
SVMs have been actively studied. Further, C-SVM, one of
the most widely used multi-class SVMs, was used in the pro-
posed simulator. The proposed simulator was implemented
in C++ over the OpenCV library for C-SVM.

Since the SVM is a supervised learning method, manually
annotated training data are required for it. The main idea
underlying the SVM is to find an optimal hyperplane that
separates the training data according to class labels. Since
many training data items are not linearly separated, many
non-linear classification methods have been studied to handle
non-linearly separable training data. In non-linear classifica-
tion methods, the kernel function is commonly used to map
the input data of the SVM to high-dimensional feature spaces
to find a hyperplane or a set of hyperplanes. In the proposed
simulator, the radial basis function (RBF) was used as kernel
function of the C-SVM.

Several parameters are needed for the C-SVM, including
the RBF, the classification performance of which depends
on the parameters. To train the C-SVM, we used OpenCV’s
CvSVM::train_auto function. This function allowed us
to optimize the parameters and optimally train the C-SVM.

IV. EXPERIMENTAL RESULTS
To evaluate the performance of the proposed simulator,
virtual military training was used as a representative example.
To this end, the first-person shooter (FPS) game engine and
contents developed by DoDaam Systems Ltd. were applied to
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FIGURE 9. Snapshot of the offline testing phase (a), and the practical
online testing phase (b) using the proposed simulator.

TABLE 2. Experimental setup of hardware.

the proposed simulator. To ensure that the recognized action
was synchronized with virtual reality contents, we performed
several rigorous offline tests, as shown in Fig. 9(a). Through
these tests, we ensured that the game character of the trainee
was adequately controlled by using the action classification
results of the SVM classifier. Moreover, the virtual game
environment and virtual enemies, which were projected onto
the wall of the dome using the projectors, enabled the trainee
to experience more realistic and immersive virtual military
training, as shown in Fig. 9(b). We used one main server and
six personal computers. As shown in Fig. 2, each personal
computer was physically connected to a Kinect sensors. The
trainee’s skeleton data obtained from each Kinect sensor were
transmitted to the main server, where the proposed 360◦

multi-view human action recognition method was executed.
A detailed description of the experimental setup of the hard-
ware is presented in Table 2.

A. DATABASE AND ANNOTATION
To train and test the proposed simulator, the military training
action datasets were captured in the studio. As shown in
Fig. 1(b), six wall-mounted Kinect sensors, arranged at 60◦

intervals, captured the skeleton data of the subject. Each
subject wore military gear and was armed with a pistol,
a rifle, a grenade, and a sword, as shown in Fig. 10. In this
state, each subject performed 25 military training actions:
(1) changeweapon pistol, (2) changeweapon rifle, (3) change
weapon grenade, (4) change weapon sword, (5) throw high
left, (6) throw high right, (7) throw low left, (8) throw low
right, (9) reload pistol, (10) reload rifle, (11) shoot sword,
(12) lean left, (13) lean right, (14) pick up, (15) put down,
(16) open, (17) close, (18) change shoulder launch, (19) tele-
scope, (20) gasmask, (21) jump, (22) bend, (23) crouch,
(24) walk, and (25) run. These training actions were per-
formed by 30 subjects (20 serving soldiers and 10 civilians).
Each subject repeated each action 20 times. The dataset

FIGURE 10. Kinds of weapons (a) and military gear (b) used during the
training and testing of the proposed simulator.

provided a total of 15, 000 sequences. Fig. 11 shows some of
the poses for the 25 military training actions from our dataset.

The action classification results are conventionally deter-
mined after watching an entire action sequence. In this
case, the simulator’s feedback lagged behind the trainee’s
action, and such latency might have caused significant
degradation in interactivity between the two. In [65], the
annotation paradigms were categorized into three types:
sequence-level, frame-range, and action point annotation
paradigms. In the sequence-level annotation paradigm, since
the entire sequence was labeled with an action class label,
high observational latency obtained. In the action point anno-
tation paradigm, only the reference point (frame), which
was determined based on a uniquely identified pose for
action, was labeled with the action class label, and very low
observational latency could be achieved. In the frame-range
annotation paradigm, successive frames that centered on the
reference frame were labeled with the action class label, and
low observational latency was achieved.

We first used the action point annotation paradigm, but
found that it was difficult to train the SVM classifier when
the dataset labeled with this paradigm was used. Since the
number of frames labeled with an action class label was too
small, the training of the SVM classifier did not work well.
As a result, the classification accuracy obtained was not
acceptable. From this result, we realized that an adequate
number of frames labeled with an action class label were
needed to train the SVM classifier. Therefore, we employed
the frame-range annotation paradigm. To classify action types
in the early stages of action, we determined the action points
on for the first 23 military training actions.2 For action, we
found a heuristically adequate length of frames centered on

2When the trainee walked (ran) during his/her training, the SVM classifier
of the proposed simulator should have generated classification results aswalk
(run) sequentially between start and end of actions by considering game
character control. For this reason, the sequence-level annotation paradigm
was used in the cases of walk and run.
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FIGURE 11. Sample poses from 25 military training actions.

the action point to train the SVM classifier. Based on the
length of each military training action, frame-range annota-
tion was carried out. The remaining frames were labeled with
a no action class label (0).

B. PERFORMANCE EVALUATION
In order to evaluate the level of robustness of the proposed
approach against skeleton errors, we first measured the error
in the skeleton fused by the FVT method according to the
number of the Kinect sensors. For accuracy of measurement,
the OptiTrack motion capture systemwith 12 IR cameras was
used to acquire ground truth data. To capture the entire body
of the trainee, eight (four) IR cameras were mounted on the
upper side (downside) of the wall of the dome in the ring.
Moreover, 3D skeleton data obtained from the OptiTrack
system was used as reference to assess the skeleton fused by
the FVT method of the proposed simulator.

As shown in Fig. 12, the four poses (T-pose, crouch,
rifle shooting, and pistol shooting) were captured by both
OptiTrack and the proposed Kinect-based systems. The 3D
skeleton model derived from the OptiTrack system was com-
posed of a set of 20 joints. Moreover, the 3D skeleton models
from the OptiTrack and the proposed Kinect sensor-based
systems were slightly different from each other. For this rea-
son, we selected one-on-one-matched joint pairs; (〈Kinect〉,
〈OpitTrack〉): (Spine Base, Hip), (Spine Mid, Spine 1),
(Neck, Head), (Left Shoulder, Left Arm), (Left Elbow,
Left Fore Arm), (Left Wrist, Left Hand), (Right Shoulder,
Right Arm), (Right Elbow, Right Fore Arm), (Right Wrist,

Right Hand), (Left Hip, Left Up Leg), (Left Knee, Left Leg),
(Left Ankle, Left Foot), (Left Foot, Left Toe Base), (Right
Hip, Right Up Leg), (Right Knee, Right Leg), (Right Ankle,
Right Foot), (Right Foot, Right Toe Base), and (Spine Shoul-
der, Neck). We then calculated the average of the Euclidean
distance with respect to (w.r.t.) each joint obtained by the
OptiTrack system.

Table 3 shows the average error according to each pose,
when the number of the Kinect sensors used for the FVT
method was 1, 3, and 6, respectively. As shown in the
table, the average error of the fused skeleton decreased with
increase in the number of the Kinect sensors used. Further,
the average error of the fused skeleton for ‘‘crouch’’ is greater
than those of the fused skeleton for ‘‘T-pose,’’ ‘‘rifle shoot-
ing,’’ and ‘‘pistol shooting.’’ This is because the pose of
‘‘crouch’’ contained a high level of self-occlusion, as shown
in Fig. 12(b), compared with those of ‘‘T-pose,’’ ‘‘rifle shoot-
ing,’’ and ‘‘pistol shooting.’’ On the other hand, the pose of
‘‘T-pose’’ contained a relatively low level of self-occlusion,
and its average error was the least of the four poses.

In the proposed simulator, information concerning the
front-view Kinect sensors was obtained by the FVT method
at each frame. Further, in this state, the frame rate of the
proposed simulator was measured approximately at 21 fps.
If the FVTmethod is executed everyW frames, the frame rate
of the simulator can be improved. However, as a side effect,
this can lead to a reduction in the accuracy of multi-skeleton
fusion, which in turn leads to a reduction in the accuracy
of action recognition. To verify this issue, we measured the
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FIGURE 12. Snapshots from the four poses. Actions (from left to right): (a) T-pose, (b) crouch (c) rifle shooting, and (d) pistol shooting. Each pose
was captured by the OptiTrack and the proposed Kinect sensor-based systems.

TABLE 3. Average error (in cm) per joint of the fused skeleton for four poses.

performance of the proposed simulator in terms of frame
rate (fps), the average error of the fused skeleton, and the
average frame-by-frame classification accuracy, defined as
the sum of all correctly classified frames divided by the
total number of frames in the test sequence. This evaluation
was performed on our military training action database. For
the cross-subject test, data for half the subjects (10 serving
soldiers and five civilians) were used for training and the
remaining half for testing.

Table 4 lists the performance of the proposed simulator
when W was set to 1, 10, and 20, respectively. From the
table, it can be seen that the frame rate of the proposed
simulator could be improved when W was set to a relatively
large value. However, the average error of the fused skeleton
increased with the value of W . The reason for this was as
follows. Before executing the FVT method, the front-view
Kinect sensors could be changed according to the motion

TABLE 4. Comparison of performance of the proposed simulator, when
the FVT method performed every W frames.

of the trainee. In such a case, it was difficult to guarantee
acceptable accuracy of data relating to the fused skeleton.
If incorrect skeleton data were used to train the SVM classi-
fier, it generated incorrect classification results, as shown in
Table 4. Through offline testing and practical online testing,
we verified that a frame rate of 21 fps (W = 1) was sufficient
to provide an interactive and immersive virtual training envi-
ronment. Moreover, in order to synchronize the action of the
game character with that of the trainee, it was important to
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FIGURE 13. Confusion matrix based on the results of the average frame-by-frame classification accuracy.

obtain precise skeleton data. For this reason, in the proposed
simulator, we set the value ofW to 1.

Fig. 13 shows the confusion matrix based on the results
of the accuracy of frame-by-frame classification. The diag-
onal elements in the confusion matrix indicate the correctly
classified rates for actions. The average frame-by-frame clas-
sification accuracy was approximately 93.56%. We observed
that misclassification, where the no action class label was
misclassified as another action class label, occured only in
cases of change weapon pistol, change weapon rifle, change
weapon grenade, reload pistol, pick up, open, close, gasmask,
and bend. From the figure, we see that the misclassification
rates of the 25 actions were concentrated in the no action
class, and not in the other classes. Because of the well-
designed features and database, few cases obtained where
an action was classified as another in the experiment. This
helped in the development of the post-processing module,
where the action classification result sequence was converted
into one-key input per action.

In conventional FPS games, the game character is con-
trolled by input from a keyboard or a mouse. In our virtual
training simulator, the game character was controlled by the
action classification result. However, the SVM classifier of
the proposed simulator generated the action classification
result at each frame. The resulting sequence contained the
same action class labels even if the given action was per-
formed only once. If the result sequence was entered directly
into the FPG game engine, the game character repeated the

action several times. Therefore, one-key input per action was
needed to reconcile the trainee’s actions with those of the
game character. To fulfill this goal, we developed a simple
post-processing module that was inserted at the back of the
SVM classifier module. The action classification result of the
SVM classifier was entered into the post-processing module
and stored in a buffer. The post-processing module found
the action class label with the largest portion of the buffer.
The action class label found was entered as a one-key input
into the FPS game engine. As described in Sect. IV-A, the
action class labels were labeled in the early stage of the given
actions. Moreover, there was an interval between actions.
Therefore, the case where the buffer was filled with a no
action class obtained. Once one-key input generation was
triggered, it was not triggered again until the buffer was filled
with a no action class. Therefore, there was no more than one
event firing for a single action.

If one-key input was triggered within the ground truth
annotation region, it was considered a correctly classified
event. If not, it was not counted. Action-by-action classifi-
cation accuracy was then defined as the number of instance
of correct classification divided by the total number of actions
performed in the test sequences. Further, observation latency
was defined as the difference between the frame where an
action class label except no action started and that where
one-key input generation was triggered. Table 5 shows
the average action-by-action classification accuracy and the
observational latency of the proposed simulator. We observed

12508 VOLUME 5, 2017



B. Kwon et al.: Implementation of a Virtual Training Simulator

TABLE 5. Average action-by-action classification accuracy and
observational latency.

that for cases of change weapon sword, throw high left,
throw high right, throw low left, throw low right, reload rifle,
shoot sword, lean left, lean right, put down, change shoulder
launch, telescope, jump, and crouch, the average action-by-
action classification accuracies were as high as 100%. This
shows that the game character’s actions could be perfectly
controlled according to the trainee’s actions.

For the other actions, performance can be explained based
on the average frame-by-frame classification accuracy shown
in Fig. 13. Misclassification where no action class label was
misclassified as another action class label obtained only in
these cases.We should point out that one-key input generation
was triggered outside the ground truth annotation region.
In the experiment, most incorrect triggers occurred at the
front of the ground truth annotation region. Table 5 shows
that the average observational latency was 8.4 frames for
the 25 military training actions. When considering the frame
rate of the proposed system at approximately 21 fps, the
average latency could be converted to approximately 0.395 s.
Although there were short lags between actions of the trainee
and the game character, the test subjects did not experience
significant inconvenience.

V. CONCLUSION
There has been a considerable amount of research inter-
est in virtual training simulators. To provide a trainee with
an interactive training environment, past research on virtual
training simulators have focused on obtaining precise human
action information using a wearable motion capture suit-
based human action recognition approach, with less emphasis
on user convenience. In this paper, we introduced a virtual

training simulator based on 360◦ multi-view human action
recognition. In our simulator, human skeleton data were
captured from multiple Kinect sensors without the aid of
wearable devices. Due to practical issues in the implemen-
tation of the proposed simulator, our implementation of the
virtual training simulator using multiple Kinect sensors was
primarily addressed in this paper. For performance evalu-
ation, virtual military training was used. The results high-
lighted the effectiveness of the proposed simulator in terms
of frame-by-frame classification accuracy, action-by-action
classification accuracy, and observational latency.
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