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ABSTRACT Wireless sensor networks (WSNs) are currently being used for monitoring and control in
smart grids. To ensure the quality of service (QoS) requirements of smart grid applications, WSNs need to
provide specific reliability guarantees. Real-time link quality estimation (LQE) is essential for improving the
reliability ofWSN protocols. However, many state-of-the-art LQEmethods produce numerical estimates that
are suitable neither for describing the dynamic random features of radio links nor for determining whether the
reliability satisfies the requirements of smart grid communication standards. This paper proposes a wavelet-
neural-network-based LQE (WNN-LQE) algorithm that closes the gap between the QoS requirements of
smart grids and the features of radio links by estimating the probability-guaranteed limits on the packet
reception ratio (PRR). In our algorithm, the signal-to-noise ratio (SNR) is used as the link quality metric. The
SNR is approximately decomposed into two components: a time-varying nonlinear part and a non-stationary
random part. Each component is separately processed before it is input into theWNNmodel. The probability-
guaranteed limits on the SNR are obtained from the WNN-LQE algorithm and are then transformed into
estimated limits on the PRR via the mapping function between the SNR and PRR. Comparative experimental
results are presented to demonstrate the validity and effectiveness of the proposed LQE algorithm.

INDEX TERMS Smart grids, wireless sensor networks, quality of service, link quality estimation, wavelet
neural network, radio link reliability.

I. INTRODUCTION
Wireless Sensor Networks (WSNs) have many advantages
compared with traditional communication technology, such
as ease of installation, maintenance, expansion, and inte-
gration. WSNs are also relatively inexpensive. Furthermore,
as demonstrated by hundreds of projects and thousands
of papers, WSNs include the following three advantages:
(1) they can be deployed ‘‘off the grid’’ without a power
supply or IT infrastructure; (2) they can be used on a small
scale before being deployed in a wider area (e.g., in feasibility
studies of new applications); and (3) they can be used in
ad hoc and mobile environments. Because of the successes
of WSN projects and recent advances in cyber-physical sys-
tems, WSN technology has attracted widespread attention
in the power system community [1]–[3]. Recently, ZigBee,
a specification forWSNs, has been listed as the recommended
communication standard for smart grid technology by the
National Institute of Standards and Technology of the United

States [4]. However, innovative solutions are still needed to
improve the reliability of WSNs, particularly to satisfy the
strict Quality of Service (QoS) requirements of smart grids.
One of the most important indicators of improved WSN
reliability is link quality. Link quality must be estimated to
guide the selection of a practical radio link that can reliably
transmit data [5]. In this paper, we focus on developing
a Wavelet-Neural-Network-based Link Quality Estimation
(WNN-LQE) algorithm for WSN-based communication sys-
tems used in smart grid applications.

Because of electromagnetic influence on WSN nodes and
internal circuits, radio link quality varies randomly over
time and in space. Thus, Signal-to-Noise Ratio (SNR) is a
link quality metric that can be considered as a random-time
sequence that has both nonlinear and non-stationary random
features. Several LQE methods [6]–[8] that have been used
in WSNs attempt to filter some of the measurement noise
and provide an accurate numerical estimate. However, from
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a statistical perspective, a deterministic number cannot effec-
tively describe any random feature of link quality. In other
words, because the link quality has random features, random
error cannot be eliminated from numerical estimation results.
Thus, even when the link quality is estimated to satisfy the
reliability requirements, it is likely to fail in practice.

In this paper, before presenting the design of the pro-
posed LQE algorithm, the time-varying nonlinear and non-
stationary random characteristics of the link quality metric,
the SNR, are analyzed according to the most common radio
propagation model: the log-normal path-loss model. Based
on this analysis, the SNR time series is designed to be
decomposed into two parts: a time-varying nonlinear part
and a non-stationary random part. Then, we design a novel
WNN-LQE model to estimate the probability-guaranteed
limits on the Packet Reception Ratio (PRR). ThisWNN-LQE
model allows us to obtain a more reliable estimate of the
radio link quality to judge whether it satisfies the stringent
reliability requirements of smart grid applications. To the best
of our knowledge, this study proposes the first LQE algorithm
that can produce probability-guaranteed estimates of radio
link quality.

We summarize the novelty and contributions of the work
presented in this paper as follows:

1. The different characteristics of the link quality metric,
the SNR, are decomposed and processed separately.

2. The probability-guaranteed estimation result can more
comprehensively describe the performance range of a
random dynamic radio link and is thus more useful for
judging whether it satisfies the practical requirements
for industrial applications.

3. We evaluate our LQE algorithm in a real-world outdoor
smart grid environment.

The remainder of this paper is organized as follows.
Section II presents a survey of the most interesting
approaches related to our work. In Section III, we provide
an analysis of the characteristics of the link quality metric.
In Section IV, we introduce the WNN-LQE model. Section V
reports a comparative experiment conducted in a real-world
smart grid environment and analyzes the experimental results.
Finally, we conclude the paper in Section VI.

II. RELATED WORKS
The purpose of Link Quality Estimation, also referred to as
Link Quality Prediction, is to provide a basic description of
the radio link quality in WSN protocols. Subsequently, this
knowledge of the radio link quality is used to improve WSN
performance.Many studies have proposed various algorithms
for estimating radio link quality. The link quality metrics
on which these LQE algorithms are based are commonly
classified into three categories: hardware-based, software-
based and score-based, as shown in Table 1.

Software-based LQE metrics are computed using
transmission-based variables. The PRR, Required Number
of Packet Transmissions (RNP), and Expected Transmission

TABLE 1. The taxonomy of LQE applications.

Count (ETX) are the most common software-based LQE
metrics.

PRR is the ratio of the number of successfully received
packets to the number of transmitted packets. The PRR is also
sometimes referred to as the Packet Success Ratio (PSR).

The PRR is a statistical metric computed within a given
time window. It represents the average value of the link
quality within the time window considered for the statis-
tical computation. Thus, the PRR is not sensitive to rapid
fluctuations in link quality. Woo and Culler [9] presented
the Window Mean Exponentially Weighted Moving Aver-
age (WMEWMA) algorithm for smoothing the PRR using an
EWMA filter to achieve a more stable and sufficiently agile
estimation.

RNP is the average number of packet transmis-
sions/retransmissions required before successful reception.

Cerpa et al. [10] introduced the RNP to describe the link
quality of WSNs. However, the RNP has the disadvantage
of being very unstable and it is unable to reliably estimate
the success of link packet delivery, mainly because of link
asymmetry [11].

ETX is the number of transmissions required to success-
fully send a packet.

De Couto et al. [12] introduced the ETX intoWSN routing
protocols to estimate the high-throughput paths that minimize
the number of packet transmissions required for successful
packet delivery. Gomez et al. [13] used the Link Quality
Indicator (LQI)-based ETX (LETX) to identify high-quality
links in the router decision process. However, the ETX-based
approach fails in congested networks [11].

Hardware-based LQE metrics are obtained directly from
the registers of radio transceivers (e.g., the TI CC2530)
without any additional computation. Thus, they are more
efficient than software-based LQE metrics. Generally,
the Received Signal Strength Indicator (RSSI), Signal-to-
Noise Ratio (SNR), and LQI are commonly used hardware-
based LQE metrics.
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RSSI: a measure of the power present in a received radio
signal.

Wang et al. [14] adopted the RSSI, in combination with
other WSN node features, such as buffer size and node depth,
to determine link quality metrics. The sink node evaluates the
link quality via a supervised learning algorithm; it classifies
a link as either high or low quality for a given routing proto-
col. Weng et al. [15] used a nonparametric model to predict
short-term link quality online by using the RSSI and one-way
delay as model inputs. However, because the RSSI reflects
only the power of the pure received signal at the receiver,
it does not provide a measure of radio inference.

LQI is a characterization of the strength and/or quality of
a received packet based on the IEEE 802.15.4 standard [16].

Currently, there is no consistent or standard definition of
the LQI. In practice, different vendors calculate the LQI in
different ways. For example, the ATMEL AT86RF231 deter-
mines the LQI by correlating quality with the packet error
rate [6]. The TI CC2530 determines the LQI by correlat-
ing quality with the chip error rate, whereas Farzana and
Neduncheliyan [17] used the RSSI to calculate the LQI.
Srinivasan et al. [18] concluded that when the LQI is very
high, a link has perfect quality. However, the variance in the
LQI increases significantly as the link quality degrades. Thus,
single LQI readings are considered insufficient to accurately
describe link quality [6]. Qin et al. [6] used a Kalman filter
algorithm to estimate link quality and introduced LQI into the
calculation to correct the estimated result only when the LQI
reading was high.

SNR is the difference, in decibels, between the received
signal strength and the noise floor.

The SNR is a better metric than the RSSI because it con-
siders both the strength of the received signal and the back-
ground noise. The SNR has been selected as the link quality
metric in several LQE studies [6]–[8]. Senel et al. [7] pre-
sented a Kalman filter-based link quality estimation (KLE)
algorithm. Qin et al. [6] presented a Kalman filter-based LQE
algorithm that combines the SNR and LQI with minimal
additional overhead. Farkas et al. [8] proposed XCoPred,
a pattern-matching-based LQE scheme, to predict link quality
variations based on the SNR. However, XCoPred is unsuit-
able for describing a random SNR using a fixed numerical
value, as in [6]–[8]. Moreover, although these hardware-
based LQE approaches are easy to implement, they are inca-
pable of providing a sufficiently fine-grained description of
the link quality [19].

In addition to the software- and hardware-based LQE
algorithms introduced above, several LQE algorithms define
score values rather than link properties to describe link qual-
ity. Xu and Lee [20] proposed the Weighted Regression
Estimator (WRE) as an LQE metric. They used a complex-
valued regression function to calculate the WRE based on
an input vector containing a set of known node locations
and link qualities. Baccour et al. [5] proposed the Fuzzy
Link Quality Estimation (F-LQE) algorithm, which consid-
ered several important link properties to obtain a holistic

TABLE 2. The reliability requirements of smart grid applications.

characterization of a link; then, fuzzy logic was applied to
estimate the link quality. Halperin et al. [21] normalized the
RSSI and LQI and combined the two normalized values into
a weighted sum called Channel State Information (CSI) to
serve as the link quality metric. Liu and Cerpa [22] proposed
the use of 4 separate metrics (the PRR, RSSI, SNR, and
LQI) to estimate the probability that the next packet would
be delivered successfully.

III. LQE METRIC SELECTION AND ANALYSIS
A. LQE METRIC SELECTION
Several LQE metrics were introduced in Section II.
However, not every metric is suitable for smart grid
applications. Table 2 lists the communication reliability
requirements for various smart grid applications [23]. The
table clearly shows that each smart grid application has spe-
cific reliability requirements in the form of limits on the
allowed PRR interval. However, as mentioned in Section II,
the PRR is a statistical parameter calculated within a fixed
window. Consequently, the accuracy of the PRR is propor-
tional to the size of the window. Thus, there is a trade-
off between accuracy and window size in PRR estimation.
In addition, the PRR does not reflect the dynamic fluctuations
in link quality within the chosen window.

In contrast, the hardware-based SNR metric reflects both
the signal strength of an electromagnetic wave and the overall
noise. Thus, in this study, we select the SNR as the link quality
metric to be considered. The mapping function between the
SNR and PRR introduced in [24] is adopted to transform SNR
estimates into PRR estimates to verify whether the reliability
of a radio link satisfies the smart grid SNR requirements listed
in Table 2.

B. ANALYSIS OF THE SNR
According to the most commonly used radio propagation
model, the log-normal path-loss model, the Received Signal
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Strength (RSS) in units of dBm is as follows:

RSS = Pt − PL(d0)− 10 · n · log10

(
d
d0

)
− Xσ , (1)

where Pt is the transmission power in dBm, PL(d0) is the
path loss at a reference distance d0 (commonly, d0 = 1 m),
n is the path-loss exponent, and d is the separation distance
between the transmitter and receiver. The term Xσ , which
represents shadow fading, is taken to be a Gaussian random
variable with zero mean and a time-varying variance σ 2, i.e.,
Xσ ∼ N (0, σ 2).
Let BN represent the background noise in units of dBm.

Then, the SNR is expressed as follows:

SNR = RSS − BN = Pt − PL(d0)− 10 · n

· log10

(
d
d0

)
− Xσ − Pn, (2)

where Pn represents the power of the background noise
in dBm.

According to the experimental results presented in [25],
Pn is a random variable whose distribution function is defined
by a Gaussian distribution, and Pn and σ 2

n are the time-
varying mean and variance, respectively, of Pn. Thus, Pn ∼
N (Pn, σ 2

n ). Let Xn = Pn − Pn; then, we can obtain Xn ∼
N (0, σ 2

n ). Then, (3) can be deduced from (2) as follows:

SNR = Pt−PL(d0)− 10 · n · log10

(
d
d0

)
−Pn−(Xσ+Xn).

(3)

According to Eq. (3), the SNR can be expressed as the sum
of the following two components: a time-varying nonlinear
part, Pt − PL(d0) − 10 · n · log10(d/d0) − Pn, and a non-
stationary random part, Xσ + Xn. The time-varying nonlin-
ear part is mainly determined by the transmission power,
the path-loss parameters, the separation distance and the
mean background noise, any of which may vary over time in
WSN communications. Meanwhile, the non-stationary ran-
dom part is the difference between two Gaussian-distributed
random variables. The total variance σ 2

t of the non-stationary
random part is obtained by (4):

σ 2
t = σ

2
+ σ 2

n . (4)

IV. LINK QUALITY ESTIMATION ALGORITHM
To obtain a better estimation of the SNR, the time-varying
nonlinear part and the non-stationary random part should
be decomposed and processed separately, because they have
different characteristics. Therefore, in the WNN-LQE algo-
rithm, we first decompose the SNR time series into a time-
varying nonlinear series and a non-stationary random series.
After calculating the series of statistical variances of the non-
stationary random series, we introduce the WNN model to
estimate the time-varying nonlinear part and the variance
of the non-stationary random part. Finally, we calculate the
probability-guaranteed PRR range as our estimation result to
better describe the reliability of a link with random quality
features.

A. DECOMPOSITION ALGORITHM
Commonly used decomposition algorithms, such as empiri-
cal mode decomposition and local mean decomposition, are
associated with high computational complexity, which has
an adverse influence on the efficiency of an LQE algorithm.
In this paper, we adopt the simpler andmore efficientmoving-
average filter to decompose the SNR-based time series.

For a WSN node, we obtain the L most recent SNR
readings, denoted by S(L) = {s1, s2, . . . , sL}, and use
them to calculate the time-varying nonlinear series, N (L) =
{n1, n2, . . . nL}, and the non-stationary random series,R(L) =
{r1, r2, . . . , rL}, as follows:
nk =

s1 + s2 + · · · + sk
k

rk = sk − nk for k = 1, 2, . . . ,L; k < W ; W < L

nk =
sk−W+1 + sk−W+2 + · · · + sk

W
rk = sk − nk for k = 1, 2, . . . ,L; k ≥ W ; W < L,

(5)

where W denotes the moving window size.
We then employ (6) to calculate the series of vari-

ances (denoted by V (L) = {v1, v2, . . . vL}) of the non-
stationary random series R(L).

vk =
1
k

k∑
i=1

(
ri −

r1 + r2 + · · · + rk
k

)2
,

i = 1, 2, . . . , k; 1 ≤ k ≤ K ; K < L

vk =
1
K

K∑
i=1

(
rk−K+i −

rk−K+1 + rk−K+2 + · · · + rk
K

)2
,

i = 1, 2, . . . , k; k > K ; K < L,
(6)

where K denotes the window size used to calculate the
variances.

B. WAVELET NEURAL NETWORK ESTIMATION MODEL
Because the random part of the link quality is non-stationary,
its variance varies nonlinearly according to changes in the
environment where the WSN nodes are located. Therefore,
both the time-varying nonlinear part and its variance will vary
in time and space at different scales. A WNN is a powerful
tool for representing nonlinearities at different scales [26].
Therefore, in this paper, we adopt aWNN to estimate the time
series of the decomposed data.

The WNN model we adopt is shown in Fig. 1. This model
consists of an input layer, a hidden layer, and an output layer.
The input data are the time-varying nonlinear series, S(m) =
{sL−m+1, sL−m+2, . . . , sL}, and the variances of the non-
stationary random series, V (m) = {vL−m+1, vL−m+2, . . . vL}
(m ≤ L). The outputs of the WNN estimation model are sL+1
and vL+1.

Let p1, p2, and p3 represent the numbers of neurons in the
input, hidden and output layers, respectively. From the input
and output data of the model, we know that p1 = 2 · m and
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FIGURE 1. Wavelet neural network model structure.

p3 = 2. Then, p2 can be determined using (7), as introduced
in [27].

p2 =
√
p1 · p2 + 1.6799p1 + 0.9298 (7)

AMorlet wavelet function and a sigmoid function are cho-
sen as the hidden-layer and output-layer functions (as shown
in Fig. 1) and are defined in (8) and (9), respectively.

9 (x) = e−x
2/2 cos (5x) (8)

g (x) =
1

1+ e−x
. (9)

C. CONFIDENCE INTERVAL LIMITS ON THE PRR
The output data, sL+1 and vL+1, are estimates of
S(L) and V (L). They can be regarded as the mean and
variance of the SNR expressed in (3). Hence, the limits of the
probability-guaranteed interval of the SNR at a confidence
level of α are given as follows:[

sL+1 − Zα/2 ·
√
vL+1, sL+1 + Zα/2 ·

√
vL+1

]
, (10)

where Zα/2 is the (α/2)-th quantile of the standard Gaussian
distribution.

The IEEE 802.15.4 standard adopts the O-QPSK modu-
lation method. The mapping function between the SNR and
PRR is defined as reported in [24]:

PRR = f (SNR) =
(
1− Q

(√
2× 10SNR·BN /R/10

))l
, (11)

where BN denotes the noise bandwidth of the WSN
transceiver in kHz, R is the data communication rate in kbps,
Q(.) is the tail integral of a unit Gaussian probability density
function, and l is the packet length in bits.

The limits of the probability-guaranteed interval of the
PRR at a confidence level of α are given as follows:[
f
(
sL+1 − Zα/2 ·

√
vL+1

)
, f

(
sL+1 + Zα/2 ·

√
vL+1

)]
,

(12)

where the function f (·) is defined as shown in (10) and Zα/2 is
the standard score of the Gaussian distribution for α/2.

FIGURE 2. Measured SNR data for a 10 m inertial distance: (a) SNR series,
(b) decomposed time-varying nonlinear series (TVN), (c) decomposed
non-stationary random series (NSR), and (d) variance series for the NSR
part.

V. EXPERIMENT
In this section, we evaluate the proposed WNN-LQE algo-
rithm via real-world experiments performed at a power
substation.

A. VERIFICATION OF THE ESTIMATION RESULTS
Ten TI CC2530 WSN transceiver nodes were used in the
experiment. All the nodes operated on channel 26 in the
2.4 GHz ISM band, as defined in the IEEE 802.15.4 standard.
A packet was sent from one node to another every 300 ms.
Each packet was 20 bytes in size, which included 3 bytes
for recording the packet serial number. When a receiver node
received a packet, it recorded the received signal strength
and the packet serial number (used to compute the software-
based PRR for comparison purposes). Then, it measured
the background noise (for calculating the SNR as expressed
in (2)). All the datawere recorded and decomposed; then, they
were used to train the neural network and used for testing in
MATLAB.

During the SNR data collection process, intentional
obstructions were imposed to modify the radio link quality.
Fig. 2(a) and Fig. 3(a) show the measured SNR data and the
results computed using the decomposition algorithm for two
WSN links (the separation distances for these radio links are
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FIGURE 3. Measured SNR data for an 80 m separation distance: (a) SNR
series, (b) decomposed time-varying nonlinear series (TVN),
(c) decomposed non-stationary random series (NSR), and
(d) variance series for the NSR part.

10m and 80m). Using (5), themeasured SNR series (Fig. 2(a)
and Fig. 3(a)) were decomposed into a time-varying nonlinear
part and a non-stationary random part, where W = 20 and
L = 55. As analyzed in Section III B, both time-varying
nonlinear parts (Fig. 2(b) and Fig. 3(b)) vary over time and
nonlinearly. The non-stationary random parts (Fig. 2(c) and
Fig. 3(c)) are random with a mean of nearly zero. We further
calculated the variances of the non-stationary random series
using (6) for these two links (K = 20). The results are
presented in Fig. 2(d) and Fig. 3(d), which show that in
both cases, the variances vary over time, as expected. These
results serve both to confirm the analysis in Section III B,
which indicated that the SNR can be decomposed into two
parts, and to verify the decomposition algorithm presented
in Section IV A.

The measured and calculated data shown in Fig. 2 and
Fig. 3 were used to train the weight coefficients πp1, p2
and ωp2, p3 (Fig. 1) for the two radio links. The weight
coefficients were then used to estimate the upper and lower
limits on the estimated SNR at the 0.95 confidence level
using our WNN-LQE algorithm. The measured SNR results
are shown in Fig. 4(a) and (b) for the separation distances
of 10 m and 80 m, respectively. The measured SNR results
are integer values because the measurement resolution of

FIGURE 4. The estimated confidence interval limits on the SNR at a level
of 0.95: (a) for the 10 m separation distance and (b) for the 80 m
separation distance.

the TI CC2530 is 1 dBm. As shown in Fig. 4, almost all
the measured SNR values fall into the interval between the
estimated upper and lower limits on the SNR. Quantitatively,
474 of the 500 measured SNR values fall within the esti-
mated interval in Fig. 4(a), and the same is true for 473
of the 500 values in Fig. 4(b). The corresponding propor-
tions are nearly equal to the prescribed confidence level of
0.95, thereby demonstrating that our WNN-LQE algorithm
can produce probability-guaranteed limits on the link quality
metric (the SNR) at a chosen confidence level.

B. COMPARISON OF LQE ALGORITHMS
We measured and estimated the SNRs for another link in the
same 10-node network with a separation distance of 50 m.
We compared the results of our WNN-LQE algorithm with
those of four other link quality estimation algorithms, includ-
ing the BP neural network-based LQE algorithm (BP) [28],
the Kalman filter based LQE algorithm (Kalman) [7],
the ARIMA-based LQE algorithm (ARIMA) [29] and XCo-
Pred [8]. A total of 2,500 samples were collected for the
experiments. The first 2,000 samples of the measured SNR
data were used for training and to compute the parameters
for all the algorithms, and the remaining 500 samples were
used to compare the estimation results. The settings for each
algorithm were as follows.

For the BP algorithm, the structure introduced in [28]
was adopted. The number of input neurons of the BP neural
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FIGURE 5. Measured SNR data and estimated results of the WNN-LQE, BP, Kalman, ARIMA and XCoPred algorithms: (a) overall estimation results,
(b) zoomed-in view of samples 65 to 85, (c) zoomed-in view of samples 250 to 270, and (d) zoomed-in view of samples 150 to 180.

network was 8, the number of output neurons was 1, and
the number of neurons in the hidden layer was 10. The
2,000 training samples were used to train the weight coeffi-
cients of the BP neural network. The trained parameters were
then used to estimate the SNR based on the 500 test samples.

For the Kalman algorithm, the state space model intro-
duced in [7] was adopted. The 2,000 training samples were
used to compute the process noise covariance matrix and the
measurement noise covariance matrix. The initial values of
the estimate covariance and the Kalman gain matrixes were
set equal to those of the identity matrix.

For the ARIMA algorithm, we used the 2,000 training
samples to compute the best values of the orders of the
autoregressive part and the moving-average part, using the
minimum Akaike Information Criterion (AIC), to construct
the corrected ARIMA model. Then, the ARIMA model was
used to estimate the link quality in one step.

For the XCoPred LQE algorithm, the 2,000 training sam-
ples were used as the training data. The covariance of the
Kalman filter in XCoPred was also computed based on the
training data. The query order and training data order were

both set to 20. The match threshold was set to 0.95. The
prediction order was 1.

Fig. 5(a) shows the link quality estimation results for
each tested method, from which we can generally observe
that almost all the estimated results of the BP, Kalman,
ARIMA andXCoPred algorithms and themeasured SNRs are
within the interval calculated by our WNN-LQE algorithm.
Fig. 5(b), (c) and (d) show zoomed-in views of Fig. 5(a) to
provide more details. From these figures, we can make the
following observations:

(1) When the link quality remains stable, as shown
in Fig. 5(b) (samples 65 to 85 in Fig. 5(a)), the Kalman
and XCoPred algorithms obtain better estimates (with
average estimation errors of approximately 0.25 dBm).
TheBP andARIMAalgorithms also performwell, with
average estimation errors of less than 0.8 dBm.

(2) When the SNR is increasing stably, as shown
in Fig. 5(c) (samples 150 to 180 in Fig. 5(a)),
the ARIMA and XCoPred LQE algorithms have lower
average estimation errors than the BP and Kalman
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FIGURE 6. SNR and PRR estimates vs. software-based PRR calculations:
(a) estimated SNR vs. measured SNR, (b) software-based PRR computed
for the last 20 packets, and (c) software-based PRR computed for the last
100 packets.

algorithms, and all the average estimation errors are
below 1 dBm.

(3) When the link quality fluctuates strongly, as shown
in Fig. 5(d) (samples 150 to 170 in Fig. 5(a)), although
the BP algorithm performs best, its average estimation
error is still large (4.4 dBm). The Kalman algorithm is
the worst, with an average estimation error of 5.9 dBm.
Moreover, with respect to the deviations from the aver-
age estimation error, the variances of the estimation
error for the BP, Kalman, ARIMA and XCoPred LQE
algorithms are 27.8, 54.5, 26.3, and 29.2, respectively.
These results indicate that the estimation results of
these LQE algorithms are unreliable when there are
strong fluctuations in the link quality.

As seen from Fig. 5(a)-(d), almost all the measured SNRs
fall between the upper and lower limits estimated using our
WNN-LQE algorithm; thus, we can conclude that our algo-
rithm yields more useful results than those of the other LQE
algorithms. Considering that WSN protocols require link
quality information to make decisions (such as routing deci-
sions) regarding important communication traffic (for exam-
ple, control commands) in smart grids and other industrial
applications, the practical usefulness of estimation results for
such purposes is more important than their accuracy.

C. COMPARISON OF THE PRR ESTIMATION RESULTS
In this experiment, we estimated the SNR (Fig. 6(a)) with
a 0.95 confidence level and transformed it into the PRR
via (11). We compared the results with software-based PRR
measurements (SPRR) and the results of the WMEWMA
PRR algorithm [9] (WPRR). Because the software-based
PRR depends on the window size used for the statistical
calculations, we computed the SPRR results for the previous
20 and the previous 100 packets based on the packet serial
numbers. The WPRR results were also computed for sliding
windows of 20 and 100 packets. The weight coefficient α was
set to 0.9.

Comparisons of the WNN-LQE PRR estimates with the
SPRR and WPRR results are shown in Fig. 6(b) and (c).
We can draw the following conclusions from Fig. 6:

(1) When the link quality degrades (samples 50 to 150 in
Fig. 6(a)), the estimated PRR determined by the
WNN-LQE algorithm can update rapidly to reflect the
changes in link quality.

(2) According to the serial numbers of the received pack-
ets, we computed the SPRR based on the last 20 pack-
ets (Fig. 6(b)). The results reflect the change in link
quality only after a packet is dropped, which adds
a slight lag to the change. The WPRR calculation
can smooth the SPRR results but cannot eliminate
the lag. The same phenomenon is also observed at
sample 480. For the 20-packet SPRR, the minimum
resolution is 1/20, which is obviously not accurate.

(3) To increase the minimum resolution to 1/100, we com-
puted the SPRR and WPRR results for the last
100 packets (Fig. 6(c)). The figure clearly shows that
the SPRR and WPRR results for 100 packets are much
smoother than those calculated using only 20 packets,
but the lag also increases (see samples 180 to 250 in
Fig. 6(b) and (c)).

(4) If we disregard the lag, the SPRR andWPRR results for
100 packets lie within the PRR interval estimated by the
WNN-LQE algorithm. This demonstrates the practical
usefulness and validity of our WNN-LQE algorithm.

VI. CONCLUSION AND FUTURE WORK
The tendency to adopt wireless communications in smart
grids has led to the emergence of new ideas and techniques
for improving QoS according to communication specifica-
tion requirements. More practically useful estimates of radio
link quality are required to enable the optimization of WSN
protocol designs. In this paper, through an analysis based on
the commonly used log-normal path-loss model, we show
that the radio link quality represented by the SNR can be
decomposed into two parts with different characteristics.
Then, a new link quality estimation method called WNN-
LQE is developed by separately processing the two parts to
obtain probability-guaranteed limits on the link quality. The
probability-guaranteed limits are more suitable than state-
of-the-art link quality estimation/prediction algorithms for
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describing the random features of a radio link and determin-
ing whether the link satisfies the requirements of smart grid
communication standards. Our study is expected to lead to
the development of protocols that can provide an end-to-end
reliability guarantee for smart grid applications. To this end,
we anticipate performing further research on the following
topics:
(1) Estimation of communication reliability for multi-hop

radio links in a mesh network
(2) Control of the transmission power of WSN nodes

according to the estimated results to guarantee
reliability

(3) Reduction of the computational complexity of the esti-
mation algorithm to make it easier to implement in
WSN nodes.
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