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ABSTRACT Via processing the computation intensive applications (apps) at the network edge, mobile edge
computing (MEC) becomes a promising technology to enhance the ability of the user equipments (UEs).
Most existing works usually focus on whether to offload or where to offload the apps under the premise
that sufficient resources are owned by the network edge. However, the demand heterogeneity of UEs and
the limitation of resources are usually failed to be considered. Since the limited resources may constrain the
number of accessed UEs, how theMEC service providers (SPs) choose the UEs to serve while ensuring UEs’
Quality of Service (QoS) is a key issue. Under this context, in this paper, we study the matching prob-
lem between the MEC SPs and the UEs in a multi-MEC and multi-UE scenario. Within this scenario,
MEC SPs are equipped with limited wireless and computational resources. Auction theory is utilized
to model the matching relationship between MEC SPs and UEs as the commodity trading. With this
trading, UEs can obtain MEC service from SPs, when they successfully purchase the combinational
resources (including computational and wireless resources) from SPs. To complete the auction process,
a multi-round-sealed sequential combinatorial auction mechanism is proposed. The properties of the auction
are proved and various simulation results are done to show that the proposed approach has better system
performance compared with the existing algorithms.

INDEX TERMS Mobile edge computing, computation offloading, MEC SP and UE matching,
combinational auction, demand heterogeneity.

I. INTRODUCTION
A. MOTIVATION
More and more resource-hungry applications like interactive
gaming, augmented reality and face recognition are running
on user equipments (UEs) [1]–[3]. Due to the physical size
constraint, the UEs are usually resource-constrained, having
limited computation capacity and battery life. As a result,
it is hard to implement these resource-hungry apps at the
UEs smoothly. To solve this problem, offloading the compu-
tation tasks to the cloud via wireless access is considered as
a promising approach.

Mobile Cloud Computing (MCC) can augment the capac-
ities of the UEs by offloading the computation tasks to a
centrally controlled cloud infrastructure. However, the public
clouds usually locate in remote location and higher trans-
mission latency maybe generated, and thus resulting in the
poor quality of experience (QoE). To tackle this problem,

the cloudlet based MCC is proposed, in which the UEs
offload the computation tasks to the cloud server via an one-
hope WiFi wireless access. In this way, the delay can be
shorten, however, the ubiquitous service and the QoS of the
large number of UEs cannot be guaranteed. To provide UEs
with more reliable service and conquer the disadvantage of
MCC and Cloudlet, MEC is proposed [4]–[6], which enables
computation offloading to the cloud server deployed at the
edge of the radio access networks (e.g. 3G/4G base station,
named as MEC SPs in this paper).

In recent year, studying the performance of computation
offloading in the MEC networks has attracted much attention
from researchers. However, in these works, the limitation of
resources is largely failed to be considered. Besides, demand
heterogeneity of the UEs is also ignored. Demand hetero-
geneity is defined as the demand differences between UEs.
For example, some of the UEs need a short latency for
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FIGURE 1. Combinatorial auction.

higher QoE (e.g. interactive gaming), some other UEs with
long latency tolerance may require more energy saving.
Under this context, to provide better computational capacity
to UEs, we should consider how to match MEC SPs with
limited resources to UEs.

B. CONTRIBUTION
In this paper, we consider a network scenario with multi-
ple MEC SPs and multiple UEs, where the MEC SPs are
equipped with limited wireless and computational resources.
Since MEC SPs are equipped with limited resources and
UEs have heterogeneous demands, the MEC network is ana-
logue to the real markets, where various participants trans-
act commodities under certain regulations and try to gain
profit. Among the best-knownmarket-based allocationmech-
anisms, auctions are outstanding on both perceived fairness
and allocation efficiency [7]. Therefore, in our work, it is
appropriate to apply the auction method to solve the matching
relationship between MEC SPs and UEs .

As shown in Fig. 1, four elements are indispensable in one
auction, which are seller, buyer, auctioneer and commodity.
A seller is the one who possess some commodities. A buyer
is the one who want to purchase the commodities to complete
their own tasks (we may use bidder as the synonyms for
"buyer" in this paper). Auctioneer acts as the executer to
perform the auction and decides the winners and the payment
to the seller. Commodity is the object traded between a buyer
and a seller, each commodity has a valuation, based on which
the buyer/seller agrees to buy/sell specified commodities.
In general, valuation is a monetary evaluation of assets, which
is an private information of the buyer/seller. In addition,
a buyer’s bid includes two parts: the requirements and the
bidding price for the resources.

When applying the auction to model the matching rela-
tionship between MEC SPs and UEs, the MEC SPs take the
role of the sellers and auctioneers, UEs act as the buyers.
The wireless and computational resources are regarded as
the commodities. To ensure UEs’ heterogeneous demands,
we adopt the combinatorial auction, in which one trading
can be successfully agreed when a bundle of resources are

allocated simultaneously to UEs. The bundle of resources
includes both wireless and computational resources, and dif-
ferent resource combinations can cover different require-
ments of UEs. When employing the combinatorial auction
mechanism, the following challenges emerges:

1) How to determine UEs’ valuation on the bundle of
resources;

2) How to choose the winners (the UEs that one SP will
serve) for the MEC SPs;

3) How to decide the final payment of UEs submitted to
the MEC SPs.

To conquer the above problems and select appropriate
MEC SPs for the UEs, we propose a MSSCA mechanism.
The mechanism is composed of three factors: the bid strategy,
winner determination and payment rule.With the bid strategy,
the UEs sequentially submit their bids and valuations on
the wireless and computational resources to the MEC SPs
based on their QoS requirements. A multi-round auction
mode is employed in case that the UEs misrepresent their
bids. In the winner determination process, a two-dimensional
Knapsack algorithm is used to determine whether the MEC
SPs serve the accessed UEs. And then based on the payment
rule, the final payments of UEs who win in the auction are
determined.

The main contributions of this paper are summarized as the
follows:
• To achieve efficient computation offloading, we study
the matching relationship in a network scenario with
multiple MEC SPs and UEs, where the MEC SPs
are equipped with limited wireless and computation
resources.

• Considering UEs’ demand heterogeneity, we select the
MEC SP that can satisfy both the wireless and compu-
tational resource requirements of UEs as the serving SP.
In addition, wemodel thematching relationship between
MEC SPs and UEs as the commodity trading process.

• We propose a multi-round sealed sequential combina-
torial auction (MSSCA) mechanism to match the MEC
SPs to UEs. This mechanism is composed of three
important parts: the bid strategy, winner determination
and payment rule.

The rest of this paper is organized as follows: In Section II,
some related works are shown about computation offload-
ing in MEC. In Section III the system model is described.
In Section IV, the problem is formulated and In Section V,
auction mechanism is designed. In Section VI some proper-
ties of the auction are proved. Various simulation results are
given in Section VII. In Section VIII, we conclude this paper.

II. RELATED WORK
In the MEC networks, computation offloading is a key tech-
nology which enables the mobile devices to execute resource-
intensive Apps on the MEC SPs. Much previous approaches
have been done in this area. In [8], authors present a survey
aboutMEC, revealing the open research challenges and future
directions. In [9], authors study the computation offloading
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FIGURE 2. The MEC network scenario with multi-SPs and UEs.

optimization schemes from a 5G perspective. The authors
in [10], [11] study whether to offload the tasks according
to the network cost consumption. The authors in [12], [13]
propose an optimization scheme considering the joint wire-
less and computational resources allocation. In [14], network
interference is regarded as an important in the computation
offloading scheme design. Considering saving the network
energy cost , an energy efficient resource allocation scheme
is studied for mobile edge computation offloading in [15].
The authors in [16] develop an online computation offloading
algorithm for a MEC system with energy harvesting tech-
nology. In the works of [17]–[19], the tradeoff between the
energy and latency spent for task transmission and computa-
tion is studied.

Game theory is useful tool for the computation offloading
scheme design. The authors of [20] formulate the offloading
decision problem as a game problem, and an algorithm is
design to achieve the Nash equilibrium.Manuscript [21] stud-
ies the computation offloading decision problem for multi-
UEs under a multi-channel interference environment, and
adopts a game theoretic approach to maximize the number
of UEs who offloaded computation tasks to the MEC.

III. SYSTEM MODEL
A. NETWORK MODEL
As illustrated in Fig. 2, we consider a MEC scenario with
K MEC SPs and N UEs, in which there is no central-
ized control entity. Each of the MEC SPs is equipped
with limited wireless resources and computational resources.
The wireless resources are quantified by the subchannels
while the computational resources are described in terms of
CPU cycles. We assume the resource status of MEC SP i
be the 4-tuple (Bi, bi,Ci, ci), where Bi and Ci are the total
number of channels and CPU cycles owned by a MEC SP i,
bi means the bandwidth of one single channel, and ci repre-
sents the time duration of one CPU cycle. The SPs broadcast
their resource status periodically. After receiving SPs’ status
information, UEs can master the resource capacity of SPs.

EachUE has a different computation task to be offloaded to
the MEC SPs. The computation task of UE j can be expressed

by (fj, sj), where fj is the total number of CPU cycles required
to accomplish the computation task, sj denotes the size of
the task, which is related to the program codes and the input
parameters. To finish one computation task smoothly, both
the wireless and computational resources are required, where
the wireless resources is used for task transmission while the
computational resource is responsible for task computation.
Based on this description, the matching of MEC SP and UE
is equalized to the allocation of wireless and computational
resources to UEs.

B. COMPUTATION OFFLOADING COST MODEL
In this section, we will introduce the computation offloading
cost model in detail.

We assume that UEs intend to offload the computation
tasks to the MEC SPs when the function of (1) and (2) are
satisfied. The two functions mean that the cost generated by
the local task computation at the UE is larger than the cost
consumed by offloading the task to the network edge. Denote
tj and ej be the overall delay and energy consumption when
the task is executed remotely at the MEC SP, then we have:

tj ≤ tj (1)

ej ≤ ej (2)

where tj and ej mean the cost of delay and energy consump-
tion when the task is computed locally at the UE.

For tj and ej, we have

tj = t tj + t
e
j

=
fj
ci
+
sj
rj

(3)

ej = Pjt tj (4)

where Pj is the transmission power of UE j. t tj and t
e
j denote

the transmission and execution delay of the task, respec-
tively. fj is the number of CPU cycles required by UE j.
rj = bijlog2(1 +

Pjhij
N0

) denotes the transmission rate of UE j.

bij represents the channel bandwith allocated to the UE.
hij denotes the channel gain between UE j and MEC SP i,
N0 denotes the background noise power.
For tj and ej, we have:

tj = t lj (5)

ej = elj (6)

where t lj and e
l
j denote the task computation delay and energy

consumption when the task is performed locally.

t lj =
fj
F lj

(7)

elj = Plj fj (8)

where F lj is the local computational rate of UE j, and

Plj = 10−11F lj is the energy consumed per CPU cycle [22].
The number of required channels bandwidth bij can be

figured out from the expression of bij =
rj

log2(1+
Pjhij
N0

)
. And
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then the number of the requested subchannels mij can be
expressed by:

mij = d
bij
bi
e (9)

where ‘de’ is the ceiling function.

C. VALUATION AND BIDDING PRICE
We will discuss the valuation and bidding prices for the
heterogeneous resources in this section. In an auction, the val-
uation is the maximum price that one UE is willing to pay for
the commodities, which also means UEs’ preference to the
resources. This parameter is privately to the UE.

It is more reasonable to value the resources according
to UEs’ performance improvement when utilizing these
resources. Let vbj (q) be the valuation of q(1 ≤ q ≤ B) con-
tiguous subchannels of UE j. Since the maximum throughput
function is a concave non-decreasing function to the channel
width, we define the valuation function of channels similarly
to work in paper [23]:

vbj (x)

x
≥
vbj (y)

y
, ∀j ∈ N , 1 ≤ x ≤ y ≤ B (10)

where vbj (x) and vbj (y) denote the valuation of UE j on x
contiguous and y contiguous channels.

Define the valuation function of computation resources as
a linear function to the number of CPU cycles, the function
can be denoted as:

vcj (x)

x
=

vcj (y)

y
, ∀j ∈ N , ∀x, y ∈ {1, 2, . . . ,Ci} (11)

where vcj (x) and v
c
j (y) denote the valuation of UE j on com-

putational resources with x and y CPU cycles.
The bidding price of UE j on wireless and computation

resources can be defined as the following:

pbj (x)

x
≥

pbj (y)

y
, ∀j ∈ N , ∀x, y,

s.t. 1 ≤ x ≤ y ≤ B (12)
pcj (x)

x
=

pcj (y)

y
, ∀j ∈ N ,

∀x, y ∈ {1, 2, . . . ,Ci} (13)

where pbj (x) and pbj (y) denote the bidding price of UE j

when x and y contiguous channels are required, and pcj (x)
and pcj (y) denote the bidding price for computational
resources of x and y CPU cycles.

IV. PROBLEM FORMULATION
In this section, we address the following problem: how to
select the appropriate MEC SPs for UEs while achieving
the maximum utility under the restriction of the limited
resources.

Define the SP-UE matching matrix as X = {xij}K×N ,
where xij ∈ {0, 1} is the indicator revealing whether
MEC SP i can serve the UE jwith a bundle of resources. If the

resource requirement of UE j can be satisfied by MEC SP i,
then we have xij = 1, otherwise, xij = 0. Thematchingmatrix
must satisfy the following constraint:

K∑
i=1

xij ≤ 1, ∀1 ≤ j ≤ N (14)

which ensures that one UE can only be served by at most
one MEC SP.

If UE j is allowed to be served by MEC SP i,
then the UE should pay pbij + pcij to MEC SP i.
Thus the utility of MEC SP i, gained from selling resources
to UE j can be given by:

Uij = xij(pbij + p
c
ij) (15)

The overall utility of MEC SP i can be denoted as the
follows:

Ui =
N∑
j=1

Uij (16)

According to the analysis above, our SP-UE matching
problem can be formulated as the following:

max Ui, ∀i ∈ K (17)

Considering the limitation of resources on each MEC SP,
we have the following constraints:

N∑
j=1

xijmij ≤ Bi, ∀i ∈ K (18)

N∑
j=1

xijfi ≤ Ci, ∀i ∈ K (19)

The optimization problem (16) is actually a 2-dimensional
0-1 knapsack problem that can be solved using dynamic
programming [24].

V. THE MULTI-ROUND SEALED SEQUENTIAL
COMBINATORIAL AUCTION
In this section, we design a multi-round sealed sequential
combinatorial auction (MSSCA)mechanism to solve the pro-
posed problem.

A. AUCTION DESIGN
The auction is an efficient method for the resource allocation
problem, in which the allocation efficiency can be achieved
by the market competition. When applying the auction theory
to solve our matching problem, the MEC SPs act as the
sellers and auctioneers while the UEs act as the buyers.
MEC SPs who own the wireless and computation resources
want to lease out these resources to UEs. The UEs intend to
buy the resources from the MEC SPs and complete the task
computation. When a commodity trading is agreed between
one MEC SP and one UE, the UE should pay monetary
payment to the SP. The payment is decided by the auctioneer.
To guarantee the utility for UEs, the final payment should not
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exceed the valuation of the UE. For the SPs, they have the
responsibility for providing smooth computation offloading
service to the UE via allocating channels and CPU cycles.

Considering the characteristics of the matching problem,
our auction design should follow the rules below:

1) This auction is a combinational auction.
2) This auction is a multi-round auction.
In the MEC networks, computation offloading includes a

communication procedure to transmit the computation task
to the network edge and a computation process to execute
the task. And thus, to complete the computation task, the
UEs need both the wireless and computation resources. One
trading in the auction can be agreed successfully between
MEC SPs and UEs when both the two kinds of resources
required by UEs are satisfied. Under this circumstance, our
auction falls into the scope of combinatorial auction.

Moreover, we design our auction as a multi-round auc-
tion. According to the difference of the bidding behaviors,
auctions can be divided into two categories: one-round and
multi-round auction [7]. In one-round auction, all the bidders
submit their bids simultaneously, and the auctioneer deter-
mine the winners and match the appropriate buyers to the
sellers. The one-round auction is not suitable for our multiple
MEC-SP network scenario [25]. On one hand, in the one-
round auction, the bidder can’t decide from which seller the
commodities can be bought. On the other hand, the one-round
auction requires a central controller or coordination among
the sellers, which is not practical for our network with multi-
ple MEC SPs and UEs without a centralized controller. Thus,
the multi-round auction is applied to our auction design.

B. AUCTION MECHANISM
According to the analysis above, the process of the

MSSCA mechanism is shown in algorithm 1.
We define the maximum rounds of the auction be R.

At each round, UEs perform Bid Submission firstly. They
submit their resource requirements and bid vectors to all
neighboringMECSPs. After receiving the vector information
from UEs, the MEC SPs perform the step of Winner Deter-
mination, checking their local wireless and computational
resources and calculating the utilities. In this step, the UEs
allowed to be served by the MEC SP are determined. In each
round of auction, some UEs with lower bids will fall into
the loser vector 2, where no UEs are served by the current
MEC SPs. To make itself more competitive for other MEC
SPs, the UE failed to be served in the last round of auction
will improve the bidding price in the next round. The auction
algorithm stops when the difference between the utilities of
the current round and last round is below the threshold 1
or the algorithm implementation rounds has achieved to the
maximum number.

From the algorithm, it is obvious that three sub-processes
plays an important role: the bidding strategy, winner deter-
mination and payment rule. The users’ bidding strategy is
designed as a multi-round mode. The winner determina-
tion is to determine which of the UEs can be served by

Algorithm 1 Multi-Round Sealed Sequential Combinatorial
Auction Algorithm
1: Input:

UEs’ resource requirement and bid vector
{mij, nij, pbij, p

c
ij};

i ∈ {1, . . . ,K }, j ∈ {1, . . . ,N };
SPs’ Status {Bi,Ci}, i ∈ {1, . . . ,K };

2: 2 = 1, . . . ,N ;
3: Utemp = 0 ;
4: for r = 1, · · · ,R do
5: Bid Submission
6: UEs submit their resource requirement and bid vec-

tor to their preferred MEC SPs according to Bidding
Strategy.

7: Utemp =
∑K

i=1 U (i)
8: Winner Determination
9: for j = 1 : N do

10: for i = 1 : K do
11: x = oji;
12: (U (x),X ,2) = Knapsack(x);
13: if xij = 1 then
14: Uij = xij(pbij + p

c
ij);

15: U =
∑K

i=1 U (ij);
16: 2 = 2− {j};
17: end if
18: end for
19: end for
20: if Utemp − U < 1 then
21: Auction complete ;
22: Break;
23: end if
24: Bid Improvement based on Algorithm2 (int j+ 1);
25: end for
26: Output: Matching matrix X , payment P, utility U

the MEC SPs. As to the payment rule, it intends to calculate
the final price of UEs payed to the MEC SPs, while guaran-
teeing the properties of the auction. In the following, we will
describe them in detail.

1) BIDDING STRATEGY
Each UE sorts the MEC SPs according to the distance
between the UE and MEC SPs. Denote the MEC SP pri-
ority vector for UE j be Oj = (oj1, oj2, . . . , ojK ), where
∀ojk ∈ {1, 2, . . . ,K } shows that MEC SP k is the k th SP
that preferred by UE j. In each round of the auction, the UEs
sequentially submit their bids to the MEC SPs in the priority
vector. When one MEC SP agrees to serve the UE, the bid
submission process will stop.

InMSSCA, since amulti-round auctionmode is employed,
i.e. the UEs can adjust their current bidding price according to
the results of the last round. In the next round of the auction,
the UEs that are not served in the last roundwill submit higher
bids to win the SP, the bid improvement will stop until the bid
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Algorithm 2 Bid Improvement

1: Input: user j’s current bidding price pbij, p
c
ij, the rising

degree α
2: Output: user j’s next bidding price pbij, p

c
ij

3: Bid Improvement for wireless resources
4: if pbij ≤ v

b
j then

5: pbij = pbij + α ∗ p
b
ij

6: if pbij ≥ v
b
j then

7: pbij = pbij
8: end if
9: else
10: pbij = pbij
11: end if
12: Bid Improvement for computational resources
13: if pcij ≤ v

c
j then

14: pcij = pcij + α ∗ p
c
ij

15: if pcij ≥ v
c
j then

16: pcij = pcij
17: end if
18: else
19: pcij = pcij
20: end if

achieves UE’s valuation on the resources. The bid improve-
ment process is shown in algorithm 2. Within this algorithm,
the bid will update by function pbij = pbij + α ∗ p

b
ij, where

α denotes the step length of each improvement. This param-
eter is related to the convergence speed of the algorithm.

2) WINNER DETERMINATION
The goal of the winner determination algorithm is to decide
whether one MEC SP intends to serve the UE.

When UE j bids to MEC SP i, the SP figures out its own
utility according to step 5 in Algorithm 3. As noted, we com-
pare the utility of UE jwith that of UE j−1. If the former is no
higher than the latter, i.e. U (i, j, b, c) ≤ U (i, j− 1, b, c), then
we have xij = 0 and UE j is moved to the loser vector 2
(2 denotes the vector of the losers who failed to obtain
service from the SP), otherwise, xij = 1, UE j − 1 is moved
to the loser vector α. In the next auction round, the UEs in2
will bid iteratively to the next SP for computation service.

3) PAYMENT RULE
The final price paid by the winners is determined by the
payment scheme. The design of this part directly deter-
mines the properties of the auction mechanism. A carefully
designed payment scheme can guarantee the truthfulness of
the auction. An auction should be constructed while the price
paid by the player is independent of his own bids (William
Vickrey, 1961) [26]. Considering this, we adopt the
sealed second price auction, in which the winner chooses
the second high bidding price as the payment.

Denote the winners served by MEC SP i in the k th round
of auction be Nk = {1, 2, . . . ,Nk}, where Nk ≤ N denotes

Algorithm 3 Knapsack Algorithm

1: Input: user j’s bid (mij, nij, pbij, p
c
ij),U (i, j,Bi,Ci)

2: Output: Selection matrix X , Utility U , Losers group 2
3: for b = 1, · · · ,Bi do
4: for c = 1, · · · ,Ci do
5: U (i, j, b, c) = max{U (i, j− 1, b, c),U (i, j− 1, b−

mij, c− nij)+ pij}
6: if U (i, j, b, c) ≤ U (i, j− 1, b, c) then
7: x(i, j) = 0
8: 2 = 2 ∪ {j− 1}
9: else
10: x(i, j) = 1
11: 2 = 2 ∪ {j}
12: end if
13: end for
14: end for
15: return U (i, j,Bi,Ci),X ,2

the number of the winners. We calculate the payment for
channels and CPU cycles, respectively. For the channels,
we group the winners by vector Gb = {gb1, g

b
2, . . . , g

b
m},

where m < Bi is the number of the winner groups and |gbx |
denotes the number of winners in the x th group. The winner
groups in Gb should satisfy the following relationship:⋃

1≤x≤m

gbx = Nk , (20)

which means that all the winners are involved.

gbx ∩ g
b
y = ∅, ∀g

b
x , g

b
y ∈ G

b
∧ x 6= y, (21)

Which means that no winner can emerge in multiple groups.
The bidding price of gbx can be defined as:

pbx = (pbx1, p
b
x2, . . . , p

b
x|gx |), (22)

where pbxi denotes UE’s bidding price for the channels.
Assume that the bidding price of the winners for the channels
in each group are sorted in a descending order:

pbx1 ≥ p
b
x2 ≥ . . . ≥ px|gx |b (23)

According to the sealed second-price design, the payment
of UE i for the channels in group gbx is given by:

pbxi = pbx(i+1). (24)

For the CPU cycles, it has the similar payment determina-
tion process to the payment of channels.

VI. PROOF OF PROPERTIES
In this section, we prove the properties of the proposed auc-
tion, which are given in the following definitions and lemmas.
Definition 1: Individual rationality, the utility of the sell-

ers and buyers should be no less than zero.
Definition 2: Budget balance, the gain of the auctioneer

should be no less than zero, i.e., the overall charges from the
buyers can’t exceed total payments to the sellers.
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Lemma 1: The multi-round sealed sequential combinato-
rial auction is individual rational.

Proof: As described in expression (16), the utility of
the MEC SP is the total payments from the winning UEs.
For the UEs, who are not served by MEC SPs, their utilities
are 0. When the UE participates in the auction and wins, this
UE pays for the channels and CPU cycles with the second
higher bidding price, and thus the utility of UE should be
not less than 0. Since the utilities of all the participants and
MEC in the auction are non-negative, the proposed auction is
individual rational.
Lemma 2: The multi-round sealed sequential combinato-

rial auction is budget balance.
Proof: As said before, the seller takes the role of the

auctioneer. As shown in expression (15), the overall payments
to the seller are equal to the total charges from the buyers.
Hence, the proposed auction is budget balance.

VII. SIMULATIONS
In this section, we evaluate the performance of the
proposed auction mechanism by numerical simulation
results.

A. SIMULATION SETUP
We consider the scenario where the MEC SPs and UEs are
randomly deployed in the area. The number of channels and
CPU cycles are randomly chosen from {20, 30, 40}, the min-
imum separable unit of channel bandwidth and CPU cycles
are 15kHz and 5GHz respectively. The transmission power is
Pj = 1.5W and the background noise isN0 = −60 dBm [27].
And we set the channel gain be hij = l−αij , where lij denotes

the distance between MEC SP i and UE j. α = 4 denotes the
pass-loss exponent [28].

For the computation task, the data size is randomly cho-
sen from [100, 1000]KB, and the total number of CPU
cycles fj of the computation task is randomly chosen from
[200, 1000] megacycle. The local computation capacity F lj of

a UE is randomly assigned from the set of {1, 1.5, 2} GHz.
For UE j’ valuation, we first generate a unit valuation within
[5, 10], and then give the valuations of the set of channels
and the bundle of CPU cycles separately according to the
expression (10) and (11). The initial bidding price is a half
of the task valuation.

B. SIMULATION RESULTS
In simulation, we first study the convergence of the pro-
posed algorithm MSSCA and then compare the performance
of MSSCA to the candidate algorithms: One-shot Sealed
Sequential Combinatorial Auction (OSSCA) and Random
Sealed Combinatorial Auction (RSCA). OSSCA is an one-
round auction, and within RSCA,MEC SPs randomly choose
the winners under the condition that limited resources are
owned by the MEC SPs. The simulation results are presented
from Fig. 3 to Fig. 10.

Fig. 3 and Fig. 4 show the utility and the number of winners
for MSSCA when the number of UEs are different, where

FIGURE 3. The utility of MSSCA.

FIGURE 4. The winner number of MSSCA.

N = 100, N = 250, N = 400. The number of MEC SPs is
set to be 3.

In Fig. 3, it shows that the lines increase with the increment
of the number of UEs. When the number of UE becomes
larger, the increment rate becomes slower. Finally, the rise
is very small and the lines approach stable, which also means
our proposed algorithm can achieve convergence. When the
number of UEs is higher, MEC SPs can gain higher utility.
This is because the utility ofMEC SPs is the overall payments
of UEs. More UEs exist in the network, a larger number of
UEs can be served, which further leads to higher utility of
MEC SPs.

In Fig. 4, the lines reveal how the number of winners
varies as the number of auction rounds increases. Firstly
the lines decrease with a higher gradient, after reaching the
bottom, the lines increase and finally achieve to a stable value.
The variation of lines shows that the auction rounds should
be set big enough to make the proposed algorithm achieve
convergence.

Fig. 5 and Fig. 6 describe the utility and the number of win-
ners under three different algorithms, the MSSCA, RSSCS
and OSCA. As we can observe that the MSSCA and OSSCA
perform better than RSCA, that is because the RSCA choses
the winners in a random way.
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FIGURE 5. The utility variation under the algorithm of MSSCA, OSSCA
and RSCA.

FIGURE 6. The winner number variation under the algorithm of MSSCA,
OSSCA and RSCA.

In Fig. 6, the number of winners obtained by MSSCA
and OSSCA are almost the same. The proposed MSSCA
algorithm obtains a higher utility than OSSCA when the
number of UEs is big enough. When the number of UEs is
big, UEs should compete for the limited resources for the task
computation. The MSSCA is able to select UEs that provide
higher utiltiy. When the number of UEs is small, the utility
obtained by MSSCA is almost the same as that obtained
by OSSCA. That is because all the UEs can be served by
the MEC SPs and there is little difference between the line
depicted by the MSSCA and the one depicted by the OSSCA.

Fig. 7 and Fig. 8 compare the utility and the number of
winners generated by three different algorithms, which are
MSSCA, OSSCA and RSCA, respectively. The number of
UEs is set to be N = 200. As we can see, MSSCA and
OSSCA perform better than RSCA in the terms of the number
of winners and the utility.

In addition, the utility lines of the three algorithms increase
as the number of MEC SPs becomes larger. The increasing
rate becomes slower and the lines become stable when the
number of MEC SPs is larger. This happens due to the limita-
tion of network resources. When the number of MEC SPs is

FIGURE 7. The utility variation versus the number of MEC SPs under the
algorithms of MSSCA, OSSCA and RSCA.

FIGURE 8. The winner number versus the number of MEC SPs under the
algorithms of MSSCA, OSSCA and RSCA.

small, the resources are limited and only part of the UEs can
be served. The resources become sufficient when more MEC
SPs are deployed. And meanwhile, more UEs can be served
and the utility is improved. When the number of MEC SPs
is big, enough resources are provided to all the UEs and the
utility can be no more improved.

The lines of Fig. 7 And Fig. 8 have the same increment
tendency. In Fig. 8, the number of winners obtained by
MSSCA and OSSCA are almost the same, and both the
two lines increase when the number of MEC SPs improves.
The improvement of lines is also influenced by the resource
limitation.

Fig. 9 and Fig. 10 show the number of winners in each
MEC SP under the algorithm of OSSCA and MSSCA.
In Fig. 9, utilizing OSSCA, we can see that MEC SP 1 serves
more UEs than MEC SP 2 and 3. In Fig. 10, after perform-
ing MSSCA, the number of winners in the three MEC SPs
are almost the same. From comparing the two figures, it is
obvious that our proposed MSSCA is able to provide better
fairness to MEC SPs than that of OSSCA, which also means
that the proposed MSSCA can highly utilize the network
resource and avoid load imbalance.
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FIGURE 9. The number of winners of three different MEC SPs
under OSCCA.

FIGURE 10. The number of winners of three different MEC SPs
under MSCCA.

VIII. CONCLUSION
In this paper, we study the computation offloading in a
multi-MEC and multi-UE scenario, where MEC service
providers (SPs) are equipped with limited wireless and com-
putation resources. We utilize auction model to describe the
serving relationship between MEC SPs and UEs, where SPs
and UEs are regarded as sellers and buyers, the resources
of SPs are deemed as commodities. UEs can obtain service
from SPs when SPs have sufficient resources while UEs can
successfully purchase resources from SPs. To describe this
process, we propose a multi-round sealed sequential com-
binatorial auction (MSSCA) mechanism. This mechanism
is composed of three important parts: users’ bid strategy,
winners determination and the pricing process. The users’
bid strategy is designed based on a multi-round priority rule,
the winner determination process is formulated as a two-
dimensional Knapsack problem while the pricing process is
modeled according to UEs’ resource requirements. We also
prove the properties of the auction and utilize various simu-
lation results to show that the proposed approach has better
performance compared to the existing algorithms.
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