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ABSTRACT This paper focuses on the problem of blind separation of sources mixed by multi-input multi-
output finite impulse response channels, which is also called convolutive blind source separation (BSS) in
short. This problem has been intensively studied in the context that the sources possess certain favourable
properties, such as independence and sparsity. However, these properties may not exist in some practical
applications. In this paper, we propose a precoding-based convolutive BSS method, which can deal with
mutually correlated sources without requiring the sources to be sparse. It is also applicable to mutually inde-
pendent sources. In the proposed method, the sources are preprocessed in transmitters prior to transmission
by order-one precoders. At the receiving side, the second-order statistics of the sources and the Z -domain
features of the precoders are exploited to estimate the coded signals, from which the sources are recovered.
Simulation results demonstrate the effectiveness of the new convolutive BSS method.

INDEX TERMS Blind source separation, correlated sources, MIMO FIR system, Z-domain precoding.

I. INTRODUCTION
Blind source separation (BSS) aims to recover multiple
source signals mixed by an unknown system only from their
mixtures. It requires no or little prior knowledge of the
sources and the mixing system. It is a fundamental problem
arising from a wide range of applications such as digital
communications, speech identification, biomedical image
processing and remote sensing [1]–[3]. Convolutive BSS is a
type of BSS problem where the mixing system is with reflec-
tions [4]. In this paper, we limit our attention to the multi-
input multi-output (MIMO) finite impulse response (FIR)
system, which is a widely used system model in wireless
communications.

Most existing convolutive BSS methods are designed
under the framework of independent component analy-
sis (ICA), aiming to recover the independent components
from the observed mixtures. In [5] and [6], the con-
volutive BSS problem is treated as a joint-approximate-
diagonalization (JAD) problem in frequency domain by
exploiting the independency and quasi-stationarity of the
source signals. Specially, it is assumed that the second-order
statistics (SOS) of each source varies slowly within a spe-
cific time length (an ‘‘epoch’’) such that over an epoch,

the source can be considered approximately stationary, but
non-stationary in different epochs. In [7], the sources are
required to be mutually statistically independent and suffi-
ciently sparse in frequency domain, namely, the supports of
all sources in frequency domain are mutually disjoint [8].
In [9], a convex geometry-based method combined with
the technique of non-negative matrix factorization (NMF)
is introduced to deal with both linear and convolutive
BSS problems. This method not only requires the sources to
be uncorrelated and quasi-stationary, but also their SOS fea-
tures to be local dominant, i.e., there exist some time instants
at which the SOS features of all sources are dominated by
only one source.

In spite of the fact that the condition of indepen-
dent or uncorrelated sources holds in many applications,
spatially correlated sources are also encountered in prac-
tice. For example, in a wireless sensor network, in order
to provide high reliability in face of the failure of individ-
ual sensors, and/or facilitate superior spatial localization of
objects of interests, some wireless sensors could be densely
deployed [10], [11]. As a result, signals observed by these
spatially proximal sensors are highly correlated and their
cross-correlations are unknown. Besides, if each sensor is
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equipped with a video camera, the wireless sensor network
becomes a wireless video surveillance system. It is known
that images which look irrelevant are often mutually corre-
lated [12]–[14]. The scenario of mutually correlated signals
can also be found in MIMO wireless relay systems [15].
Unfortunately, most traditional convolutive BSS methods are
unable to separate mutually correlated sources and this prob-
lem has not been fully resolved yet.

Recently, the hypothesis of mutual independence of the
sources in ICA has been replaced with a weaker domain
separability assumption [16]. It is shown that given a set
of nondegenerate sources with bounded support, the convex
hull of the support of the joint density of sources can be
written as the Cartesian product of the convex hull of the
supports of the individual source marginals. Note that this
domain separability assumption is a necessary but not suf-
ficient condition of ICA, which means ICA can be treated as
a special case for bounded sources [17]. Based on this frame-
work, which is called bounded component analysis (BCA),
several algorithms have been proposed for linear blind extrac-
tion of bounded sources [18], [19]. More recently, some
BCA-based algorithms for convolutive BSS have been
developed [20], [21], where the sources can be indepen-
dent or dependent (even correlated) but must satisfy the
domain separability assumption.

Different from the methods in [20] and [21], we propose
to tackle convolutive BSS for both spatially independent and
correlated sources via precoding. The concept of precoding-
based BSS was first proposed in [22], where the sources were
assumed to be mixed linearly and simultaneously. In [22],
a set of precoders are applied to the correlated source sig-
nals in such a way that the coded signals had zero cross-
correlations at some time lags. Then the time-domain features
of the coded signals were exploited at the receiving side
to separate the coded signals from the measured mixtures.
However, the order of the precoders used in [22] is almost
four times as big as the number of the sources. The method
in [15] reduces the order of precoders to two, regardless
of the number of sources. This leads to considerable delay
reduction in data transmission and simplifies the implemen-
tation of the precoders in practical systems. Nevertheless,
both [15] and [22] can only deal with instantaneous BSS.

In this paper, we propose a precoding-basedmethod to sep-
arate sources mixed by MIMO FIR channels. In the proposed
method, each source is filtered by an order-1 precoder prior to
transmission and then the coded signals are transmitted over
the MIMO FIR channel. At the receiving end, the SOS fea-
tures of the sources and the Z-domain characteristics of the
precoders are utilized to separate the coded signals and then
recover the original sources. Since this method is irrelevant
to the spatial relationship between the sources, it can deal
with both mutually independent and correlated sources. The
novel contributions of this new method include the abil-
ity of separating both independent and correlated sources,
lower computational cost due to the avoidance of calculat-
ing of many convolutions encountered in most time-domain

FIGURE 1. Block diagram of precoding-based MIMO FIR system model.

methods [23], [24] and no permutation alignment problem
suffered by most frequency-domain methods [5], [25].

The remainder of this paper is organized as follows.
Section II formulates the problem of precoding-based MIMO
FIR transmission together with a set of assumptions. The
new precoding-based convolutive BSS method is presented
in Section III. Its performance is illustrated in Section IV
by numerical simulations in comparison with other existing
methods. Some conclusions are drawn in Section V.

II. PROBLEM FORMULATION AND ASSUMPTIONS
The precoding-based MIMO FIR system is shown in Fig. 1.
The source signals are denoted as s1(n), s2(n), · · · , sI (n),
which are mutually correlated. Prior to transmission, they
are filtered by I precoders p1(z), p2(z), · · · , pI (z), respec-
tively. The coded signals x1(n), x2(n), · · · , xI (n) are transmit-
ted over a J×I MIMOFIR channel. Based on these notations,
the discrete-time channel system can be expressed as{

y(n) = H(z)x(n)+ w(n)
H(z) =

∑L
l=0H(l)z−l

(1)

where x(n) = [x1(n), x2(n), · · · , xI (n)]T is the coded signal
vector (or channel input vector), y(n) = [y1(n), y2(n), · · · ,
yJ (n)]T is the channel output vector, H(l) is the J × I
impulse response matrix of the MIMO FIR system with
l = 0, 1, · · · ,L, H(z) is the channel matrix, w(n) =
[w1(n),w2(n), · · · ,wJ (n)]T is the additive noise vector, and
the superscript T denotes transpose. Denote the degree of
the ith column of H(z) by Li, i = 1, 2, · · · , I , and
L = [L1,L2, · · · ,LI ]. Clearly, the degree of the channel
matrix is L = max{L1,L2, · · · ,LI }.

Define the ith precoder of order-1 by

pi(z) = 1− riz−1 (2)

where ri is the zero of the ith precoder pi(z). Then the ith
coded signal can be written as

xi(n) = pi(z)si(n) = si(n)− risi(n− 1). (3)

Letting s(n) = [s1(n), s2(n), · · · , sI (n)]T , the covariance
matrix of s(n) at time lag τ is

Rs(τ ) = E
(
s(n)s(n− τ )H

)
where E(·) denotes mathematical expectation and the
superscript H stands for complex conjugate transpose.
We assume in the sequel that

12418 VOLUME 5, 2017



L. Yang et al.: Precoding-Based Blind Separation of MIMO FIR Mixtures

1) There are more channel output signals than input sig-
nals, i.e., J > I ≥ 2, and the channel matrix H(z) is
irreducible and column-reduced [26].

2) The source signals s1(n), s2(n), · · · , sI (n) are zero-
mean, temporally white and mutually correlated,
namely, for any i, j = 1, 2, · · · , I ,r

s
ij , E

{
si(n)s∗j (n)

}
6= 0,

E
{
si(n)s∗j (n− τ )

}
= 0 with τ 6= 0.

(4)

3) The noise signals w1(n),w2(n), · · · ,wJ (n) are
zero-mean, temporally and spatially white, of equal
variance σ 2

w, and independent of the source
signals.

4) All the precoder zeros are distinct and satisfy
0 < |ri| < 1, i = 1, 2, · · · , I . They are known at
the receiver.

It is worth noting 4 implies that the precoders are reversible
by stable filters, thus the sources s(n) can be recovered from
the coded signals x(n). The ultimate objective of BSS is to
obtain x1(n), x2(n), · · · , xI (n) from y1(n), y2(n), · · · , yJ (n).
Then, based on the estimate of xi(n) and (3), one can recover
si(n) by

si(n) = xi(n)+ risi(n− 1), i = 1, 2, · · · , I . (5)

III. PROPOSED CONVOLUTIVE BSS METHOD
In this section, we will show how to utilize the SOS properties
of the sources and the Z-domain properties of the precoders
given in (2) to perform precoding-based convolutive BSS.

A. SYSTEM MODEL
In this subsection, the MIMO FIR model in (1) is at first
transformed into an instantaneous linear mixing model by
stacking the mixtures in the time domain as follows. Based
on the jth channel output yj(n), we define

ỹj(n) = [yj(n), yj(n− 1), · · · , yj(n−W + 1)]T (6)

where the slide-window width W is chosen to satisfy

W > L̄ ,
I∑
i=1

Li. (7)

Denote the (j, i)th entry of H(l) by Hj,i(l). From (1) and (6),
it follows

ỹj(n) =
I∑
i=1

Hj,ix̃i(n)+ w̃j(n), j = 1, 2, · · · , J (8)

with

w̃j(n) = [wj(n),wj(n− 1), · · · ,wj(n−W + 1)]T

x̃i(n) =


xi(n)

xi(n− 1)
...

xi(n− γi + 1)

 (9)

where γi , W + Li, and Hj,i is of size W × γi and given
by (10), as shown at the bottom of this page, with
i = 1, 2, · · · , I , j = 1, 2, · · · , J .
Denote

ỹ(n) = [ỹT1 (n), ỹ
T
2 (n), · · · , ỹ

T
J (n)]

T (11)

then

ỹ(n) =Hx̃(n)+ w̃(n) (12)

with

x̃(n) = [x̃T1 (n), x̃
T
2 (n), · · · , x̃

T
I (n)]

T (13)

w̃(n) = [w̃T
1 (n), w̃

T
2 (n), · · · , w̃

T
J (n)]

T

and

H =


H1,1 H1,2 · · · H1,I
H2,1 H2,2 · · · H2,I
...

...
...

...

HJ ,1 HJ ,2 · · · HJ ,I

 .
Under assumption 1 and according to (7), it is shown

in [27] that the matrix H has full column rank IW + L̄.
To estimate xi(n) from ỹ(n), one needs to find a JW × 1
separation vector ui that makes all elements of the row vector
uHi H zero except the k(i) ,

(∑i−1
l=1 γl + 1

)
th element, i.e.,

uHi H = [0, 0, · · · , 0︸ ︷︷ ︸∑i−1
l=1 γl

, ci, 0, 0, · · · , 0︸ ︷︷ ︸∑I
l=i γl−1

]

where ci 6= 0 and i = 1, 2, · · · , I . Then

x̂i(n) = cixi(n)

namely, xi(n) is estimated up to an unknown scalar. Once
x̂i(n) is obtained, the corresponding source signal si(n) can
be recovered by (5).

Hj,i =


Hj,i(0) Hj,i(1) · · · Hj,i(Li) 0 · · · 0 0

0 Hj,i(0) · · · Hj,i(Li − 1) Hj,i(Li) · · · 0 0
...

...
...

...
...

. . .
...

...

0 0 · · · 0 0 · · · Hj,i(Li) 0
0 0 · · · 0 0 · · · Hj,i(Li − 1) Hj,i(Li)

 . (10)
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B. ALGORITHM DEVELOPMENT
To proceed, let us consider the covariance properties of the
stacked observation ỹ(n) and its Z-transform. We start from
the additive noise w̃(n) in (12). Let II be an I × I identity
matrix, JI be an I × I Jordan matrix with the following form

JI =


0 0 · · · 0

1
. . .

. . .
...

...
. . .

. . . 0
0 · · · 1 0


and DIAG (A1,A2, · · · ,AK ) stand for a block diagonal
matrix, where A1,A2, · · · ,AK are the matrices along the
diagonal. Denote

JkI = JI × JI × · · · × JI︸ ︷︷ ︸
k

where k is a positive integer. According to assumption 3,
the covariance matrix of w̃(n) at time lag τ , defined as
Rw̃(τ ) = E

(
w̃(n)w̃(n− τ )H

)
, can be written as

Rw̃(0) = σ
2
wIJW , (14a)

Rw̃(τ ) = σ
2
w · DIAG(J

τ
W , J

τ
W , · · · , J

τ
W︸ ︷︷ ︸

J

),

if |τ | = 1, 2, · · · ,W − 1, (14b)

Rw̃(τ ) = 0, if |τ | ≥ W . (14c)

Then the denoised covariance matrices of ỹ(n) can be
obtained as follows. From (12) and assumption 3, the covari-
ance matrix of ỹ(n) at time lag τ can be expressed as

Rỹ(τ ) = E
(
ỹ(n)ỹ(n− τ )H

)
=HRx̃(τ )HH

+ Rw̃(τ )
(15)

where Rx̃(τ ) is the covariance matrix of x̃(n) at time lag τ .
Substituting (14a) into (15), it follows

Rỹ(0) =HRx̃(0)HH
+ σ 2

wIJW .

Since J > I andW > L̄, it is clear thatH is a tall matrix. This
implies that σ 2

w is the smallest eigenvalue of Rỹ(0) and thus
can be computed from Rỹ(0). As a result, one can construct
Rw̃(τ ) according to (14) and then remove the noise term from
Rỹ(τ ) to obtain

R̄ỹ(τ ) = Rỹ(τ )− Rw̃(τ ) =HRx̃(τ )HH . (16)

Based on (16), the Z-transform of R̄ỹ(τ ) can be obtained
as

Q̄ỹ(z) =
∞∑

k=−∞

R̄ỹ(k)z
−k
=HQx̃(z)HH (17)

where Qx̃(z) is the Z-transform of Rx̃(τ ).
In order to exploit the Z-domain features of the precoders

and the SOS properties of the sources, the mixing system
in (12) needs to be transformed into Z-domain. To proceed,
we define

s̃i(n) = [si(n), si(n− 1), · · · , si(n− γi + 1)]T (18)

and

s̃(n) = [s̃T1 (n), s̃
T
2 (n), · · · , s̃

T
I (n)]

T . (19)

Denote the covariance matrix of s̃(n) at time lag τ by Rs̃(τ ),
and the Z-transform of Rs̃(τ ) by Qs̃(z). Let

Pi(z) = diag(pi(z), pi(z), · · · , pi(z)︸ ︷︷ ︸
γi

), i = 1, 2, · · · , I

as a γi × γi diagonal matrix that has equal diagonal entries,
and

P(z) = DIAG(P1(z),P2(z), · · · ,PI (z))

then it holds that

Qx̃(z) = P(z)Qs̃(z)P((z
∗)−1)H . (20)

Substituting (20) into (17) yields

Q̄ỹ(z) =HP(z)Qs̃(z)P((z
∗)−1)HHH .

Therefore, we have

Q̄ỹ(ri) =HP(ri)Qs̃(ri)P((r
∗
i )
−1)HHH (21)

with i = 1, 2, · · · , I . According to assumption 4, it is clear
that the ith diagonal sub-matrix Pi(ri) in P(ri) is a zero matrix,
while all the other diagonal entries of P(ri) are nonzero.
Besides, no matter how i varies among {1, 2, · · · , I }, all
diagonal entries of P((r∗i )

−1) are nonzero.
Next we shall show that the separation vector ui can

be obtained by exploiting the properties of Q̄ỹ(ri), i =
1, 2, · · · , I , R̄ỹ(2) and R̄ỹ(0), respectively. First of all, let
us consider the feature of Q̄ỹ(ri). Since it is originated from
Qs̃(ri), we propose the following lemma about Qs̃(ri).
Lemma 1: The rank of Qs̃(ri) equals I with probability

one, for any i = 1, 2, · · · , I .
Proof: See Appendix A.

Second, to find the property of R̄ỹ(2), the structure of
Rx̃(2) needs to be investigated. According to (3), for any
i, j ∈ {1, 2, · · · , I },

rxij (τ ) , E
{
xi(n)x∗j (n− τ )

}
= E

{
[si(n)−risi(n− 1)][sj(n−τ )−rjsj(n−τ − 1)]∗

}
= (1+ rir∗j )r

s
ij(τ )− rir

s
ij(τ − 1)− r∗j r

s
ij(τ + 1).

Based on (4) in assumption 2, together with assumption 4,
it holds that for any i, j ∈ {1, 2, · · · , I },

rxij (0) =
(
1+ rir∗j

)
rsij 6= 0, (22a)

rxij (1) = −rir
s
ij 6= 0, (22b)

rxij (−1) = −r
∗
j r

s
ij 6= 0, (22c)

rxij (τ ) = 0, |τ | ≥ 2. (22d)

Rewrite Rx̃(2) in the form of block-matrix as

Rx̃(2) = E
{
x̃(n)x̃H (n− 2)

}
,


Rx̃(2){1}

Rx̃(2){2}
...

Rx̃(2){I }

 (23)
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where the ith sub-matrix of Rx̃(2), i.e., Rx̃(2){i}, is expressed
as

Rx̃(2)
{i} , [Rx̃i1 (2),Rx̃i2 (2), · · · ,Rx̃iI (2)]

=


E
{
x̃i(n)x̃H1 (n− 2)

}T
E
{
x̃i(n)x̃H2 (n− 2)

}T
...

E
{
x̃i(n)x̃HI (n− 2)

}T


T

. (24)

Then we have the following lemma with regard to Rx̃(2).
Lemma 2: The covariance matrix Rx̃(2) satisfies

c1) its k(i)th row vector is all-zero, i = 1, 2, · · · , I ;
c2) its remaining row vectors are linearly independent.

Proof: See appendix B.
Note that according to the proof of conclusion c2) in

Lemma 2, the condition number of the matrix made up
by the remaining row vectors of Rx̃(2), increases when
either the condition number of the covariance matrix of s(n)
increases or the zero of any precoder gets very close to the
origin. Therefore, the selection of the precoder zeros may
affect the performance of the proposed method, which will
be further discussed later in the simulation section.

Finally, based on the results in Lemma 1 and Lemma 2,
we propose the following source separation criterion.
Theorem 1: While the precoder zeros are distinct, ui is a

JW × 1 separation vector ensuring

uHi H = [0, 0, · · · , 0︸ ︷︷ ︸∑i−1
l=1 γl

, ci, 0, 0, · · · , 0︸ ︷︷ ︸∑I
l=i γl−1

] , cieHk(i) (25)

if and only if 
uHi R̄ỹ(2) = 0 (26a)

uHi Q̄ỹ(ri) = 0 (26b)

uHi R̄ỹ(0)ui 6= 0 (26c)

where ci 6= 0, ek(i) is an (IW + L̄) × 1 unit vector with the
k(i)th element being one and the others zero, i = 1, 2, · · · , I .

Proof: See appendix C.
Theorem 1 verifies that ui is the separation vector of

the ith coded signal if and only if ui satisfies (26). Note
that unlike the traditional frequency-domain convolutive
BSS algorithms, the proposedmethod does not lead to permu-
tation indeterminacy among the recovered sources in different
frequency bins. Denote U = [u1,u2, · · · ,uI ], then one can
use W = UHH to evaluate the performance of the proposed
method.
Remark 1: According to Lemma 2, the rank ofRx̃(2) is IW+

L̄− I . SinceH is of full column rank, the rank of
R̄ỹ(2) =HRx̃(2)HH is IW + L̄ − 1. Therefore,
there are JW − (IW + L̄− I ) = (J − I )W − L̄+ I
orthogonal vectors that satisfy (26a).

Remark 2: Obviously, the rank of Q̄ỹ(ri) is equal to the rank
of P(ri)Qs̃(ri). According to Lemma 1 and its
proof, the rank of P(ri)Qs̃(ri) equals I − 1. Thus,
there are ((J − I )W − L̄ + I )− (I − 1) = (J − I )

W − L̄ + 1 orthogonal vectors that satisfy (26a)
and (26b) at the same time.

Remark 3: It is important to notice that, in the subspace
spanned by the above (J−I )W−L̄+1 orthogonal
vectors, there exists at least one nonzero vector
that satisfies (26c). This is due to the fact that
H is a JW × (IW + L̄) matrix and of full
column rank, which implies that there are at most
(J − I ) × W − L̄ orthogonal vectors v that
make vHH = 0.

Remark 4: Although the sources are assumed to be mutu-
ally correlated in assumption 2, Lemma 1,
Lemma 2 and Theorem 1 still hold when the
sources are independent of each other. Hence,
the proposed method can be used to deal with
independent sources as well.

Based on the above lemmas and theorem, the proposed
method is summarized as follows:
Step 1: Obtain ỹi(n) by (6) and ỹ(n) by (11).
Step 2: Compute

Rỹ(τ ) ≈
1
N

N−1∑
n=0

ỹ(n)ỹH (n− τ )

where N is the sample number of observations and
the time lag |τ | = 0, 1, · · · ,W + L.

Step 3: Estimate the noise variance σ 2
w fromRỹ(0), construct

Rw̃(τ ) by (14), and obtain R̄ỹ(τ ) from (16).
Step 4: For each i = 1, 2, · · · , I ,

i) Find all the left singular vectors ξm corre-
sponding to the zero singular value of R̄ỹ(2).
According to Remark 1, m = 1, 2, · · · ,
(J − I )W − L̄ + I .
ii) Compute Q̄ỹ(ri) by

Q̄ỹ(ri) =
W+L∑

τ=−W−L

R̄ỹ(τ )r
−τ
i .

iii) From the subspace spanned by {ξm}, find
all of the orthogonal vectors ηn that satisfy
(26b),1 i.e., ηHn Q̄ỹ(ri) = 0. On the basis of
Remark 2, n = 1, 2, · · · , (J − I )W − L̄ + 1.
iv) Among the subspace spanned by {ηn},
choose the vectors that also satisfy (26c) as ui.

Step 5: Estimate the coded signals by

x̂i = uHi ỹ(n), i = 1, 2, · · · , I .

Step 6: Recover the source signals s1(n), · · · , sI (n) from
x̂1, x̂2, · · · , x̂I by (5), respectively.

IV. SIMULATIONS
This section presents experimental results to demonstrate the
effectiveness of the proposed method in comparison with
four existing algorithms, including two frequency-domain

1This can be done by following the approach in [22].
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algorithms and two geometry-based algorithms. The precoder
zeros are chosen as

ri = η expθi , i = 1, 2, · · · , I (27)

where η ∈ (0, 1),  =
√
−1 and θi is a random angle gen-

erated from uniform distribution U[0, 2π ]. Clearly, the selec-
tion of precoder zeros satisfies assumption A4).

The spatially correlated sources s(n) are generated as fol-
lows. Firstly, let ε1(n), ε2(n), · · · , εI (n) be I temporally white
sequences that are generated randomly from normal distribu-
tion N (0, 1). It is clear that these I signals are independent
of each other. Denote E(n) = [ε1(n), ε2(n), · · · , εI (n)]T .
Secondly, let C be an I × I symmetric matrix. Its diag-
onal entries are of value 1 and the absolute values of its
off-diagonal entries are less than 1. Denote the eigenvalue
decomposition of C by [V,D] = eig(C). Then the spatially
correlated source signals can be obtained by

s(n) = [s1(n), s2(n), · · · , sI (n)]T = (VD0.5VH )E(n).

Obviously, the covariance matrix Rs of s(n) equals C in the-
ory. In practice, Rs can be computed by Rs ≈ s(n)s(n)H/T ,
where T is the sample size of s(n) and Rs approximately
equals C if T is large enough. Clearly, the off-diagonal
entries ofRs (orC) indicate the degree of correlations among
s1(n), s2(n), · · · , sI (n).

A. PERFORMANCE OF CODED SIGNAL SEPARATION
As mentioned in Section III, the performance of separating
the coded signals can be measured by analysing the structure
of W = UHH. Here we use the mean interference rejection
level (MIRL) defined as follows [28], [29]

MIRLdB = 10log10

 1
I (I − 1)

I∑
i=1

IW+L̄∑
j=1
j 6=k(i)

E|(Wij)|2

E|(Wik(i))|2

 .
In this paper, the MIRL is computed and averaged over
150 independent runs, each one with an independent realiza-
tion of the channel and the sources.

Fig. 2 shows MIRL of the proposed method versus the
signal-to-noise ratio (SNR) while four kinds of MIMO FIR
systems are considered. In the first three systems, the channel
has I = 2 inputs and J = 3 outputs, and the channel order
is L = [1, 2], L = [2, 2], and L = [2, 3], respectively.
In the last system, I = 3, J = 4 and L = [1, 1, 2]. The
slide-window widthW is chosen as L̄ + 1, i.e.,

∑I
i=1 Li + 1,

the sample size is N = 50000 and all the channel matrices
are generated randomly fromN (0, 1). In addition, the ampli-
tude of precoder zeros in (27) are selected as η = 0.7.
Furthermore, the sources transmitted in these four systems
are mutually correlated with their correlation coefficients
satisfying{

rsii = 1, i = 1, 2, · · · , I ,
rsij = 0.5, i, j = 1, 2, · · · , I , i 6= j.

FIGURE 2. MIRL versus SNR when the sources are correlated.

FIGURE 3. MIRL versus SNR when the sources are independent of each
other.

From Fig. 2, it can be seen that a higher SNR yields a
lower MIRL, i.e., better separation performance. Besides,
satisfactory MIRL can be obtained even at low SNRs.

Fig. 3 illustrates the MIRL of the proposed method versus
SNR under the same settings as in Fig. 2, except that the
sources are independent of each other. Comparing Fig. 3 with
Fig. 2, it is clear that the proposed method can completely
deal with both spatially independent and correlated sources.

B. PERFORMANCE OF SOURCE RECOVERY
In this subsection, we evaluate the source recovery perfor-
mance of the proposed method, together with four existing
algorithms. These algorithms are the JAD algorithm com-
binedwith alternating least squares optimization (abbreviated
to ‘‘Alcobs’’) in [5], the parallel factor analysis (PARAFAC)
based algorithm in [6], the projected successive projec-
tion algorithm (ProSPA) in [9] and the BCA algorithm
in [21]. It should be noted that ‘‘Alcobs’’, ‘‘ProSPA’’ and
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FIGURE 4. NMSE versus SNR when the sources are independent of each
other.

‘‘PARAFAC’’ require the sources to be uncorrelated or inde-
pendent, while ‘‘BCA’’ is designed for both independent
and dependent source separation but requires the sources to
satisfy the weaker domain separability assumption.

The accuracy of the source recovery is evaluated by the
normalized mean squared error (NMSE) defined as [30]

NMSEdB = 10 log10

(
min3r

∑T−1
n=0 ‖3r ŝ(n)− s(n)‖2∑T−1
n=0 ‖s(n)‖2

)

where ŝ(n) = [ŝ1(n), ŝ2(n), · · · , ŝI (n)]T is the estimation of
the source s(n), 3r is a diagonal matrix obtained by mean
square error. According to Theorem 1, the proposed method
does not introduce permutation indeterminacy among the
estimated sources, so only scaling indeterminacy needs to
be taken into account in this NMSE criterion. In this paper,
NMSE is computed and averaged over 150 independent real-
izations as well.

Fig. 4 shows the source recovery performance comparison
of the proposed precoding-based method, labelled as ‘‘Pre-
coder’’, and the other four algorithms: ‘‘Alcobs’’, ‘‘ProSPA’’,
‘‘PARAFAC’’ and ‘‘BCA’’. Here, we consider I = 2 mutu-
ally independent sources and J = 3 channel outputs. The
channel is generated randomly from N (0, 1) with channel
order L = [1, 2]. The slide-window width W = L̄ + 1
and sample size N = 50000. The amplitude of precoder
zeros in the proposed method is chosen as η = 0.7 and
SNR varies from −5 dB to 30 dB. From Fig. 4, it can be
seen that the proposed method outperforms the other four
algorithms. First, ‘‘Alcobs’’ and ‘‘PARAFAC’’ almost do not
work, and ‘‘ProSPA’’ does not perform well. This is partly
because they are designed for quasi-stationary sources such
as speeches, but the signals dealt here are communication
signals which are usually supposed to be stationary. Second,
the performance of ‘‘BCA’’ is not satisfactory. Although the
sources are independent of each other and their ranges are
bounded, i.e., si(n) ∈ [αi, βi], where αi, βi ∈ R, βi > αi, for

FIGURE 5. NMSE versus correlation coefficient for SNR= 25 dB.

i = 1, 2, · · · , I , ‘‘BCA’’ further requires that a set made up by
the samples of the sources should contain the vertices of its
bounding hyper-rectangle [17]. Therefore, ‘‘BCA’’ is better
at dealing with sources generated from uniform distribution
rather than normal distribution.

To further investigate the source separation performances
of the five algorithms in separating mutually correlated
sources, two sources are considered with their correlation
coefficient varying from 0.1 to 0.9, while SNR is cho-
sen as 25 dB and other parameters are kept unchanged as
in Fig. 4. The results are illustrated in Fig.5. One can see
from Fig. 5 that as expected, ‘‘Alcobs’’, ‘‘PARAFAC’’ and
‘‘ProSPA’’ perform poorly as they need the sources to be
spatially uncorrelated or independent. ‘‘BCA’’ does not per-
form well either since the correlated sources might not meet
the domain separability assumption required by ‘‘BCA’’.
In contrast, the proposed ‘‘Precoder’’ method performs much
better. Furthermore, as the correlation coefficient approaches
one, the performances of all the five algorithms deteriorate
due to the similarity and co-linearity of the sources.

C. DISCUSSION OF SELECTING
SUITABLE PRECODER ZEROS
Now with the definitions of MIRL and NMSE, let us explore
the impact of the selection of precoder zeros ri = η expθi on
the performance of the proposed method. Table 1 shows the
MIRL and NMSE versus η while θi is generated randomly
from U[0, 2π ], i = 1, 2, · · · , I . The numbers of input and
output signals are I = 2 and J = 3, respectively. The chan-
nel is generated randomly from N (0, 1) with channel order
L = [1, 2]. The slide-window width W = L̄ + 1, the sample
size N = 50000, SNR = 25 dB, and the correlation
coefficient of the two sources is set as 0.5.

From Table 1, it can be seen that MIRL and NMSE are
not varying linearly with η. On one hand, MIRL is not
satisfactory when η < 0.5. There are two reasons. First,
the reciprocals of the precoder zeros are involved while the
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TABLE 1. MIRL and NMSE versus η of the precoders.

Z-transform of R̄ỹ(τ ) is computed in the process of coded
signal separation. When the observations are contaminated
by noise, the noise will be cumulated and enlarged, and
the smaller the absolute value of ri is, the severer the noise
enlargement. Second, as mentioned before, when zero of any
precoder gets very close to the origin, the condition number
of the matrix made up by the row vectors of Rx̃(2) except its
k(i)th row vectors, i = 1, 2, · · · , I , becomes greater, which
will deteriorate the accuracy of the solution to (26a), and con-
sequently make the MIRL unsatisfactory. On the other hand,
the NMSE of source separation does not vary in consistent
with MIRL while η is larger than 0.7. This is because the
sources are recovered according to (5) where the noise is
multiplied by the precoder zeros. Therefore, the larger the
absolute values of the precoder zeros are, the more serious
the noise is. In addition, since the precoder zeros are impor-
tant markers to identify different sources, these zeros should
not be too closed to each other. In this paper, we suggest
the Euclidean distance between each two zeros be not less
than 0.1.

V. CONCLUSION
In this paper, we propose a new precoding-based BSSmethod
to separate mutually correlated sources mixed by MIMO FIR
channels. In the proposed method, each source is prepro-
cessed by an order-1 precoder prior to transmission. At the
receiving end, the zeros of the precoders are used to mark
and extract the corresponding sources, combined with the
Z-domain features of the precoders and the SOS properties
of the sources. It can deal with both independent and cor-
related source separation, which makes it a widely applica-
ble approach to achieve convolutive BSS. Besides, the new
method has lower computation complexity compared with
traditional frequency-domain and time-domain convolutive

BSS algorithms. Simulation results show its superior perfor-
mance over the existing algorithms.

Appendix A
PROOF OF LEMMA 1
From (18) and (19), Rs̃(τ ) can be written asE

{
s̃1(n)s̃H1 (n− τ )

}
· · · E

{
s̃1(n)s̃HI (n− τ )

}
...

...
...

E
{
s̃I (n)s̃H1 (n− τ )

}
· · · E

{
s̃I (n)s̃HI (n− τ )

}
 .

Besides, for any i, j ∈ {1, 2, · · · , I }, the (i, j)th sub-matrix of
Rs̃(τ ), denoted as Rs̃ij (τ ), can be written in the form of (28),
as shown at the bottom of this page.

Denoting γij = W + max{Li,Lj}, it holds from (4) in
assumption 2 that if |τ | > γij−1, thenRs̃ij (τ ) = 0. Therefore,
it can be inferred that the Z-transform of Rs̃ij (τ ) has the
following form

Qs̃ij (z) =
γij−1∑

τ=−γij+1

Rs̃ij (τ )z
−τ

=


rsij rsijz · · · rsijz

γj−1

rsijz
−1 rsij · · · rsijz

γj−2

...
...

...
...

rsijz
−(γi−1) rsijz

−(γi−2) · · · rsijz
−(Li−Lj)

 .
(29)

Let

Qs̃i: (z) = [Qs̃i1 (z),Qs̃i2 (z), · · · ,Qs̃iI (z)],

Qs̃(z) =
[
Qs̃1: (z)

T ,Qs̃2: (z)
T , · · · ,Qs̃I : (z)

T
]T
.

Obviously, according to (29), the last γi − 1 row vectors
of Qs̃i: (z) are linearly proportional to its first row vector, and
the coefficients of proportionality are z−1, z−2, · · · , z−(γi−1),
respectively.
Denote

Qs̃:j (z) = [Qs̃1j (z)
T ,Qs̃2j (z)

T , · · · ,Qs̃Ij (z)
T ]T ,

Qs̃(z) =
[
Qs̃:1 (z),Qs̃:2 (z), · · · ,Qs̃:I (z)

]
.

Similarly, the last γj−1 column vectors ofQs̃:j (z) are linearly
proportional to its first column vector, and the coefficients of
proportionality are z, z2, · · · , zγj−1, respectively.
Recall that k(i) =

∑i−1
l=0 γl + 1, therefore, the rank

of Qs̃(z) equals the rank of a matrix composed of its

Rs̃ij (τ ) , E
{
s̃i(n)s̃Hj (n− τ )

}
=


E
{
si(n)s∗j (n− τ )

}
· · · E

{
si(n)s∗j (n− γj + 1− τ )

}
E
{
si(n− 1)s∗j (n− τ )

}
· · · E

{
si(n− 1)s∗j (n− γj + 1− τ )

}
...

...
...

E
{
si(n− γi + 1)s∗j (n− τ )

}
· · · E

{
si(n− γi + 1)s∗j (n− γj + 1− τ )

}

 . (28)
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(k(i), k(j))th entries, i, j = 1, 2, · · · , I , which can be written
as 

1 rs12 · · · rs1I
rs21 1 · · · rs2I
...

...
...

...

rsI1 rsI2 · · · 1

 .
Clearly, the above matrix is the covariance matrix of source
s(n) and is of full column rank with probability one. Thus,
the rank of Qs̃(z) equals I with probability one. The proof is
completed.

Appendix B
PROOF OF LEMMA 2
According to (9), for any i, j = 1, 2, · · · , I , the matrix
Rx̃ij (2) , E

{
x̃i(n)x̃Hj (n− 2)

}
can be computed as the expec-

tation of the following matrix
xi(n)x∗j (n−2) · · · xi(n)x∗j (n−γj−1)

xi(n−1)x∗j (n−2) · · · xi(n−1)x∗j (n−γj−1)
...

...
...

xi(n−γi+1)x∗j (n−2) · · · xi(n−γi+1)x∗j (n−γj−1)


which equals

rxij (2) · · · rxij (γj + 1)
rxij (1) · · · rxij (γj)
...

...
...

rxij (3− γi) · · · rxij (γj − γi + 2)

 .
Therefore, according to (23) and (24), the first row vector of
Rx̃(2){i}, which is also the k(i)th row vector of Rx̃(2), can be
represented as[

rxi1(2), · · · , r
x
i1(γ1 + 1), · · · , rxiI (2), · · · , r

x
iI (γI + 1)

]
.

According to (22d), it is obvious that this row vector is
all-zero, which means the k(i)th row vector of Rx̃(2) is an
all-zero vector, i = 1, 2, · · · , I . This completes the proof of
conclusion c1).

Next, let us consider the remaining row vectors of Rx̃(2).
Without loss of generality, suppose Li+1 = Li + 1, i =
1, 2, · · · , I − 1, then on the basis of (22), when j = i + 1,
Rx̃ij (2) has the following form

0 0 0 0 · · · 0 0
rxij (1) 0 0 0 · · · 0 0
rxij (0) rxij (1) 0 0 · · · 0 0
rxij (−1) rxij (0) rxij (1) 0 · · · 0 0

0 rxij (−1) rxij (0) rxij (1) · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · rxij (1) 0


.

By removing the k(i)th row vectors (i = 1, 2, · · · , I ) of
Rx̃(2), we can get an (IW+ L̄−I )× (IW+ L̄) matrix denoted
as R̃x̃(2). In order to prove conclusion c2), we need to verify
that R̃x̃(2) is of full row rank.

To begin with, define three square matrices in CI×I as
follows

A = (aij) = [rxij (1)]

B = (bij) = [rxij (0)]

C = (cij) = [rxij (−1)]

and the matrices made up by the last l row vectors of A, B
and C are denoted as Al , Bl and Cl , l = 1, 2, · · · , I − 1,
respectively. According to (22), A can be transformed by
elementary row operations into the covariance matrix of s(n).
Therefore, as long as the zero of any precoder is not assigned
the value zero,A and its sub-matricesAl, l = 1, 2, · · · , I−1,
are of full row rank with probability one.

Then, by executing elementary row and column operations
on R̃x̃(2), one can transform it into a block lower triangular
matrix R̂x̃(2) as follows

A
B A
C B A
0 C B A
...
...
...
...
. . .

0 0 0 0 · · · A
0 0 0 0 · · · B A
0 0 0 0 · · · CI−1 BI−1 AI−1
...
...
...
... · · ·

...
...

...
. . .

0 0 0 0 · · · 0 0 0 · · · A1


where the last row vector of R̂x̃(2) is [0, · · · , 0,C1,B1,A1],
and the number ofA on the diagonal isW+L1−1. Obviously,
the rank of R̂x̃(2) equals the total sum of the ranks of all
matrices on its diagonal, i.e., I× (W+L1−1)+(I−1)+· · ·+
1 = WI+ L̄−I . This means that R̃x̃(2) is of full row rank and
consequently the remaining row vectors of Rx̃(2) are linearly
independent. This completes the proof of conclusion c2).

Appendix C
PROOF OF THEOREM 1
‘‘Necessity’’: Firstly, from (16) and (25),

uHi R̄ỹ(2) = uHi HRx̃(2)HH
= cieHk(i)Rx̃(2)HH .

According to the conclusion c1) in Lemma 2, the first row
of Rx̃(2){i} is an all-zero vector, i.e., the k(i)th row of Rx̃(2)
equals zero, i = 1, 2, · · · , I . Thus, eHk(i)Rx̃(2) = 0, which
leads to uHi R̄ỹ(2) = 0.

Secondly, from (21) and (25),

uHi Q̄ỹ(ri) = uHi HP(ri)Qs̃(ri)P((r
∗
i )
−1)HHH

= cieHk(i)P(ri)Qs̃(ri)P((r
∗
i )
−1)HHH .

Because the sub-matrix Pi(ri) in P(ri) is a zero matrix, it has
eHk(i)P(ri) = 0, which means uHi Q̄ỹ(ri) = 0.

Lastly, from (13), (16), (22a) and (25),

uHi R̄ỹ(0)ui = cieHk(i)Rx̃(0)c
∗
i ek(i)

= |ci|2E(xi(n)x∗i (n)) = |ci|
2rxii (0) 6= 0.

The proof of necessity is completed.
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cHi P(ri) = [ε(1)1 , 0, · · · , 0︸ ︷︷ ︸
γ1−1

, · · · , ε
(1)
i−1, 0, · · · , 0︸ ︷︷ ︸

γi−1−1

, 0, 0, · · · , 0︸ ︷︷ ︸
γi

, ε
(1)
i+1, 0, · · · , 0︸ ︷︷ ︸

γi+1−1

, · · · , ε
(1)
I , 0, · · · , 0︸ ︷︷ ︸

γI−1

]. (32)

‘‘Sufficiency’’: Denote uHi H = cHi , where ci is an (IW +
L̄)× 1 vector. Since uHi R̄ỹ(2) = 0, it holds from (16) that

uHi HRx̃(2)HH
= 0.

BecauseH is of full column rank, it has

uHi HRx̃(2) = cHi Rx̃(2) = 0. (30)

According to c2) in Lemma 2, in order to satisfy (30), ci must
have the following structure:

ci = [ε1, 0, · · · , 0︸ ︷︷ ︸
γ1−1

, ε2, 0, · · · , 0︸ ︷︷ ︸
γ2−1

, · · · , εI , 0, · · · , 0︸ ︷︷ ︸
γI−1

]T (31)

where εi (i = 1, 2, · · · , I ) stands for some unknown value.
Moreover, when uHi Q̄ỹ(ri) = 0, according to (21),

uHi Q̄ỹ(ri) = uHi HP(ri)Qs̃(ri)P((r
∗
i )
−1)HHH

= 0.

As previously mentioned, P((r∗i )
−1) is a diagonal matrix with

all diagonal entries being nonzero, thus the above equation
leads to,

uHi HP(ri)Qs̃(ri) = cHi P(ri)Qs̃(ri) = 0.

Because the ith diagonal sub-matrix Pi(ri) in P(ri) is a
zero matrix and the remaining diagonal entries of P(ri) are
nonzero, based on (31), cHi P(ri) can be written in the form
of (32), as shown at the top of this page, in which ε(1)l
(l = 1, · · · , i − 1, i + 1, · · · , I ) stands for some unknown
value. Besides, if εl in ci is nonzero, then ε

(1)
l in cHi P(ri) is

nonzero, and vice versa.
As shown in the proof of Lemma 1, all k(l)th row vectors

of Qs̃(ri), l = 1, 2, · · · , I , compose a full row rank matrix.
Thus in order to make cHi P(ri)Qs̃(ri) = 0, all the unknown
ε
(1)
l (l = 1, · · · , i − 1, i + 1, · · · , I ) must equal zero, which
means εl = 0 when l 6= i. Therefore, ci can be further written
as

ci = [0, · · · , 0︸ ︷︷ ︸
γ1

, · · · , εi, 0, · · · , 0︸ ︷︷ ︸
γi−1

, · · · , 0, · · · , 0︸ ︷︷ ︸
γI

]T .

That is to say, except the k(i)th element, all other elements in
ci are zero.
Furthermore, when uHi R̄ỹ(0)ui 6= 0, substituting (16) into

this inequality yields

uHi R̄ỹ(0)ui = uHi HRx̃(0)HHui
= cHi Rx̃(0)ci
= εi × ε

∗
i × r

x
ii (0)

= |εi|
2
× rxii (0) 6= 0.

According to (22a), rxii (0) 6= 0. Thus εi 6= 0, which means
ci = εiek(i), i.e., uHi H = ε

∗
i e
H
k(i). The proof of Theorem 1 is

completed.
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