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ABSTRACT Synchronization and robust synchronization of fractional-order coupled neural
networks (FCNNs) are considered in this paper. Different with the most published works on synchronization
based on a special solution of an isolate node of the networks, we remove this restriction and introduce
a more widely accepted definition of synchronization. Meanwhile, because of parametric uncertainties of
network models, robust synchronization for FCNNs is investigated. In addition, by utilizing pinning control
strategies, several sufficient conditions are derived to make sure that the considered networks can realize
pinning synchronization and robust pinning synchronization. Finally, the correctness of the obtained results
is substantiated by two given numerical examples.

INDEX TERMS Synchronization, robust synchronization, pinning control, fractional-order coupled neural
networks.

I. INTRODUCTION
Over the past few decades, the growing attentions of
researchers have been paid to neural networks (NNs) as a
result of their widespread application in various fields, such
as combinatorial optimization problems, signal processing
and so on [1]–[5]. In the study of NNs, the discussion of
dynamical behaviors is always a hot topic, such as synchro-
nization [6], [7], stability [8]–[10] and so forth [11]–[16].
In [6], the authors focused on robust exponential synchroniza-
tion for chaotic delayed NNs. Zhang et al. [8] paid their atten-
tions to stability of discrete-time NNs with a time-varying
delay. Asynchronous state estimation of Markov jump NNs
taking into account jumping fading channels was considered
by Tao et al. [12].

In order to describe physical phenomena more accurately,
fractional-order NNs were built to replacing the classical
integer-order NNs by researchers. Owing to the advantage
of infinity memory compared with classical integer-order
NNs, fractional-order NNs can model numerous phenom-
ena more effective in various fields [17]–[19]. Thus, many
researchers take much interest in the study of dynamical
behaviors for fractional-order NNs. So far, lots of results
of dynamical behaviors for fractional-order NNs sprung
up very rapidly [20]–[33]. In [24], synchronization and
Mittag-Leffler stability for memristor-based fractional-order
NNs were investigated by introducing Lyapunov method.

Gu et al. [27] considered the problem of synchronization-
based parameter estimation for fractional-order NNs com-
bined with adaptive control under parameter update law.
In terms of linear feedback controller and fractional-order
differential inequalities, some criteria were proposed to make
ensure that fractional-order memristive BAM NNs realize
synchronization in finite time [28].

Nowadays, the investigation of classical integer-order cou-
pled neural networks (CNNs) have developed maturely due
to its extensive applications in various areas [34]–[37]. Based
on the cellular neural network, the authors presented a secure
communication system [36]. However, because of the com-
plexity, a few results of dynamical behaviors for FCNNs have
been reported [38], [39], especially for synchronization [39].
Bao et al. [39] established several sufficient criteria to make
sure that the considered network is synchronized by means
of the fractional-order Lyapunov stability theorem. It should
be pointed out that, because of the environmental noises
and model errors, the exact values of FCNNs parameters
usually may not be obtained. Thus, it is necessary to consider
parametric uncertainties while we study the synchronization
for FCNNs. To our knowledge, the results of synchronization
for FCNNs have not been obtained.

Because network cannot synchronize by themselves in
some circumstances, many researchers have made their effort
to investigate pinning synchronization. Until now, lots of
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interesting works have been reported. However, most of
researchers are devoted entirely to investigate the pinning
synchronization for classical integer-order CNNs [40]–[43].
In [40], the authors made the CNNs achieve synchronization
by using impulse pinning strategy, some inequality tech-
niques and matrix decomposition methods. Hu et al. [41]
focused on pinning synchronization for diffusively and lin-
early coupled inertial delayed NNs. The authors proposed
some novel synchronization criteria for neural networks with
hybrid coupling by utilizing some free weighting matrices
and the appropriate Lyapunov-Krasovskii functional [42].
On the other hand, some researches have investigated the
synchronization for fractional-order complex networks with
pinning control and many interesting results have been
got [44]–[46]. Nevertheless, very few works on pinning syn-
chronization for FCNNs have been obtained. On account of
the virtue of pinning control strategy and the phenomenon of
parametric uncertainties, it is essential to pay our attention
to studying the robust synchronization of FCNNs via pinning
control here.

In this paper, we focus on the synchronization and robust
synchronization issues for FCNNs. The main novelties lie
in three aspects. First, the FCNNs models with and without
parametric uncertainties are proposed. Second, several condi-
tions are derived to let the considered network to realize syn-
chronization and pinning synchronization. Third, considering
the existences of environmental noises and model errors,
robust synchronization and robust pinning synchronization
for the FCNNs are investigated.

II. PRELIMINARIES
A. NOTATIONS
Let R = (−∞,+∞). 0 6 P ∈ Rn×n (0 > P ∈
Rn×n, 0 < P ∈ Rn×n, 0 > P ∈ Rn×n) denotes that matrix
P is symmetric and semi-positive (negative, positive, semi-
negative) definite. ⊗ stands for the Kronecker product of
two matrices. λm(·) (λM (·)) means the minimum (maximum)
eigenvalue of the correspondingmatrix. For any vector e(t) =
(e1(t), e2(t), . . . , en(t))T ∈ Rn, we denote

‖e(t)‖2 =

√√√√ n∑
i=1

e2i (t).

B. DEFINITIONS
Definition 1 (See [47]): The Caputo fractional derivative

can be given by

Dαt f (t) =
1

0(1− α)

∫ t

t0
(t − τ )−α ḟ (τ )dτ,

where t > t0, 0 < α < 1, f ∈ Cn([t0,+∞),R) is
an arbitrary integrable function, 0(α) denotes the gamma
function defined as 0(α) =

∫
∞

0 tα−1e−tdt . In the following
discussion, we always deem that 0 < α < 1.
Some properties of the fractional derivatives are given as

follows:

Property 2:

Dαt (ε1y(t)+ ε2z(t)) = ε1D
α
t y(t)+ ε2D

α
t z(t),

where ε1 and ε2 are real constants, y(t), z(t) ∈ Rn.
Property 3: The Caputo fractional derivative of a constant

function is always zero.
Definition 4 (See [48]): The Mittag-Leffler function

define as

Eα(z) =
∞∑
n=0

zn

0(nα + 1)
,

where z ∈ C and α > 0. And, the Mittag-Leffler function in
two parameters can be presented as

Eα,β (z) =
∞∑
n=0

zn

0(nα + β)
,

where z ∈ C, α > 0 and β > 0. For β = 1, one has
Eα,1 = Eα,E1,1(z) = ez.

For convenience, we introduce the Laplace transform of
Caputo fractional derivative and Mittag-Leffler function in
two parameters respectively described as

L{Dαt f (t)} = sαF(s)− sα−1f (t0), for 0 < α < 1,

and

L{tβ−1Eα,β (−ktα)} =
sα−β

sα + k
, R(s) > |k|

1
α ,

where t > 0, k ∈ R; s denotes the variable in Laplace domain;
R(s) is the real part of s; F(s) is the Laplace transform of f (t);
L{·} is the Laplace transform operator.

C. LEMMAS
Lemma 5 (See [47]): For a vector y(t) ∈ Rn of derivable

functions, we have the following inequality:

Dαt (y
T (t)Qy(t)) 6 2yT (t)QDαt y(t),

where α ∈ (0, 1], t > t0 and 0 < Q ∈ Rn×n is a constant
matrix.
Lemma 6 (See [49]): For any matrix 0 < Q ∈ Rn×n and

vectors α1, α2 ∈ Rn, the following inequality holds:

2αT1 α2 6 αT1 Qα1 + α
T
2 Q
−1α2.

Lemma 7: Let c ∈ R,A,B,C,D be matrices with suitable
dimensions. Then the Kronecker product has the following
properties:

(1) (cA)⊗ B = A⊗ (cB);

(2) (A⊗ B)T = AT ⊗ BT ;

(3) (A+ B)⊗ C = A⊗ C + B⊗ C;

(4) (A⊗ B)(C ⊗ D) = (AC)⊗ (BD).

III. SYNCHRONIZATION FOR FCNNs
In this section, we analyze synchronization issue for FCNNs.
First, several criteria of synchronization are derived for
FCNNs. Then, pinning control strategy is proposed to ensure
that the considered network can realize synchronization.
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A. SYNCHRONIZATION FOR FCNNs
A FCNNs consisting of N identical nodes is described as

Dαt wi(t) = −Cwi(t)+ Bf (wi(t))+ J + d
N∑
j=1

Aij0wj(t),

(1)

where i = 1, 2, . . . ,N , 0 < α < 1; wi(t) =
(wi1(t),wi2(t), . . . ,win(t))T ∈ Rn denotes the state for
node i; N means the number of nodes; f (wi(t)) =

(f1(wi1(t)), f2(wi2(t)), . . . , fn(win(t)))T , fj(·)(j = 1, 2, . . . , n)
is the activation function of j-th neuron; B = (bij)n×n
and 0 < C = diag(c1, c2, . . . , cn) are the real matrices;
0 = (γij)n×n corresponds to the inner coupling matrix; J =
(J1, J2, . . . , Jn)T is the external input vector; 0 < d ∈ R
denotes the overall coupling strength; A = (Aij)N×N is the
coupling configuration matrix of network which is defined as

Aij = Aji > 0 (i 6= j), if there is a connection between
nodes i and j,

Aij = 0 (i 6= j), otherwise,

Aii = −
N∑
j=1
j 6=i

Aij, i = 1, 2, . . . ,N .

In this paper, the following assumption and definition will
be needed.
Assumption 8: The function fj(·) is said to satisfies the

Lipschitz condition if there exists positive constant ψj such
that

|fj(ρ1)− fj(ρ2)| 6 ψj|ρ1 − ρ2|

for any ρ1, ρ2 ∈ R, where | · | is the absolute value.
Definition 9 (See [50]): The FCNNs (1) realizes synchro-

nization if

lim
t→∞

∥∥∥∥∥∥wi(t)− 1
N

N∑
j=1

wj(t)

∥∥∥∥∥∥
2

= 0, i = 1, 2, . . . ,N .

Define w̄(t) = 1
N

∑N
j=1 wj(t). Then, we have

Dαt w̄(t) =
1
N

N∑
j=1

Dαt wj(t)

=
1
N

N∑
j=1

[
− Cwj(t)+ d

N∑
s=1

Ajs0ws(t)

+Bf (wj(t))+ J
]

= −
C
N

N∑
j=1

wj(t)+
d
N

N∑
j=1

N∑
s=1

Ajs0ws(t)

+
1
N

N∑
j=1

Bf (wj(t))+ J

= −
C
N

N∑
j=1

wj(t)+
1
N

N∑
j=1

Bf (wj(t))+ J .

It should be pointed out that d
N

∑N
j=1

∑N
s=1 Ajs0ws(t) =

d
N

∑N
s=1

∑N
j=1 Ajs0ws(t) = 0 according to the definition of

matrix A, that is
∑N

j=1 Ajs = 0.
Defining error vector ei(t) = wi(t) − w̄(t) which is

described as follows:

Dαt ei(t) = −Cei(t)+ Bf (wi(t))−
1
N

N∑
j=1

Bf (wj(t))

+ d
N∑
j=1

Aij0ej(t), i = 1, 2, . . . ,N . (2)

Through out this paper, we denote that

9 = diag(ψ2
1 , ψ

2
2 , . . . , ψ

2
n ),

e(t) = (eT1 (t), e
T
2 (t), . . . , e

T
N (t))

T .

Theorem 10: The FCNNs (1) is synchronized, if there
exists a matrix 0 < P ∈ Rn×n such that

IN ⊗M + dA⊗ (P0 + 0TP) < 0, (3)

where M = −PC − CP+ PBBTP+9.
Proof: For system (2), we construct the Lyapunov func-

tional as

V1(t) =
N∑
i=1

eTi (t)Pei(t). (4)

Then, combining with Lemma 5, one has

Dαt V1(t) 6 2
N∑
i=1

eTi (t)PD
α
t ei(t)

= 2
N∑
i=1

eTi (t)P
[
Bf (w̄(t))− Bf (w̄(t))

−Cei(t)+ Bf (wi(t))−
1
N

N∑
j=1

Bf (wj(t))

+ d
N∑
j=1

Aij0ej(t)
]

= −2
N∑
i=1

eTi (t)PCei(t)

+ 2d
N∑
i=1

N∑
j=1

eTi (t)AijP0ej(t)

+ 2
N∑
i=1

eTi (t)PB
[
f (wi(t))− f (w̄(t))

]
+ 2

N∑
i=1

eTi (t)PB
[
f (w̄(t))−

1
N

N∑
j=1

f (wj(t))
]
. (5)

According to Assumption 8, one gets

2
N∑
i=1

eTi (t)PB
[
f (wi(t))− f (w̄(t))

]
6

N∑
i=1

eTi (t)PBB
TPei(t)+

N∑
i=1

eTi (t)9ei(t). (6)
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From
∑N

i=1 e
T
i (t) = 0, we know that

N∑
i=1

eTi (t)PB
[
f (w̄(t))−

1
N

N∑
j=1

f (wj(t))
]
= 0. (7)

By combining with (5)–(7), we know that

Dαt V1(t) 6
N∑
i=1

eTi (t)(PBB
TP+9)ei(t)

+ 2d
N∑
i=1

N∑
j=1

AijeTi (t)P0ej(t)

− 2
N∑
i=1

eTi (t)PCei(t)

= eT (t)
[
IN ⊗M + dA⊗ (P0 + 0TP)

]
e(t)

6 ζ1eT (t)e(t), (8)

where ζ1 = λM
(
IN ⊗M + dA⊗ (P0 + 0TP)

)
< 0.

From (4), we get

λm(P)eT (t)e(t) 6 V1(t) 6 λM (P)eT (t)e(t). (9)

From (8) and (9), it is easily to know that

Dαt V1(t) 6 l1V1(t), (10)

where l1 =
ζ1

λM (P) < 0. Thus, it is easily to get that

Dαt V1(t)+ q(t) = l1V1(t), (11)

where the function q(t) is nonnegative.
Taking L{·} of (11), one gets

sαV1(s)− sα−1V1(0)+Q(s) = l1V1(s), (12)

where V1(s) = L{V1(t)},Q(s) = L{q(t)}.
Hence, we obtain

V1(s) =
sα−1

sα − l1
V1(0)−Q(s)

1
sα − l1

. (13)

Applying the Laplace inverse transform to (13), we have

V1(t) = V1(0)Eα(l1tα)− q(t) ∗ tα−1Eα,α(l1tα), (14)

where ∗ represents the convolution operator.
Since tα−1 and Eα,α(l1tα) are nonnegative functions, it

follows from (9) and (14) that

λm(P)eT (t)e(t) 6 V1(t) 6 V1(0)Eα(l1tα), (15)

which leads to that

0 6 eT (t)e(t) 6
V1(0)
λm(P)

Eα(l1tα). (16)

It should be pointed out that Eα(l1tα) is completely mono-
tonic and decreases much faster than the function el1t , for 0 <
α < 1 and l1 < 0 (see [47]). Therefore, we have a conclusion
that limt→+∞ eT (t)e(t) = 0, that is limt→+∞ ‖e(t)‖2 = 0.
Therefore, the FCNNs (1) realizes synchronization.

B. PINNING SYNCHRONIZATION FOR FCNNs
In the preceding discussion, we analyze the synchronization
problem for FCNNs. However, the considered network can-
not realize synchronization by themselves sometimes. Thus,
pinning controllers are applied to first r nodes in the network
for the purpose of ensuring that the considered network is
synchronized in this subsection.

A FCNNs consisting of N identical nodes is described as

Dαt wi(t) = −Cwi(t)+ Bf (wi(t))+ d
N∑
j=1

Aij0wj(t),

+ J + ui(t), i = 1, 2, . . . , r,

Dαt wi(t) = −Cwi(t)+ Bf (wi(t))+ d
N∑
j=1

Aij0wj(t),

+ J , i = r + 1, r + 2, . . . ,N ,

ui(t) = −ki

wi(t)− 1
N

N∑
j=1

wj(t)

,

(17)

where ui(t) is the feedback controller; d , α, f (wi(t)), wi(t), B,
0, A = (Aij)N×N , C and J have the same definitions as in (1);
ki > 0 is the control gain.

Let w̄(t) = 1
N

∑N
j=1 wj(t). Then, we have

Dαt w̄(t) =
1
N

N∑
j=1

Dαt wj(t)

= −
C
N

N∑
j=1

wj(t)+
d
N

N∑
j=1

N∑
s=1

Ajs0ws(t)

+
1
N

N∑
j=1

Bf (wj(t))+ J −
1
N

 r∑
j=1

uj(t)


= −

C
N

N∑
j=1

wj(t)+
1
N

N∑
j=1

Bf (wj(t))+ J

−
1
N

 r∑
j=1

uj(t)

.
The error vector ei(t) = wi(t)− w̄(t) is govern by

Dαt ei(t) = −Cei(t)+ Bf (wi(t))−
1
N

N∑
j=1

Bf (wj(t))

+ d
N∑
j=1

Aij0ej(t)− kiei(t)+
1
N

N∑
j=1

kjej(t), (18)

where i = 1, 2, . . . ,N ; ki > 0 for i = 1, 2, . . . , r and ki = 0
for i = r + 1, r + 2, . . . ,N .
Theorem 11: The FCNNs (17) achieves synchronization if

there exists a matrix 0 < P ∈ Rn×n such that

IN ⊗M + dA⊗ (P0 + 0TP)− 2K ⊗ P < 0, (19)

where M = −PC − CP + PBBTP + 9 and K =

diag(k1, k2, . . . , kN ).
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Proof: For error system (18), take V1(t) as in (4). Then,
one has

Dαt V1(t) 6 2
N∑
i=1

eTi (t)PD
α
t ei(t)

= 2
N∑
i=1

eTi (t)P
[
− Cei(t)+ Bf (wi(t))− kiei(t)

+Bf (w̄(t))− Bf (w̄(t))−
1
N

N∑
j=1

Bf (wj(t))

+ d
N∑
j=1

Aij0ej(t)+
1
N

N∑
j=1

kjej(t)
]

= −2
N∑
i=1

eTi (t)PCei(t)− 2
N∑
i=1

kieTi (t)Pei(t)

+ 2
N∑
i=1

eTi (t)PB
[
f (w̄(t))−

1
N

N∑
j=1

f (wj(t))
]

+ 2
N∑
i=1

eTi (t)PB
[
f (wi(t))− f (w̄(t))

]
+ 2

N∑
i=1

eTi (t)P

 1
N

N∑
j=1

kjej(t)


+ 2d

N∑
i=1

N∑
j=1

eTi (t)AijP0ej(t). (20)

From
∑N

i=1 e
T
i (t) = 0, we know that

2
N∑
i=1

eTi (t)P

 1
N

N∑
j=1

kjej(t)

 = 0. (21)

Therefore,

Dαt V1(t) 6 eT(t)
[
IN⊗M+ dA⊗ (P0+0TP)−2K⊗ P

]
e(t)

6 ζ2eT (t)e(t), (22)

where ζ2 = λM
(
IN ⊗M +dA⊗ (P0+0TP)−2K ⊗P

)
< 0.

The rest of the proof for limt→+∞ ‖e(t)‖2 = 0 run as
in Theorem 10. Therefore, the network (17) realizes pinning
synchronization.

IV. ROBUST SYNCHRONIZATION FOR FCNNs
We focus on the robust synchronization and robust pinning
synchronization for FCNNs in this section. By using some
inequality techniques and choosing suitable Lyapunov func-
tional, several criteria of robust synchronization and robust
pinning synchronization for FCNNs are proposed.

A. ROBUST SYNCHRONIZATION FOR FCNNs
In fact, the FCNNs may contain parameteric uncertainties
due to the existence of environmental noises or model errors
in many circumstances. Therefore, in this subsection, we

consider a FCNNs with parameteric uncertainties consisting
of N identical nodes described as

Dαt wi(t) = −Cwi(t)+ J + d
N∑
j=1

Aij0wj(t)

+ Bf (wi(t)), i = 1, 2, . . . ,N , (23)

where α, wi(t), f (wi(t)) and J have the same definitions as in
(1). The parameters d,C,B, 0 and A can be changed in some
given precision described as follows:

d (I ) := {0 < d− 6 d 6 d+,∀d ∈ d (I )};
C (I )
:= {C = diag(ci) : C−6 C6 C+, 0 < c−i 6 ci6 c+i ,

i = 1, 2, . . . , n,∀C ∈ C (I )
};

B(I ) := {B = (bij)n×n : b
−

ij 6 bij 6 b+ij , i = 1, 2, . . . , n,

j = 1, 2, . . . , n,∀B ∈ B(I )};
0(I )
:= {0 = (γij)n×n : γ

−

ij 6 γij 6 γ+ij , i = 1, 2, . . . , n,

j = 1, 2, . . . , n,∀0 ∈ 0(I )
};

A(I ) := {A = (Aij)N×N : A
−

ij 6 Aij(i 6= j) 6 A+ij ,

i = 1, 2, . . . ,N , j = 1, 2, . . . ,N ,∀A ∈ A(I )}.
(24)

For convenience, we define

b̂ij = max{|b−ij |, |b
+

ij |}, i = 1, 2, . . . , n, j = 1, 2, . . . , n;

γ̂ij = max{|γ−ij |, |γ
+

ij |}, i = 1, 2, . . . , n, j = 1, 2, . . . , n;

Âij(i 6= j) = A+ij , Âii =
N∑
j=1
j 6=i

A+ij , i = 1, 2, . . . ,N ,

j = 1, 2, . . . ,N .

Let w̄(t) = 1
N

∑N
j=1 wj(t). Thereby, one gets

Dαt w̄(t) = −
C
N

N∑
j=1

wj(t)+
1
N

N∑
j=1

Bf (wj(t))+ J .

The error vector ei(t) = wi(t)− w̄(t) is presented as follows:

Dαt ei(t) = −Cei(t)+ Bf (wi(t))−
1
N

N∑
j=1

Bf (wj(t))

+ d
N∑
j=1

Aij0ej(t), i = 1, 2, . . . ,N . (25)

Theorem 12: The FCNNs (23) with the parameter ranges
defined by (24) is robustly synchronized if there exists a
matrix 0 < P̂ = diag(p̂1, p̂2, . . . , p̂n) such that

−2P̂C− + (ξB + d+ξA)P̂2 +9 + d+ξ0In < 0, (26)

where ξB =
∑N

i=1
∑N

j=1 b̂
2
ij, ξA =

∑N
i=1

∑N
j=1 Â

2
ij and ξ0 =∑N

i=1
∑N

j=1 γ̂
2
ij .

Proof: For error system (25), we take the Lyapunov
functional as

V2(t) =
N∑
i=1

eTi (t)P̂ei(t). (27)
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Then, one has

Dαt V2(t) 6 2
N∑
i=1

eTi (t)P̂D
α
t ei(t)

= 2
N∑
i=1

eTi (t)P̂
[
− Cei(t)+ Bf (wi(t))+ Bf (w̄(t))

−Bf (w̄(t))−
1
N

N∑
j=1

Bf (wj(t))+ d
N∑
j=1

Aij0ej(t)
]

= −2
N∑
i=1

eTi (t)P̂Cei(t)

+ 2d
N∑
i=1

N∑
j=1

AijeTi (t)P̂0ej(t)

+ 2
N∑
i=1

eTi (t)P̂B
[
f (wi(t))− f (w̄(t))

]
+ 2

N∑
i=1

eTi (t)P̂B
[
f (w̄(t))−

1
N

N∑
j=1

f (wj(t))
]
. (28)

From
∑N

i=1 e
T
i (t) = 0, we know that

N∑
i=1

eTi (t)P̂B
[
f (w̄(t))−

1
N

N∑
j=1

f (wj(t))
]
= 0. (29)

According to Assumption 8, one gets

2
N∑
i=1

eTi (t)P̂B
[
f (wi(t))− f (w̄(t))

]
6

N∑
i=1

eTi (t)P̂BB
T P̂ei(t)+

N∑
i=1

eTi (t)9ei(t)

6 eT (t)
[
IN ⊗ (ξBP̂2 +9)

]
e(t). (30)

From Lemma 6, it is easily to get that

2d
N∑
i=1

N∑
j=1

eTi (t)AijP̂0ej(t)

= 2deT (t)
[
(A⊗ P̂)(IN ⊗ 0)

]
e(t)

6 deT (t)
[
A2 ⊗ P̂2

]
e(t)+ deT (t)

[
IN ⊗ (0T0)

]
e(t)

6 dξAeT (t)
(
IN ⊗ P̂2

)
e(t)+ dξ0eT (t)e(t)

6 d+ξAeT (t)
(
IN ⊗ P̂2

)
e(t)+ d+ξ0eT (t)e(t). (31)

Combined with (28), (29), (30) and (31), we know that

Dαt V2(t) 6 −2e
T (t)(IN ⊗ (P̂C−)e(t)

+ eT (t)
[
IN ⊗ (9 + ξBP̂2)

]
e(t)

+ d+ξ0eT (t)e(t)+ d+ξAeT (t)
(
IN ⊗ P̂2

)
e(t)

= eT (t)
[
IN ⊗

(
− 2P̂C− + (ξB + d+ξA)P̂2

+9 + d+ξ0In
)]
e(t)

6 ζ3eT (t)e(t), (32)

where ζ3 = λM
(
−2P̂C−+(ξB+d+ξA)P̂2+9+d+ξ0In

)
< 0.

From (27), we get

λm(P̂)eT (t)e(t) 6 V2(t) 6 λM (P̂)eT (t)e(t). (33)

Combined with (32) and (33), it is easily to know that

Dαt V2(t) 6 l2V2(t), (34)

where l2 =
ζ3

λM (P̂)
< 0. Thereby, we have

Dαt V2(t)+ m(t) = l2V2(t), (35)

where the function m(t) is nonnegative.
Taking L{·} of (35), one has

sαV2(s)− sα−1V2(0)+M(s) = l2V2(s), (36)

where V2(s) = L{V2(t)},M(s) = L{m(t)}.
Thus, we obtain

V2(s) =
sα−1

sα − l2
V2(0)−M(s)

1
sα − l2

. (37)

Applying the Laplace inverse transform to (37), we have

V2(t) = V2(0)Eα(l2tα)− m(t) ∗ tα−1Eα,α(l2tα), (38)

where ∗ represents the convolution operator.
Since tα−1 and Eα,α(l2tα) are nonnegative functions, it

follows from (33) and (38) that

λm(P̂)eT (t)e(t) 6 V2(t) 6 V2(0)Eα(l2tα), (39)

which leads to that

0 6 eT (t)e(t) 6
V2(0)

λm(P̂)
Eα(l2tα). (40)

It should be pointed out that Eα(l2tα) is completely mono-
tonic and decreases much faster than the function el2t , for
0 < α < 1 and l2 < 0. Therefore, we have a conclusion
that limt→+∞ eT (t)e(t) = 0, that is limt→+∞ ‖e(t)‖2 = 0.
Therefore, the FCNNs (23) realizes robust synchronization.

B. ROBUST PINNING SYNCHRONIZATION FOR FCNNs
In the preceding discussion, we have investigated robust
synchronization for FCNNs with parameteric uncertainties.
Howbeit, the considered network cannot realize robust syn-
chronization by themselves sometimes. Therefore, in this
subsection, pinning controllers are applied to first r nodes
in the network so as to ensure that the considered network
achieves robust pinning synchronization.

A FCNNs with parameteric uncertainties consisting of N
identical nodes is described as

Dαt wi(t) = −Cwi(t)+ Bf (wi(t))+ d
N∑
j=1

Aij0wj(t),

+ J + ui(t), i = 1, 2, . . . , r,

Dαt wi(t) = −Cwi(t)+ Bf (wi(t))+ d
N∑
j=1

Aij0wj(t),

+ J , i = r + 1, r + 2, . . . ,N ,

ui(t) = −ki

wi(t)− 1
N

N∑
j=1

wj(t)

,

(41)

12444 VOLUME 5, 2017



S. Wang et al.: Synchronization and Robust Synchronization for FCNNs

where ui(t) denotes the feedback controller; α,wi(t), f (wi(t)),
C , B, 0, J , d and A = (Aij)N×N have the same definitions as
in (23); ki > 0 is the control gain.
Let w̄(t) = 1

N

∑N
j=1 wj(t). Then, it gives

Dαt w̄(t) = −
C
N

N∑
j=1

wj(t)+
1
N

N∑
j=1

Bf (wj(t))+ J

−
1
N

 r∑
j=1

uj(t)

.
The error vector ei(t) = wi(t)− w̄(t) can be presented as

Dαt ei(t) = −Cei(t)+ Bf (wi(t))−
1
N

N∑
j=1

Bf (wj(t))

+ d
N∑
j=1

Aij0ej(t)− kiei(t)+
1
N

N∑
j=1

kjej(t), (42)

where i = 1, 2, . . . ,N ; ki > 0 for i = 1, 2, . . . , r and ki = 0
for i = r + 1, r + 2, . . . ,N .
Theorem 13: The FCNNs (41) is robustly synchronized if

there exists a matrix 0 < P̂ = diag(p̂1, p̂2, . . . , p̂n) such that

IN ⊗ M̂ − 2K ⊗ P̂ < 0, (43)

where M̂ = −2P̂C− + (ξB + d+ξA)P̂2 + 9 + d+ξ0In,
K = diag(k1, k2, . . . , kN ), ξB =

∑N
i=1

∑N
j=1 b̂

2
ij, ξA =∑N

i=1
∑N

j=1 Â
2
ij and ξ0 =

∑N
i=1

∑N
j=1 γ̂

2
ij .

Proof: For error system (42), take V2(t) as in (27). Then,
one has

Dαt V2(t) 6 2
N∑
i=1

eTi (t)P̂D
α
t ei(t)

= 2
N∑
i=1

eTi (t)P̂
[
− Cei(t)+ Bf (wi(t))− kiei(t)

+Bf (w̄(t))− Bf (w̄(t))−
1
N

N∑
j=1

Bf (wj(t))

+ d
N∑
j=1

Aij0ej(t)+
1
N

N∑
j=1

kjej(t)
]

= −2
N∑
i=1

eTi (t)PCei(t)− 2
N∑
i=1

kieTi (t)P̂ei(t)

+ 2
N∑
i=1

eTi (t)P̂B
[
f (w̄(t))−

1
N

N∑
j=1

f (wj(t))
]

+ 2
N∑
i=1

eTi (t)P̂B
[
f (wi(t))− f (w̄(t))

]
+ 2

N∑
i=1

eTi (t)P

 1
N

N∑
j=1

kjej(t)


+ 2d

N∑
i=1

N∑
j=1

eTi (t)AijP̂0ej(t)

6 −2eT (t)(K ⊗ P̂)e(t)
− 2eT (t)

[
IN ⊗ (P̂C−)

]
e(t)

+ eT (t)
[
IN ⊗ (9 + ξBP̂2)

]
e(t)

+ d+ξ0eT (t)e(t)+ d+ξAeT (t)
(
IN ⊗ P̂2

)
e(t)

= eT (t)
[
IN ⊗ M̂ − 2K ⊗ P̂

]
e(t)

6 ζ4eT (t)e(t), (44)

where ζ4 = λM
(
IN ⊗ M̂ − 2K ⊗ P̂

)
< 0.

The rest of the proof for limt→+∞ ‖e(t)‖2 = 0 run as
in Theorem 12. Therefore, the network (41) realizes robust
synchronization.

V. NUMERICAL EXAMPLES
Two numerical examples are provided to confirm the correct-
ness for the obtained synchronization criteria in this section.
Example 14: A FCNNs consisting of five identical 2-D

fractional-order neural network is considered in the
following:

Dαt wi(t) = −Cwi(t)+ Bf (wi(t))+ d
5∑
j=1

Aij0wj(t)

+ J − ki

wi(t)− 1
5

5∑
j=1

wj(t)

, (45)

where i = 1, 2, . . . , 5, α = 0.97, fj(ξ ) =
|ξ+1|−|ξ−1|

4 (j =
1, 2), d = 0.7, ki = 0.8i for i = 1, 2 and ki = 0 for i =
3, 4, 5. We take C,B,A, 0 and J as follows:

C =
(
0.6 0
0 0.5

)
, B =

(
0.1 0.2
0.1 0.1

)
, 0 =

(
0.5 0.6
0.7 0.3

)
,

A =


−0.4 0.2 0.1 0 0.1
0.2 −0.5 0 0.3 0
0.1 0 −0.5 0.3 0.1
0 0.3 0.3 −0.6 0
0.1 0 0.1 0 −0.2

, J =
(
0
0

)
.

It is clear that fj(·)(j = 1, 2) satisfy Assumption 8
with ψj = 0.5.

By using the MATLAB, the following matrix P satifying
(19) can be found

P =
(

0.4619 −0.0570
−0.0570 0.5006

)
.

Therefore, it can be got that the network (17) achieve
pinning synchronization from Theorem 11 (see Figure 1).
Example 15:AFCNNswith parameteric uncertainties con-

sisting of five identical 2-D fractional-order neural network
is considered in the following:

Dαt wi(t) = −Cwi(t)+ Bf (wi(t))+ d
5∑
j=1

Aij0wj(t)

+ J − ki

wi(t)− 1
5

5∑
j=1

wj(t)

, (46)
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FIGURE 1. The change processes of wi1(t), wi2(t), i = 1, 2, . . . , 5.

FIGURE 2. The change processes of wi1(t), wi2(t), i = 1, 2, . . . , 5.

where i = 1, 2, . . . , 5, α = 0.997, fj(ξ ) =
|ξ+1|−|ξ−1|

4 (j =
1, 2), ki = 0.2i for i = 1, 2, 3 and ki = 0 for i = 4, 5.
The parameters d,C,B, 0 and A in the network (46) can be
changed in some given precision described as:

d (I ) := {0.001 6 d 6 0.01,∀d ∈ d (I )};

C (I )
:= {C = diag(ci) : C− 6 C 6 C+, i.e., 1

i+2 + 0.01

6 ci 6 1
i+2 + 0.115, i = 1, 2, . . . , n,∀C ∈ C (I )

};

B(I ) := {B = (bij)n×n : 1
i+j + 0.01 6 bij 6 1

i+j + 0.05,

i = 1, 2, . . . , n, j = 1, 2, . . . , n,∀B ∈ B(I )};

0(I )
:= {0 = (γij)n×n : 1

i+j + 0.01 6 γij 6
1
i+j + 0.1,

i = 1, 2, . . . , n, j = 1, 2, . . . , n,∀0 ∈ 0(I )
};

A(I ) := {A = (Aij)N×N : 1
i+j + 0.02 6 Aij(i 6= j) 6 1

i+j

+ 0.05, i =1, 2, . . . ,N , j =1, 2, . . . ,N ,∀A ∈ A(I )}.

It is clear that fj(·)(j = 1, 2) satisfy Assumption 8 with
ψj = 0.5.

By using the MATLAB, the following matrix P̂ satifying
(43) can be found

P̂ =
(
0.6975 0

0 0.7140

)
.

Therefore, it can be got that the network (41) achieve robust
pinning synchronization from Theorem 13 (see Figure 2).

VI. CONCLUSION
In this paper, we have paid our attentions to investigating the
FCNNs. On the one hand, with the help of pinning control
technique and Lyapunov functional method, some criteria of
synchronization and pinning synchronization for considered
networks have been established. On the other hand, thanks to
some inequality methods, the authors dealt with the problems
of robust synchronization and robust pinning synchroniza-
tion for FCNNs with parametric uncertainties. In the end,
for confirming the correctness of the theoretical results, two
numerical examples have been given.
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