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ABSTRACT Accurate tagless indoor person localization is important for several applications, such as
assisted living and health monitoring. Machine learning (ML) classifiers can effectively mitigate sensor data
variability and noise due to deployment-specific environmental conditions. In this paper, we use experimental
data from a capacitive sensor-based indoor human localization system in a 3m× 3m room to comparatively
analyze the performance of Weka collection ML classifiers. We compare the localization performance of the
algorithms, its variation with the training set size, and the algorithm resource requirements for both training
and inferring. The results show a large variance between algorithms, with the best accuracy, precision, and
recall exceeding 93% and 0.05m average localization error.

INDEX TERMS Capacitive sensing, indoor person localization, machine learning classification, tagless
localization.

I. INTRODUCTION
Low-cost, low-maintenance, accurate indoor detection and
localization of persons is an important enabler for several
applications, such as health care and resource usage opti-
mization and security. For instance, room occupancy infor-
mation, alongside other factors, can help reducing energy
consumption by controlling the ambient temperature, lighting
and water consumption [1]. For health care, by 2050, the
number of elderly persons is estimated to be nearly 2.1 billion
worldwide, more than doubled from 2015. Assisted living
systems can play an increasingly important role in improving
their quality of life, since the ratio between working-age
persons and elderly is expected to drop to 3.5 by 2050 [2].
Also, monitoring human activity for extended periods can
detect behavioral changes (e.g., gait changes), which can
help recognizing the early onset of diseases like Parkinson
disease [3]. Moreover, presence monitoring systems can also
be used to detect unauthorized intrusions (e.g., through house
windows, a sign of burglary attempt [4]).

Several types of noise can adversely affect sensor data
accuracy, from offsets due to changes of indoor objects (e.g.,
presence, position) or to changing environmental conditions
(e.g., temperature, humidity, lighting), to noise induced by
environmental electromagnetic radiations (e.g., radio, light

switches, home appliances). Hence, raw sensor data very
often requires significant post-processing in order to achieve
the localization accuracy needed by the applications. Among
the data processing techniques, the machine learning (ML)
algorithms are among the most promising, but their perfor-
mance (e.g., inference performance, required training, com-
putation complexity) can vary significantly. We compare in
this work the performance of most ML classifiers in the
Weka collection [5] in order to support the selection of the
optimal ML algorithms to process sensor data for person
localization.

Over the years, many indoor localization techniques have
been proposed. In [1], [6], and [7], the authors have discussed
various methods for indoor person localization. Video or
imaging cameras can be used for human presence detection
and localization [8], [9]. However, cameras often require high
computational, networking and energy resources, a direct line
of sight, and adequate lightning, which increase the installa-
tion complexity and system cost. Cameras also raise signifi-
cant privacy concerns, since the residents are often rejecting
constant video monitoring even with blurred images [1].

Other solutions are based on Ultra-Wide Band (UWB)
radios or on the measurement of received signal strength vari-
ations on narrow channels [10]–[13]. They typically require
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the person to wear an active tag or the installation of many
mains-powered sensors. The tag can often be an important
reliability and usability drawback, because the person may
forget or be reluctant to wear it [1], leading to missing or
incomplete traces.

Ultrasonic systems have also been used for indoor person
localization [7]. However, they also require the user to carry
a tag and long-term exposure to ultrasonic noise can cause
harmful health effects [14].

Wi-Fi-based systems have been studied for indoor localiza-
tion [15]–[17]. They rely on the presence, by now common,
of many Wi-Fi-enabled devices in the monitored area to
calculate the Time of Arrival (TOA), Angle of Arrival (AOA)
and Received Signal Strength (RSS). However, for an ade-
quate accuracy these systems require a large number of
Wi-Fi-enabled devices, which have high power consump-
tion. Another limitation is signal attenuation by walls and
furniture [17].

Other systems attach tags to the objects that are routinely
used by the person, such as the pill box, fridge door or
house keys, to monitor when the person uses these items [18].
However, if the person does not interact with the monitored
objects, the system will fail to provide any information.

Systems based on passive infrared sensors (PIR) can also
be used for tagless localization [19]–[22]. For effective local-
ization, these solutions require a large number of sensors
which increase the installation cost and reduce the user accep-
tance, because they visually remind them that they are being
monitored [1]. Moreover, PIR sensors can give false readings
if they are exposed to common infrared (IR) sources, such as
sunlight [23], good heat conductors, IR radiation reflectors,
incandescence light bulbs [1].

Capacitive sensing is also used for human detection, local-
ization and identification [24], [25]. Capacitive coupling has
various uses, from musical instruments (Theremin) to preci-
sion instruments (e.g., to measure the mechanical vibration of
motors and generators) and for user interaction with the touch
screens of mobile phones. The measurements are passive and
are not affected by materials with relative permittivity close
to that of the air, hence they can operate behind objects made
of such materials [23].

Load-mode single-plate capacitive sensors simplify the
installation, reduce the overall cost, and do not raise signifi-
cant privacy concerns. However, their accuracy and sensitiv-
ity steeply decrease for distances beyond transducer size [26],
are not directional and are sensitive to several environmental
factors besides human presence, such as humidity, electro-
magnetic interference (EMI), or conductive objects. Hence,
the whole sensor data processing chain is very important to
achieve good localization accuracy and stability in variable
environmental conditions.

Our previous work [24] focused mostly on front-end
analog and digital sensor data pre-processing techniques.
In this article we significantly extend our previous work by
focusing mostly on the localization performance of different
ML classification algorithms, since we have seen that it is

very important for the overall performance of the localization
system.

For this purpose, the main contribution of this article is
the comparative analysis of the localization performance of
Weka collection ofML classifiers using the capacitive sensors
raw data with very limited pre-processing. First, we briefly
describe the design of the capacitive sensors and their use
to monitor a confined space. Then, with this setting, we
compare several quality metrics of the person localization
system using a large variety of ML classifiers, all process-
ing the same sensor data. The experimental results show a
marked improvement of the localization accuracy, precision
and recall with respect to our previous work [24]. For the best
performing classifiers we also analyze also how the size of the
training sets affects the classification quality.

The rest of the article is organized as follows. Related
work is discussed in Section II. In Section III we discuss the
main building blocks of our capacitive sensors. Section IV
details the organization of our experiments. In Section V we
discuss the results of the experiments. Section VII concludes
the article.

II. RELATED WORK
Our work combines long range capacitive sensors and
machine learning classifiers for indoor localization of
persons.

While machine learning-based classifiers have been exten-
sively researched, long-distance capacitive sensors are a
relatively new research area. An extensive overview of more
than 193 capacitive sensing techniques categorised by appli-
cation domain includes indoor localization along, e.g., touch,
gesture, grip and grasp recognition [27]. Often, indoor local-
ization requires sensor installation in the floor [28]–[33] or
costly changes of the monitored area which are impractical
for home use [34]–[36], on in mats [4]. The latter determines
the person location relative to mat position and the monitored
area can be extended by deploying more sensor-fitted mats.

Capacitive sensors for localization may also be installed
in predefined places, for example near light switches, the
study table [37]–[39], or to detect the presence of the driver
in a vehicle [40]. The sensors can be used for close prox-
imity interaction with computers, e.g., gesture recognition
and interaction with computer games from short distances
[41], [42]. Similarly, capacitive sensors were used for gesture
recognition to prevent a patient from falling off a chair [43]
or installed in a bed to detect sleep patterns [44]. In [45], the
authors use capacitive sensors to classify different modes of
walking (fast, jogging and walking while carrying weight).
In another study, the authors use capacitive sensors to classify
various postures of the user [46]. In all these studies the sensor
range is too short for the purpose of indoor localization.

Human activity can be detected using capacitive sensors
from behind a piece of furniture, without a direct line of
sight [26], or to detect variations in environmental fields, e.g.,
those generated by power lines [47], [48]. In [48], the authors
use the 50Hz field generated by the power supply lines to
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localize a human subject in an area of 3.52m×3.52m by
correlating the sensor outputs with an accurate camera-based
localization, but withoutmachine learning techniques. Spread
spectrum capacitive sensors for human detection up to 1m
were also proposed [49], but their suitability for localization
is not clear.

Environmental electromagnetic noise and surrounding
objects with permittivity different than air may interfere with
capacitive sensormeasurements. Tomitigate these effects, the
sensor plate can be guarded by auxiliary fields to reduce the
unwanted couplings of the sensor plate with the surrounding
objects [26], [42], [50], and by post-processing sensor data to
improve the reliability of long-range measurements.

Sensor data can be further filtered and processed by the
classification algorithms, which ultimately output the approx-
imate location of the person. Before being ready for local-
ization, ML classifiers need to be trained with sensor data
sets labelled with the position of the person. After training,
the ML classifiers can be used for localization, in which they
receive new data sets for which they return the approximate
location of the person based on the internal model built during
training.

Previous studies evaluated various algorithms for different
classifications and using different types of sensors, e.g.,
GPS and accelerometers. In [51], the authors review various
studies on using sensor data for training and testing ML clas-
sifiers. One such study uses GPS coordinates, speed, head-
ing change, and acceleration among others, and tests these
features on five different classification algorithms (Bayesian
Net, Decision Tree, Random Forest, Naive Bayesian and
Multilayer Perceptron) [52]. The test results show that
Random Forest outperforms other algorithms.

Random Forest was proposed by Breiman as one of the
ensemble methods [53]. Its internal model is generated by
training multiple trees separately with the same distribu-
tion and choosing randomly the data samples to ensure
that the decision trees are not correlated [54]. The classi-
fication is done by a majority vote among the decisions
of all trees. The algorithm is robust to noise and out-
liers, and can work with nonlinear associations in a wide
range of application domains, such as environment, ecology,
bioinformatics, remote sensing and in physical time-activity
classification [54], [55].

The performance of the classifiers can be improved by
boosting techniques, such as a majority vote among simi-
lar classifiers or a weighted majority vote (AdaBoost) [56].
AdaBoost classifies well new sets, but its performance can
degrade for noisy data due to the exponential change of
its loss function [57]. LogitBoost uses a logarithmic loss
function that changes linearly with the classification error
and reduces the algorithm sensitivity to data noise and out-
liers [56].

Support Vector Clustering (SVC) [58] is a clustering
method based on Support Vector Machines (SVM). SVC
maps data points to a high dimensional feature space using
Gaussian kernels, where the algorithm searches for the

minimal enclosing sphere. This sphere is mapped back to data
space, where it forms the contours that contain clusters of data
points.

K-Nearest Neighbors (k-NN) is an instance-based (lazy)
learning method that uses a similarity metric between the test
and training samples (e.g., Euclidean distance). As most lazy
learning algorithms, k-NN assumes little or no knowledge on
data distribution because it does not create a generalization of
the training data [59]. Hence, the modeling time is reduced,
but the algorithm needs to keep all training samples in mem-
ory during classification, which can be fairly memory- and
processing-expensive for low-resource embedded devices or
for large training sets.

A. MAIN CONTRIBUTIONS
In our previous work, we demonstrated the use of capacitive
sensors for localization of a person in a 3m×3m room [24].
We used four sensors, each attached to a wall of the room.
Each sensor data was processed using digital filters, then the
data labelled with the person position within the room was
used to train and test some machine learning classifiers to
infer the location of the person in the room.

Our current work comparatively presents the performance
of a much wider set of machine learning classifiers. We
show that some machine learning classifiers can provide
good localization results even with considerable less filtering
with respect to [24]. We also analyze the effects of the size
of the training data on the localization results, for different
localization algorithms.

We include in the analysis most ML classification algo-
rithms from the Weka collection for testing machine learning
algorithms. Whenever possible, we compare the results with
our previous findings.

Our study consisted of the following steps:
1) Collect time-stamped measurements from the four

capacitive sensors in the room;
2) Process the sensor data (data conditioning and person

localization) using different ML classification algo-
rithms from the Weka collection;

3) Analyze the performance of the of ML classification
algorithms in terms of localization accuracy, average
distance error, precision and recall;

4) Analyze the effect of training data size on localization
performance of the algorithms.

B. CAPACITIVE SENSING
Electrical capacitance is defined as the electrical charge
stored on a conductive object divided by the resulting change
of its potential. The capacitance depends primarily on the
geometry, distance, and dielectric properties of a system [42].

We use a capacitive sensor in load mode. In this mode,
the sensor is connected to one plate of the capacitor, while
the other plate is made of the environment and the person
body, whose potential is considered constant for the purpose
of the measurement. We indirectly measure the changes in
the capacitance of the sensor by measuring the free running
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frequency of an astable multivibrator, which repeatedly
charges and discharges the capacitor of the sensor
(see Section III).

A larger plate capacitive sensor has a higher sensitivity, but
it typically collects more noise from the environment, which
in turn limits the sensor sensitivity. For a given plate size,
its capacitance depends on the distance d between the plate
and the person body and on the properties of the environ-
ment (geometry, permittivity, conductivity). We show that the
effects of the environment on the localization can be reduced
if the data from several sensors are used for training and
testing of theML classification algorithms, withminimal data
filtering.

Fig. 1. Main building blocks of Sensor Node and Base Station. Four
Sensor Nodes were connected to a single Base Station.

III. CAPACITIVE SENSOR MODULE AND
DATA ACQUISITION SYSTEM
The block diagram of our localization system is shown in
Fig. 1. Each sensor has an 8 cm×8 cm copper clad plate
attached as the external capacitor to a 555 integrated circuit in
astable multivibrator configuration, for which the oscillation
frequency is given by the formula:

Frequency =
1

0.7 (R1 + 2R2)C
, (1)

where R1 = 200 k� and R2 = 560 k�. We selected this
size for the sensor plate because from our previous analysis
it provides a good trade-off between the sensor size and its
sensitivity [24].

With this system in place, we obtained from the four
sensors in the room the oscillation frequencies shown in
Fig. 2 and Fig. 3. The overall plate capacitance approximately
depends on the distance from the person (d) as d−2.5, as
shown in [24]. Although the absolute frequency can vary
significantly between experiments, the relative variations due
to person proximity remain very similar among experiments,
as we will discuss in Section V.

We measured the frequency using an Arduino Uno board
and we used an XBee 802.15.4 modem to transmit the mea-
surements to a central node for post-processing and person
localization.

Fig. 2. Raw data for Set A, sensor A, B, C, D in (a), (b), (c) and (d)
respectively. Each color corresponds to one of the 20 data sets collected.

IV. EXPERIMENTAL SETUP
We set up a realistic experiment in order to assess the per-
formance of different ML classification algorithms for the
localization of a person in an uncontrolled indoor environ-
ment. We designated an area of 3m×3m as the ‘‘room’’ and
we positioned four capacitive sensors (A, B, C and D) at
the center of each one of the four ‘‘walls’’ of the room, at
a height of 115 cm from the floor, as shown in Fig. 4. By
‘‘uncontrolled’’ we mean that we did not prepare the room
in any way for the experiment. For instance, we kept in place
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Fig. 3. Raw data for Set B, sensor A, B, C, D in (a), (b), (c) and (d)
respectively. Each color corresponds to one of the 20 data sets collected.

large metallic objects which may affect the plate capacitance
and its sensitivity to person presence, as well as sources of
electric noise, such as a fridge and an electric switch board
on a side wall.

To gather a single set of experimental data, a person stood
still for 8 s on each position, while each sensor acquired
8 samples with a sampling frequency of 1Hz. We kept
the sampling rate low to reduce the energy consumption,
while still being able to track the daily movements of an
elderly person moving with a speed of about 1-2 km/h indoor.

Fig. 4. Organization of the experiment floor and body orientation for
first localization experiment (experiment A). A fridge and metallic cabinet
are partially included in the designated room space, while a metallic door
and an electric switch board are close to the room space. They emulate
the presence of metallic and electric objects in an apartment or house.

We repeated this procedure for all 16 positions in the room
to complete the experiment, thus each experiment provided
128 four-tuple samples.

We noticed that the base frequency of the sensors
(i.e., without a person nearby) may change each time they
are turned on. Thus, after gathering the data for each of the
16 positions within one experiment, we reset all the sensor
nodes in order to make sure that we include also this type of
noise in the experimental data.

We also noticed that the data are afflicted by very low
frequency drifts and environmental conditions, hence we split
the collection of the experimental data in three sessions.
In Session A, we performed 20 experiments from which
we obtained 2560 four-tuple samples (20 experiments ×
8 samples per location × 16 locations). From now on we
will refer to these data as Set A. After a few months, we
used the same equipment to perform 10 additional exper-
iments, in which we collected 1280 four-tuple samples
(10 experiments × 8 samples per location × 16 locations).
One week later, we collected another 10 experiments that
added 1280 more four-tuple samples (10 experiments ×
8 samples per location× 16 locations). Then we grouped the
last 20 experiments (2560 samples) in a single set, Set B.

Moreover, the orientation of the body can also influence the
sensor measurements, because for different rotation angles
the distance from the closest body part to the sensor may
change for a given position in the room. Thus, the 20 exper-
iments in Set A were actually made of two sets: 10 experi-
ments in which the person orientation was the one shown in
Fig. 4 (i.e., with the chest towards sensor A), and the other
10 experiments in which we changed the orientation by 90◦,
as shown in Fig. 5 (i.e., with the chest towards sensor B).
The latter orientation was kept also for all samples collected
in Set B. We considered only two orientations during the
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Fig. 5. Organization of the floor and body orientation for the second
localization experiment (B).

experiments, namely either facing the sensors or exposing a
shoulder to the sensors, because the human body is roughly
symmetric and the capacitance difference between the front
and back or between the left and right shoulder are similar.

V. EXPERIMENTAL RESULTS
A. DATA PREPROCESSING
The capacitive sensors change their base frequency over time
even without a person in range, because of changes in the
environmental conditions. These changes can significantly
offset the acquired data, as shown in Fig. 2 and Fig. 3,
where each plotted line represents a different experiment. To
compensate for these changes, we used the followingmethod:
we calculated the standard deviation of all the samples in a
given set, then we calculated the average only for the samples
within the bounds of the standard deviation, and then we
subtracted the average value for each set from all the samples
in that set. We applied this procedure for all experiments and
we see in Fig. 6 and Fig. 7 that the data sets are better aligned.

Then we have used these sets to test the performance of the
ML classification algorithms for person localization. This is
similar to using a median filter, as in [24], with a window of
128 seconds.

B. ALGORITHM PARAMETERS
We executed all Machine Learning (ML) classifiers in the
current study with their default parameter values used in the
Weka collection, except for the boosting algorithms, where
we tried only the base algorithms which are mentioned in the
results tables along with the names of boosting algorithms.
These default parameters can be found in Weka collection
documentation [60].

In BayesNet, the search algorithm is set by default to
K2 and the maximum number of parents of a node is set to 1.

For Random Forest, the number of iterations was set to 100
and unlimited tree depth. We also tried with 200 iterations

Fig. 6. Offset-compensated data for Set A, sensor A, B, C, D in (a), (b),
(c) and (d) respectively. Each colour corresponds to one of the data sets
collected.

but that gave an improvement of less than 0.5% which is very
limited when compared to doubling of computational cost.

For SVM, we used the SVC clustering method with the
radial basis function from Weka collection LibSVM pack-
age [61]. For k-NN, we set k = 1. We also tried k values
up to 100, but higher values degraded the performance in our
case.

For LogitBoost running on top of Random Forest, the
number of boosting iterations was set to 10, on top of Random
Forest 100 iterations.
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Fig. 7. Offset-compensated data for Set B, sensor A, B, C, D in (a), (b),
(c) and (d) respectively. Each colour corresponds to one of the data sets
collected.

Similarly, for AdaBoostM1 the number of boosting itera-
tions was set to 10 on top of Random Forest 100 iterations
and on top of C4.5.

C. LOCALIZATION
We first evaluated the performance of the Weka collection
ML classifiers for indoor person localization using data
sets A and B (see Section IV). Then, we merged Set A and
Set B in a new set, Set C, which had a higher variance than

each of its composing sets A and B, and we processed Set C
with Weka algorithms as well. For each algorithm, Weka
splits the input data in two parts: 75% for algorithm training
and 25% for algorithm testing. We executed each algorithm
100 times, reshuffling the input data before each run, then we
averaged the localization results over all 100 runs for each
algorithm.

We show in Table 1, 2 and 3 the results for data
sets A, B and C of the four best performing ML classifi-
cation algorithms in the Weka collection: Random Forest,
k-Nearest Neighbors (for k = 1, i.e., one neighbor), Bayes
Net and Support Vector Machine with SVC. We also report
the results of LogitBoost used on top of Random Forest

TABLE 1. Average localization accuracy and error for data Set A for
100 runs of Weka collection best performing ML classification
algorithms and boost methods.

TABLE 2. Average localization accuracy and error for data Set B for
100 runs of Weka collection best performing ML classification
algorithms and boost methods.

TABLE 3. Average localization accuracy and error for data Set C for
100 runs (and average of 100 runs of 10-fold cross-validation in
parentheses) of Weka collection best performing ML classification
algorithms and boost methods.
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and AdaBoostM1 on top of Random Forest and C4.5. For
all of them, we compare the localization performance in
terms of accuracy and average distance error, calculated
by summing all localization errors for all room locations
and for all test samples, and dividing by the total num-
ber of test samples. For Set C, we also show in parenthe-
ses the results of 10-fold cross-validation, averaged over
100 runs.

Average distance error calculations were based on the
confusion matrix generated by Weka for each tested algo-
rithm. Fig. 8 shows one confusion matrix for Random Forest
applied to Set A. The top row lists the correct positions
and the rightmost column lists the positions determined by
the algorithm. In absence of localization errors, the con-
fusion matrix is diagonal. Each number outside the diag-
onal represents the number of erroneous predictions. We
use these numbers together with the distance between the
actual and the predicted position to calculate the total distance
error.

Fig. 8. One Random Forest confusion matrix generated by Weka for data
Set A. The top row lists the correct positions and the rightmost column
shows the positions determined by the algorithm. Each non-diagonal
number represents the number of erroneous predictions.

Random Forest was consistently the best performing algo-
rithm of the Weka collection, with accuracies of 92.81%,
91.53% and 91.56% for Set A, Set B and Set C respec-
tively, and the lowest average distance error. The algorithm
performance generally decreased on Set B because it is
noisier (see Fig. 7, especially sensor B data in Fig. 7b).
SVM and k-NN were generally the second best performing
algorithms with almost similar results. Bayes Net perfor-
mance on Set B was almost the same, unlike k-NN and
SVM whose performances decreased on Set B. Among the
boosting algorithms, both LogitBoost and AdaBoostM1,
showed slight improvements in terms of accuracy and average
distance error. However, LogitBoost can be fairly expen-
sive during both training and inferring, as we will discuss
in Section V-G.

Note that these results are significantly different from those
in [24] because of two main reasons:

1) we did not denoised the data with low-pass filters;
2) we used a better implementation of the machine learn-

ing algorithms, from Weka collection instead of using
our own MATLAB code.

Fig. 9. Localization error (in meters) for each position for
Set C: (a) Random Forest, (b) SVM, (c) k-NN (for k=1), (d) Bayes Net.
Darker dots for higher errors.

D. AVERAGE DISTANCE ERROR PER POSITION
Fig. 9 shows the distribution of the total distance error of each
algorithm between the 16 room positions defined in Fig. 4.
For each room position, we added the distance between the
actual and the predicted position, and divided the sum by the
total number of test samples. The average distance error is
shown both quantitatively (in meters, below each position)
and qualitatively (as dot intensity, darker for higher errors).
Random Forest remains the best performing in terms of error
among all locations.

12920 VOLUME 5, 2017



O. B. Tariq et al.: Performance of ML Classifiers for Indoor Person Localization With Capacitive Sensors

E. PRECISION AND RECALL
Recall and precision are calculated as follows:

Recall (%) =
True Positives

True Positives+ False Negatives
× 100

(2)

Precision (%) =
True Positives

True Positives+ False Positives
× 100

(3)

where True Positives is the number of 4-tuples that are cor-
rectly classified, False Negatives is the number of 4-tuples
pertaining to a position that are incorrectly classified as other
positions, and False Positives is the number of 4-tuples per-
taining to other positions that are incorrectly classified as a
given position.

TABLE 4. Average precision and recall for Set A for 100 runs of
Weka collection best performing ML classification algorithms
and boost methods.

TABLE 5. Average precision and recall for Set B for 100 runs of
Weka collection best performing ML classification algorithms
and boost methods.

TABLE 6. Average precision and recall for Set C for 100 runs (and average
of 100 runs of 10-fold cross-validation in parentheses) of Weka collection
best performing ML classification algorithms and boost methods.

Fig. 10. Training data size dependency of average accuracy (a), distance
error (b), precision (c) and recall (d) for set C for best performing machine
language classification algorithms in Weka collection: Bayes Net (BN),
k-Nearest Neighbors (k-NN with k = 1), Random Forest (RF), Support
Vector Machine (SVM), LogitBoost (LB(RF)) and AdaBoostM1(AB(RF))
running on top of Random Forest, and AdaBoostM1(AB(C4.5)) running on
top of C4.5.

Table 4, 5 and 6 show the average precision and recall
of the algorithms for Set A, B and C respectively. As men-
tioned above, 75% of the samples in each set were used
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Fig. 11. Training data size dependency of average accuracy (a) and distance error (b) for set C for Weka collection ML classification algorithms. Starred
algorithms are built on top of Random Forest.

for training and 25% were used for testing. For Set C, we
also show in parenthesis the average of 100 runs of 10-fold
cross-validation results. LogitBoost on top of Random Forest
performed best for all sets, followed closely by AdaBoostM1
on top of Random Forest and then by their base algorithm,
Random Forest. LogitBoost precision and recall are above
93% for Set A, and above 92% for sets B and C. Random
Forest precision is above 93% and the recall is above 92% for
Set A, and above 91% for Set B and C.

The slightly lower performance for Set B is likely due to
its noisier data, as can be seen in Fig. 7. Note, however,

that all best performing ML algorithms considered are very
robust to the significant amount of noise exhibited by our
data sets.

F. TRAINING DATA SIZE
The performance of the ML classifiers strongly depends
on their training. However, there is no agreement on the
optimal size of the training data in the scientific literature.
The influence of the training data size on the performance
of various algorithms is summarized by [51] from various
previous studies.
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In the following, we investigate how differentWeka collec-
tion ML classification algorithms perform when trained with
reduced data sets. The purpose is to explore if we can reduce
the duration of training with a low impact on performance, so
that the end users do not have to spend too much time training
the system in actual deployments.

For this purpose, we split the 5120 four-tuples samples in
Set C in 25% (1280 four-tuple samples) for testing and a
variable size for training as follows:

1) 15% (768 four-tuple samples) for training and 25%
(1280 four-tuple samples) for testing

2) 30% (1536 four-tuple samples) for training and 25%
(1280 four-tuple samples) for testing

3) 45% (2304 four-tuple samples) for training and 25%
(1280 four-tuple samples) for testing

4) 60% (3072 four-tuple samples) for training and 25%
(1280 four-tuple samples) for testing

5) 75% (3840 four-tuple samples) for training and 25%
(1280 four-tuple samples) for testing

For each training ratio above, we shuffled all data in Set
C before splitting it into training and testing samples, then
we ran the localization algorithm. We repeated this process
100 times for each ratio.

The results in Fig. 10 and Fig. 11 show that different
algorithms are affected differently by the size of the training
set. Generally, a larger training set improves the performance
up to a point of near saturation. Precision and recall follow
a similar trend, again with LogitBoost improving slightly the
performance of its base algorithm, Random Forest.

G. TRAINING AND INFERRING EFFORT
We compare the training and inferring effort required by
some of the best performing localization algorithms. The
performance during the inferring (localization) phase is by
far the most critical for most applications, since it typically
lasts for the entire exploitation phase of a deployed system
(years), while the training phase is generally much shorter.

The Weka collection ML algorithm suite was run on a
Virtual Machine running Ubuntu (64 bit). The Virtual
Machine was allocated 2GiB of physical memory and 1 CPU.
The host system had an AMD Athlon 64 X2 Dual Core
processor, 4GiB RAM and was running Windows 10.

Table 7 shows the time taken by different algorithms to
build the model during training and the time taken to infer
the location using the test data. LogitBoost performs slightly
better than AdaBoostM1, both on top of Random Forest,
but at the cost of much higher modelling and inferring time
since it computes the weights after every iteration based on
the obtained classifier [62]. AdaBoostM1 on top of C4.5
performs slightly worse than Random Forest, but it infers
faster.

K-Nearest Neighbor is a non-parametric lazy learning
algorithm that keeps all training data in memory for infer-
ring instead of building a model during training. Hence, it
trains fast, but it is computing- and RAM-intensive during
inferring.

TABLE 7. Average processing effort during training and inferring for set C
for 100 runs of the best performing Weka collection algorithms. Random
Forest seems to be the best trade-off between processing effort and
performance.

Random Forest is an ensemble method whose overall train-
ing complexity is close to the sum of the complexities of
building the individual trees. The actual complexity varies
with parameters like number of trees (100 in our case).

Fig. 12. Processing effort in terms of CPU time during training (a) and
processing effort during inferring (b) versus accuracy for set C. Bayes Net
(BN), k-Nearest Neighbors (k-NN with k = 1), Random Forest (RF),
Support Vector Machine (SVM), LogitBoost (LB(RF)) and
AdaBoostM1(AB(RF)) running on top of Random Forest,
and AdaBoostM1(AB(C4.5)) running on top of C4.5. Random Forest and
AdaBoostM1 with C4.5 seems the best trade-off between localization
processing effort and performance.

Fig. 12 shows the training and inferring times versus
accuracy. As can be observed, Random Forest and
AdaBoostM1(C4.5) are the best trade-offs between localiza-
tion processing effort and performance, especially during the
testing phase.

VI. DISCUSSION
We tested the performance of ML classification algo-
rithms in the Weka collection for indoor person localization
using capacitive sensors. We compared localization accuracy,

VOLUME 5, 2017 12923



O. B. Tariq et al.: Performance of ML Classifiers for Indoor Person Localization With Capacitive Sensors

precision and recall, distance error, classification error, and
resource requirements (processing, memory and training set
size). We used two sets of 2560 four-tuples of samples
gathered from four sensors at different times. We first mea-
sured the localization accuracy and distance error for most
Weka collection classification algorithms (see Fig 11). Then,
we analyzed in detail the most promising ones: Bayes Net,
k-Nearest Neighbors, Support Vector Machine, Random For-
est, LogitBoost (running on top of Random Forest) and
AdaBoostM1 (running on top of Random Forest and C4.5).

Generally, we can conclude that Random Forest was per-
forming best. Both LogitBoost and AdaBoostM1 running on
top of Random Forest showed slightly better performance
than Random Forest. However, they required significantly
more processing time for training and inferring.

It is worth noting, however, that AdaBoostM1 used
on top of C4.5 required much less inferring time than
Random Forest, with only a slight loss of accuracy and
requiring a comparable training time. Hence, as mentioned
earlier, AdaBoostM1 on top of C4.5 can be best for energy-
constrained localization applications, e.g., to reduce the
maintenance requirements of battery-powered nodes.

VII. CONCLUSION AND FUTURE WORK
We tested under various aspects the performance of most
Weka collectionML classification algorithms for the purpose
of indoor person localization using capacitive sensors.

The data sets used for training and testing were collected
during experiments in an uncontrolled noisy environment, at
three separate times and with different body orientations, in
order to acquire realistic data sets. We used these data sets
with very little preprocessing to testWeka collection machine
learning classification algorithms.

We found that Random Forest was performing best overall,
while AdaBoostM1 used on top of C4.5 requires much less
time for inference at the cost of a small accuracy loss.

We plan to extend the duration of the experiments and to
increase the size of the experimental room beyond 3m× 3m,
thus imposing much more stress on the algorithms. We also
plan to fuse capacitive sensor data with other type of sensors
for presence, movement and distance, in order to improve the
quality of the results.
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