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ABSTRACT Visual tracking is a challenging issue in surveillance, human–computer Interaction, and
intelligent robotics, among others. Managing appearance changes of the target object, illumination changes,
rotations, non-rigid deformations, partial or full occlusions, background clutter, fast motion, and so forth is
generally difficult. Among the numerous existing trackers, the correlation-filter-based tracker can achieve
appealing performance with a fast speed for fast Fourier transform. Motivated by this property, the spatio-
temporal context (STC) learning algorithm was proposed with the consideration of the information from
the context around the target, and this algorithm achieved good results. However, STC only utilizes the
overall intensity information. In this paper, we propose a multi-channel features STC learning algorithm
with an improved scale-adaptive scheme. Our algorithm integrates powerful features, including Histogram
of Oriented Gradients and color naming, using kernel methods on the basis of the STC algorithm to
further enhance the overall tracking performance. Extensive experimental results obtained from various
benchmark data sets demonstrate that the proposed tracker is promising for various challenging scenarios
and maintains real-time performance at an average speed of 78 frames/s. According to the test results, our
algorithm outperforms the STC algorithm and achieves performance that is competitive with the state-of-
the-art algorithms.

INDEX TERMS Object tracking, kernel methods, correlation filters, fast Fourier transform.

I. INTRODUCTION
Visual tracking is one of the most active research topics due
to its wide range of applications, such as motion analysis,
activity recognition, surveillance, human-computer interac-
tion and intelligent robotics. Designing a robust visual tracker
is a formidable task due to a number of challenging fac-
tors, such as illumination changes, appearance changes, pose
variations, non-rigid deformations, partial or full occlusions,
background clutter, fast motion, and so forth [1], [2].

An object tracker generally consists of four modules:
object description, observation model, motion model and
model updating scheme. Recently, various types of fea-
tures, such as HoG [13], [16]–[18] and color naming
[14], [17], have also been utilized in object description.
Numerous algorithms have been presented that focus on

effective observation models, which can be categorized
into generative [3]–[5], [10] and discriminative methods
[6]–[9], [16]. Many motion models have been proposed to
cover the complex motions of a target, such as particle
filtering [4],MarkovChainMonte Carlo [10], dense sampling
[16]–[19] and combinations of detection and tracking [8], [9].

Among these approaches, the discriminative correlation
filter has already been applied in many applications. As
described in the convolution theorem [11], the correlation
in the time domain corresponds to an element-wise multi-
plication in the Fourier domain. Thus, the main idea of a
correlation filter is that the correlation can be calculated in the
Fourier domain, thereby avoiding the time-consuming convo-
lution operation. Bolme et al. [11] and Henriques et al. [12]
introduced the correlation filter into a tracking application.
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The circulant structure tracker (CSK) [12] was proposed to
explore the circulant structure patch to enhance the clas-
sifier by augmenting negative samples, which employs the
kernel correlation filter to achieve high efficiency. Based on
CSK [12], KCF [16] adopts the HoG feature [13] rather
than raw pixels to improve the robustness of the tracker.
To further enhance the performance of the CSK tracker,
Danelljan et al. [14] adopted the color-naming feature in
the object tracking task, which is a powerful feature for
colored objects. The scale problem remains unresolved in the
aforementioned methods. Although scale-adaptive variants,
namely, SAMF [17] and DSST [18], have been proposed,
they are not flexible enough due to pre-defined sampling
behaviors. For example, these methods encounter difficulties
with fast and abrupt scale changes.

The differences between STC and the other introduced
correlation filter trackers include the following aspects [2].
First, STC is proposed to model the relationships between
the object and its local spatial contexts, whereas common
correlation filter trackers model the input appearance using
trained filters. Second, the values of the confidence map in
STC can be referred to as prior probabilities given the current
object, whereas the values in the confidence maps of other
correlation filter trackers are correlation scores [2]. Third, the
STC algorithm has the ability to estimate scale variations, but
the scale estimation is occasionally unstable.

The contributions of this paper are two-fold. First, we
integrate powerful features, including HoG and color naming,
using kernel methods on the basis of the STC algorithm.
Second, we improve the scale-updating scheme to obtain
high efficiency. Based on the benchmark protocol and dataset
from [22], [23], an experiment is also conducted on the
datasets with various challenging attributes. Our tracker
reports a better accuracy while running efficiently at an aver-
age speed of 78 frames per second (fps).

The remainder of this paper is organized as follows.
In section II, we briefly describe the building blocks of
our algorithm, including the original STC algorithm, mul-
tiple features and kernel methods. Then, the novel MFSTC
algorithm and some implementation details are developed
in section III. In section IV, the experimental results and
discussion are presented. Finally, we conclude the paper
in section V.

II. BUILDING BLOCKS
In this section, we first review the STC tracker [19]; then,
we introduce the powerful features utilized in our approach:
HoG and color naming. To integrate multiple features into the
tracker, we utilize kernel methods.

A. THE STC TRACKER
The STC [19] algorithm is an object tracking algorithm that
translates the tracking task into a process of locating the
object center by calculating a confidence map at every frame.
This algorithm is designed to learn a likelihood distribution,
which is defined as the prior possibility of locating an object

FIGURE 1. Graphical model of the spatial relationship between an object
and its dense local context. The object is inside the green rectangle
centered at the tracked result x∗. The dense local context �c (x∗) is the
region inside the blue rectangle, which includes the object region. The
image is from a publicly available dataset [22].
http://cvlab.hanyang.ac.kr/tracker_benchmark/

in position x (x ∈ R2):

`(x) = P(x
∣∣o) (1)

where `(·) means likelihood and o is the object in the scene.
Let x∗ (refer to Figure 1) denote the position of the tracked
object center, and let �c(x∗) denote the neighboring coordi-
nates around x∗. Then, a context feature set can be defined by
Xc
=
{
v(z) = (I(z), z)

∣∣z ∈ �c(x∗)
}
, where I(z) denotes the

image intensity at location z. By marginalizing the likelihood
distribution of v(z) given o,

`(x) = P(x
∣∣o)

=

∑
v(z)∈Xc

P(x, v(z)
∣∣o)

=

∑
v(z)∈Xc

P(x
∣∣v(z), o)P(v(z)∣∣o) (2)

where x and z are 2D location coordinates, o is the object,
and the spatial context model P(x, v(z)

∣∣o) is the joint proba-
bility that models the spatial relationship between the object
location and its context information. P(v(z)

∣∣o) is the context
prior probability, which models the appearance of the local
context. Thus, the main task in the STC algorithm is to learn
P(x

∣∣v(z), o) since it is the bridge between the object location
and the spatial context.

To obtain the spatial context model P(x
∣∣v(z), o), we must

first obtain the context prior model P(v(z)
∣∣o). In [19], the

context prior model was modeled as

P(v(z)
∣∣o) = I(z)ωσ (z− x∗) (3)

where I(·) is the image intensity and ωσ (·) denotes a
Gaussian-weighted function defined by

ωσ (z− x∗) = a exp
(
−

1
σ 2 (

∥∥z− x∗
∥∥2) (4)

where a is a normalization constant and σ is a scale parameter.
Since there is no direct expression of P(x

∣∣v(z), o), let us
define a function to describe it:

P(x
∣∣v(z), o) = h(x− z) (5)
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When the tracking object is marked, STC defines the
confidence map of the object center as follows:

`(x) = P(x
∣∣o) = b exp

(
−

∥∥∥∥x− x∗

α

∥∥∥∥β
)

(6)

where b is also a normalization constant, α is a scale
parameter, and β is a shape parameter. Subsequently, by
combining equations (2), (5) and (3), we obtain the following:

`(x) =
∑

v(z)∈Xc

P(x
∣∣v(z), o)P(v(z)∣∣o)

=

∑
v(z)∈Xc

h(x− z)I(z)ωσ (z− x∗)

= h(x)⊗ I(x)ωσ (x− x∗) (7)

where ⊗ denotes the convolution operator. Because the
Fourier transform of a convolution equals the pixel-wise
product of a Fourier transform, we can transform equation (7)
into the frequency domain, where the fast Fourier trans-
form (FFT) can be used for fast calculations, i.e.,

F(`(x)) = F(h(x))� F(I(x)ωσ (x− x∗))

= F
(
b exp

(
−

∥∥∥∥x− x∗

α

∥∥∥∥β
))

(8)

whereF is the FFT operation and� is the pixel-wise product;
thus, we can obtain

h(x) = F−1

F
(
b exp

(
−

∥∥∥ x−x∗
α

∥∥∥β))
F(I(x)ωσ (x− x∗))

 (9)

where F−1 denotes the inverse FFT function and division
is performed element-wise. The spatial context model h(x)
learns the relative spatial relations between different pixels in
a Bayesian framework.

After we obtain h(x), the tracking task becomes a detection
problem. We assume that we have updated the spatial context
model Ht (x) in the t − th frame; then, the object center x∗t+1
in the (t + 1)− th frame with the maximum value in `t+1(x)
can be viewed as the new position of the object. `t+1(x) of
the new frame can be calculated as follows:

`t+1(x) = F−1(F(Ht (x))� F(It+1(x)ωσ (x− (x∗t )))) (10)

where Ht (x) is updated online as follows:

Ht (x) = (1− ρ)Ht−1(x)+ ρht (x) (11)

where ρ is the learning rate.

B. MULTIPLE FEATURES
HoG is one of the most popular visual features in the field of
computer vision since it is very effective in practical applica-
tions. The HoG feature extracts the gradient information from
a cell, which is a region of pixels. HoG counts the discrete
orientations to form the histogram. As in [13], we adopt the
31 gradient orientation bins variant in our approach [16], [17].

In addition to HoG, color naming or color attributes are
also believed to be beneficial [14]. Being better than the RGB
space, the distance in color name space is more similar to
human perception. We transform the RGB space into the
color name space, which is an 11-dimensional color represen-
tation that includes black, blue, brown and so on. Color names
provide the perception of object color with unit length, which
typically contains the important information of the target.

C. KERNEL METHODS
Henriques et al. [16] proposed the use of the kernel trick
to extend correlation filters for very fast tracking. The main
reason for its prominent speed is that the tracker exploits the
circulant structure that appears from the periodic assump-
tion of the local image patch. A classifier is trained using
image patch x of size M × N that is centered around the
object. The tracker considers all cyclic shifts xm,n, (m, n) ∈
{0, . . . ,M − 1} × {0, . . . ,N − 1}, as the training examples
for the classifier. These are labeled with a Gaussian func-
tion y; thus, ym,n is the label for xm,n. The classifier is trained
by minimizing the cost function over w.

ε =
∑
m,n

∣∣〈ϕ(xm,n),w〉− ym,n∣∣2 + λ 〈w,w〉 (12)

where ϕ is the mapping to the Hilbert space induced by the
kernel κ , and the inner product is defined as 〈ϕ(f ), ϕ(g)〉 =
κ(f , g). The constant λ is a regularization parameter. The cost
function is minimized by w =

∑
m,n αm,nϕ(xm,n), where the

coefficients α are

F(α) = α̂ =
ŷ

k̂x′x′ + λ
(13)

where F is the DFT (discrete Fourier transform) operator.
kx
′x′ is defined as kernel correlation in [16]. We choose the

Gaussian RBF kernel, which can be applied to the circulant
matrix trick as follows:

kx
′x′′
= exp

(
−

1
σ 2 (

∥∥x′∥∥2 + ∥∥x′′∥∥2 − 2F−1(x̂′
∗

� x̂′′))
)
(14)

The detection step is conducted by previously cropping out
patch z of sizeM×N in the new frame. Patch z is treated as the
base sample to calculate the response in the Fourier domain,

f̂(z) = k̂x
′z
� α̂ (15)

where matrix f contains the output of model f () for all cyclic
shifts of z. Intuitively, evaluating f (z) can be viewed as a
spatial filtering operation over the kernel values kx

′z. Each
f (z) is a linear combination of the neighboring kernel val-
ues from kx

′z weighted by the learned coefficients α. The
location of the maximum element in f corresponds to the
cyclic shift of z most similar to the current target appearance
x′. For more details regarding the formulation, please refer
to [12] and [16].
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III. PROPOSED MULTIPLE-SCALE MFSTC TRACKER
The original STC algorithm adopts an update scheme by
considering all previous frames when calculating the cur-
rent model. However, this scheme is only applied to one-
dimensional features and linear kernels. To integrate multiple
features, we propose a multiple-scale MFSTC tracker. The
block diagram of the proposed MFSTC tracker is presented
in Figure 2. The multi-dimensional features integration
and target position update are described in section III(A).
In section III(B), we introduce an improved scale update
strategy.

FIGURE 2. Block diagram of the proposed MFSTC tracker.

A. INTEGRATION OF MULTIPLE FEATURES
The HoG feature is primarily applied for analyzing the image
gradients, whereas the color-naming feature focuses on color
representations. These two features are complementary to
each other. Based on the efficiency of integrating multi-
channel data, both the HoG feature and color-naming feature
can be fused together to promote robust tracking [17].

Since the kernel correlation function only needs to calcu-
late the dot product and vector norm, multiple channels can
be applied for the image features. Assume that the multiple
channels of the data representation are concatenated into a
vector x′ =

[
x′1, x

′

2, . . . , x
′
c
]
. Equation (14) can be rewritten

as follows:

kx
′x′′
= exp

(
−

1
σ 2 (

∥∥x′∥∥2 + ∥∥x′′∥∥2 − 2F−1(
∑
c

x̂′c
∗

� x̂′′c ))

)
(16)

which allows us to employ the stronger features rather than
the raw gray pixels. There are three types of features applied
in our proposed tracker. In addition to the raw gray pixel of
the original image, we adopt two features that are commonly
used in visual tasks: HoG and color naming.

The final location of the tracked object is determined by
two response values: one from the result of equation (10)
and the other from the output of equation (15) containing
multiple-feature-based kernel methods. We set the weights
for both response values. In practice, we average the weights
to arrive at the final tracked result, which is a common
technique for online learning.

B. UPDATE OF SCALE
STC has its own scheme for managing scale variations.
Suppose that the new estimated center of the object is x∗ and
that `(x∗) is its calculated confidence score. Then, the scales
can be estimated as follows:

s′t =

√
`t (x∗t )

`t−1(x∗t−1)
(17)

where s′t is the predicted scale at time t . To smooth the pre-
dictions, the estimated scales are averaged over n consecutive
frames, and linear interpolation is utilized for prediction:st =

1
n

n∑
i=1

s′t−i

st+1 = (1− λ)st + λst

(18)

where λ is a fixed parameter. With the estimated size of the
object, the parameter σ of the weight function in equation (4)
is also required to be updated:

σt+1 = stσt (19)

When conducting the experiments, we found that the esti-
mation in STC may occasionally be unstable because the
calculation can be extremely large if the denominator of
equation (17) is close to zero. For this case, we have proposed
an improved scale update strategy in our paper. We first set s′t
to 1 in equation (17). Then we introduce a penalty term p(s)
in equation (20) because the scale variation between two
consecutive frames is continuous and small, which prevents
an abrupt change in scale factor s.

p(s) =


− log2(s),

∣∣log2(s)∣∣ 6 d (20a)

d, log2(s) < −d (20b)

−d, log2(s) > d (20c)

Thus, the updated scale value is formulated as follows:

s′t+1 = st+1 + p(st+1) (21)

Figure 3 shows the scale comparison between the original and
the improved scale update strategy on the Bolt sequence.

FIGURE 3. A visual comparison of the original and improved scale update
schemes in the STC tracker: (a) original scale update, (b) improved scale
update.
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TABLE 1. Average P20 (%) and average frames per second (FPS). The total number of evaluated frames is 8,100.

IV. EXPERIMENTS AND RESULTS
We evaluate the proposed MFSTC tracking algorithm
using 17 video sequences with many challenging attributes,
including drastic illumination changes, heavy occlusions,
pose and scale variations, rotations, non-rigid deforma-
tions, and background clutter. Among these 17 video
sequences, 12 sequences (mhyang, shaking, singer2, coke,
crossing, girl, walking, dog1, mountainBike, faceocc2,
football, and Coupon) are from benchmark [22], 1 sequence
(walking_occ_long) is from benchmark [23], and 4 sequences
(wangyong, pigeon_rgb, pigeon_depth, and mouse_black2)
are from our own test videos. We compare the pro-
posed MFSTC tracker with 12 state-of-the-art methods in
which the FFT-based trackers [12], [14], [16]–[19] are
included. We compare with the following 12 trackers:
compressive tracker (CT) [6], fast compressive tracker
(FCT) [7], tracking-learning-detection (TLD) method [9],
incremental visual tracking (IVT) method [5], distribution

FIGURE 4. Average precision plot (left) and average success plot (right) on
all our test sequences (only the top 10 trackers are presented for clarity).

field tracker (DFT) [21], CXT [15], circulant structure
tracker (CSK) [12], kernelized correlation filters (KCF) [16],
DSST [18], SAMF [17], STC [19] and CN [14]. All the
experiments are implemented in MATLAB, and our tracker
runs at 78 fps on an i5-4460S CPU (2.90 GHz) PC with
8.0 GB of memory.

TABLE 2. Average AUC (%). The total number of evaluated frames is 8,100.
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FIGURE 5. The plot curves for the proposed tracker MFSTC compared with the other state-of-the-art trackers on the datasets (only the top 10 trackers are
presented for clarity).

A. EXPERIMENTAL SETUP
The parameters of the proposed algorithm are fixed for all
the experiments. The size of the context region is set to be
twice the size of the target object [19]. The parameter σt
of equation (4) is initially set to σ1 =

rh+rw
2 , where rh and

rw are the height and width of the initial tracking rectangle,

respectively. The parameters of the map function in equa-
tion (6) are set to α = 2.25 and β = 1. The learning param-
eter is ρ = 0.075 in equation (11). The scale parameter st is
initialized to s1 = 1, and the filter parameter is λ = 0.25 in
equation (18). In the kernel methods, σ used in the Gaussian
function in equation (14) is set to 0.5. The cell size of HoG is
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FIGURE 6. A visual comparison of our tracker with five state-of-the-art correlation filter trackers.

4×4, and the orientation bin number of HoG is 9. The penalty
constant d in equation (20) is set to 0.02 empirically.

B. EXPERIMENTAL RESULTS
We provide two types of plots, precision and success
plots [22], to evaluate the 13 trackers. Precision plots are
obtained by computing the percentage of frames from which
the location error is below a certain threshold. In TABLE 1,
we select the threshold equal to 20 pixels (P20), as proposed
in [22]. Success plots measure the bounding box overlap
between the tracked object and the ground-truth. These plots
provide the percentage of successful frames where the over-
lap is larger than a threshold as it is varied from 0 to 1. In
TABLE 2, we select the threshold equal to 0.5, as proposed
in [19]. Figure 4 shows the average precision plot (left)
and the average success plot (right) on all 17 of our test
sequences. Our proposed MFSTC tracker obtains the best
precision results on average in Figure 4 (left) and the second
best success rate (AUC) on average in Figure 4 (right).

The total number of evaluated frames is 8,100. The pro-
posed MFSTC tracker obtains better performance both in
terms of P20 of 86.2% and AUC of 74.0%, as shown in
TABLE 1 and TABLE 2.

Figure 5 shows the detailed report of MFSTC com-
pared with the other trackers: CT [6], FCT [7], TLD [9],
IVT [5], DFT [21], CXT [15], CSK [12], KCF [16],
DSST [18], SAMF [17], STC [19] and CN [14]. Although
MFSTC is not specifically designed for background clut-
ter and illumination and scale variations, amazingly, the
proposed tracker achieved appealing performances on these
challenging video sequences (refer to Figure 5(a)-(f)). These
promising results suggest that the effective features are more
effective than the complicated models for background clutter
and illumination and scale variations.

An intuitive visual comparison on four very challenging
sequences is presented in Figure 6, which shows that our
tracker can preferentially track the object. Six correlation fil-
ter trackers are included in the comparison, namely, STC [19],
CN [14], DSST [18], KCF [16], SAMF [17] and our proposed
MFSTC, as shown in Figure 6.

1) BACKGROUND CLUTTER AND
ILLUMINATION VARIATIONS
In the shaking sequence, as shown in Figure 6(a), the texture
in the background is very similar to that of the target. The
KCF and SAMF trackers drift to the background, whereas
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our proposed MFSTC algorithm achieves a better tracking
result. There are large illumination variations and background
clutter in the singer2 sequence, as shown in Figure 6(b).
This is a dynamic scenario. The STC tracker can track at the
]75, ]181, ]208 frames, but it also drifts to the background
at the ]298, ]349 frames. The DSST and MFSTC methods
provide stable tracking in the shaking and singer2 sequences.

2) POSE AND SCALE VARIATIONS
The objects in the shaking, singer2, and walking_occ_long
sequences also undergo gradual pose and scale variations in
Figure 6(a, b, d), which make the tracking tasks difficult. Our
proposed algorithm is able to successfully track the objects in
most frames of these sequences.

3) INTERMITTENT OCCLUSIONS
The target in the coke sequence is partially occluded at times
(refer to ]42 in Figure 6(c)). The walking_occ_long sequence
has heavy occlusion (see ]15, ]51 in Figure 6(d)). The KCF,
CN and DSST trackers fail to successfully track the object.
Our MFSTC algorithm has a better adaptation than the orig-
inal STC method (see ]168, ]187 in Figure 6(d)).

FIGURE 7. A visual comparison of our tracker with five state-of-the-art
correlation filter trackers on the pigeon_rgb and pigeon_depth
sequences. (a) ]116 color frame of the pigeon_rgb sequence.
(b)]116 depth frame of the pigeon_depth sequence corresponding
to (a).

On our test sequences, the values of P20 and AUC in
the pigeon_rgb and pigeon_depth sequences are lower than
those in other sequences. The pigeon has a wide range of
activities in the scene shown in Figure 7(a). It can jump
onto a high platform and walk beside a water bottle and a
feeder, which serve as the background. Because of the fast
and abrupt pose changes of the pigeon, all algorithms fail to
track in most of the frames. In the pigeon_depth sequence,
our proposed algorithm has achieved slightly better results,
as shown in Figure 7(b). In the future, we will focus on
redetection technology and on utilizing the corresponding
depth images, which will improve the tracking algorithm to
achieve better results.

V. CONCLUSION
This paper developed an effective tracker based on the
STC framework. We improved the scale-adaptive scheme
by adding a penalty term rather than pre-defined sampling
behaviors. Moreover, the powerful features, including HoG

and color naming, are fused together to further enhance the
overall performance for the proposed tracker. The extensive
empirical evaluations on the test sequences demonstrate that
the proposed method is promising for various challenging
scenarios.
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