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ABSTRACT Distributed multiple-input multiple-output (D-MIMO) systems have drawn considerable atten-
tion as they can combine the advantages of point-to-point MIMO with distributed antenna system (DAS).
However, the performance analysis of D-MIMO system with zero-forcing (ZF) receivers over semi-
correlated K fading channels involves special functions, such as Bessel and Meijer-G functions, which
do not enable us to further analysis. In this paper, by using moment matching method, we present a new
method that use a Gamma distribution to approximate the K distribution (Rayleigh/Gamma distribution).
Using the approximate distribution as a starting point, we derive the approximate analytical expressions
on the achievable sum rate (ASR), symbol error ratio (SER), and outage probability (OP) of D-MIMO
systems operating in semi-correlated K fading channels employing ZF receivers. To get useful insight into
implications of system and fading parameters on the performance, the analytical asymptotic approximations
on the ASR in high signal-to-noise ratio (SNR) and low-SNR regime are provided, respectively. Finally, we
perform the approximate large-system analysis in the high-SNR and provide asymptotic sum rate expressions
when the number of antennas at the base station (BS) grows large, and when the number of antennas at both
ends grows large with a fixed and finite ratio. It is demonstrated that the proposed approximate expressions
accurately match with the analytical expressions, especially for large-system limit.

INDEX TERMS Distributed multiple-input multiple-output, massive MIMO, K fading channel, moment
matching method, zero-forcing receiver.

I. INTRODUCTION
Distributed multiple-input multiple-output (D-MIMO) sys-
tem, which incorporates the advantages of conventional
MIMO and distributed antenna systems (DAS) to obtain spa-
tial multiplexing gains and macro-diversity gains simultane-
ously, has drawn considerable attention due to the significant
growing demand for high data rate services [1]–[4]. These
gains can be obtained by deploying multiple antennas at the
radio access ports (RAPs) that are geographically distributed.
However, different RAPs of D-MIMO system suffer from
different path-loss and shadowing fading (a.k.a large scale
fading) in view of different propagation paths and distances.
This makes the performance analysis of D-MIMO system on
the sum rate, symbol error rate (SER), and outage probability

a cumbersome problem. It is noteworthy that large scale
fading is a crucial factor since it can significantly diminish
the benefits of D-MIMO systems. For this reason, we herein
investigate the performance of D-MIMO system over com-
posite fading channels.

In the context of composite fading channels, Rayleigh/
Log-Normal (RLN) composite fading model is known as a
prevalent fading model, which is widely used to character-
ize the effects of composite fading in wireless and satellite
communication channels [5], [6]. However, the composite
probability density function (PDF) of RLN composite fad-
ing model is not in closed-form which hampers to further
analysis. To circumvent this problem, Rayleigh/Gamma com-
posite fading model which is dubbed K fading model,
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is introduced to model scattering in MIMO and radar
environment [7], [8]. As for K fading model, the Log-
Normal distribution of RLN is approximated by the analyti-
cally friendlier Gamma distribution. Empirical measurements
reveal that the Gamma distribution sufficiently models the
shadowing fading and closely approximate the Log-Normal
distribution [9], [10]. The main drawback of K model is that
the analytical expressions of achievable sum rate, symbol
error ratio (SER), and outage probability performance involve
special functions, such as Bessel, Meijer-G, and hyperge-
ometric functions, which hamper further analytical deriva-
tions.

Motivated by the aforementioned discussion, we study
the approximate performance of D-MIMO systems with
semi-correlated K fading channels with ZF receivers by
using moment matching method. Herein ZF receivers are
adopted for the following reasons: i) ZF receiver can elim-
inate the interference between antennas of the transmitters;
ii) ZF receivers induces lower complexity compared to other
receivers, such as successive interference cancelation (SIC)
or minimum mean-squared error (MMSE); iii) it is conve-
nient for analytical performance evaluationwith ZF receivers.
To the best of authors’ knowledge, there are relatively few
relevant works published in [3], [4], and [11]–[15]. In [3], the
analytical expressions for upper and lower bound of ergodic
capacity of D-MIMO systems with K fading channels are
derived, while based on the moment matching method, the
approximate performance is not involved. Besides, the cor-
relation and ZF detection are not taken into account in [3],
whilst the two key metrics of symbol error ratio (SER) and
outage probability (OP) are not considered either, which are
used to characterize the performance for the cases of post-
modulation and non-ergodic channels performance, respec-
tively. In the similar case, [4] presents the approximate upper
bound for the ergodic capacity of D-MIMO systems with
generalized-K fading channels using the moment matching
method, yet the correlation, SER, OP and K fading channels
are not considered. Gore et al. [11] consider a point-to-
point MIMO system operating in correlated Rayleigh fading,
while the effects of shadowing and path-loss are not taken
into account. In [12] and [13], the performance of D-MIMO
system overK fading channels is investigated, yet the derived
expressions involve Bessel and Meijer-G functions, which
hinder us to further analyze the effect of fading parameters.
Ho and Stuber [14] and Al-Ahmadi and Yanikomeroglu [15]
use a single distribution function to approximate the compos-
ite function by matching mean and variance, while the analy-
sis is performed for point-to-point MIMO system rather than
D-MIMO system. Unfortunately, [3], [12], [13] do not yield
engineering insights for practical system design, and large-
scale MIMO, which is known as a disruptive technology for
the fifth (5G) generation cellular networks [16]–[19], is not
considered in [11]–[15] either. In this paper, we derive closed-
form approximate expressions on the achievable sum rate,
SER, and outage probability of D-MIMO system by using
the derived approximate distribution function. In addition,

we investigate the asymptotic behavior for high and low
signal-to-noise (SNR) regimes, respectively. Finally, the
asymptotic performance of large-system limit on the achiev-
able sum rate is also studied at the high SNR.

The contributions of this paper are summarized as follows:
(1) We deduce approximate PDF of a Gamma distri-

bution to approximate the composite distribution with the
aid of moment matching method, which is extensively
used to approximate analysis for wireless communication
systems [4], [20].

(2) Capitalize on the derived approximate PDF, we com-
mence to derive the approximate expressions on sum rate,
SER, outage probability in closed-form of D-MIMO systems
over semi-correlated K fading channels. These approximate
expressions tighten across the entire SNRs and when the
number of base station (BS) antennas grows large. More
importantly, the proposed approximations provide engineer-
ing insights into the impacts of system and fading parameters
on D-MIMO performance for integer parameters.

(3) In order to get intuitive insights into the impact of
system parameters on the sum rate, we perform the asymp-
totic analysis at the high and low SNR regimes. In the high
SNR regime, it is demonstrated that the approximate result
approaches the analytical sum rate for high SNR andwhen the
number of BS antennas grows large. In the low SNR regime,
we explore the asymptotic sum rate by two metrices of the
minimum energy per information bit to reliably convey any
positive rate and the wideband slope.

(4)With the aid of the proposed sum rate, we investigate the
asymptotic sum rate of large-system limit under the cases of
fixed average transmit power and fixed total transmit power.
It is demonstrated that the proposed approximate expressions
on the sum rate match the theoretical results very well.

This paper will proceed as follows: Section 2 describes the
D-MIMO fading channelmodel and presents the performance
on the achievable sum rate, SER, and outage probability of
D-MIMO system over the semi-correlated K fading channel
employing ZF receivers. The approximate PDF is derived
by matching mean and variance in Section 3. In Section 4,
we provide novel approximate analytical expressions for the
achievable sum rate, SER, and outage probability along with
a detailed high and low-SNR analysis for the achievable
sum rate. Section 5 elaborates asymptotic performance on
the achievable sum rate of large-system limit at high SNR.
The numerical results and the corresponding analysis are
presented in Section 6. Section 7 concludes the paper and
summarizes the key findings.

As this paper contains many notations, to avoid ambiguity,
the reader is referred to Table I for a list of the most frequently
used notations.

II. 3D MIMO SYSTEM MODEL
A. D-MIMO FADING MODEL
As in [2], we consider a typical uplink D-MIMO system as
illustrated in Fig. 1, where there are one BS with Nr receive
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TABLE 1. Main notations definitions.

FIGURE 1. Schematic illustration of a D-MIMO system.

antennas and L RAPs each connected to Nt transmit antennas
(Nr ≥ LNt ). Throughout this paper, the following assump-
tions are adopted: 1) The channel is block fading channel,
which means that it remains constant over the block time T
and varies independently and identically from one block to
another. 2) It is assume that the BS has perfect channel state
information (CSI), while all RAPs have no CSI. Thus, the
optimum transmission strategy is to transmit independent and
equal power signals from each of the LNt transmit antennas.
Then the corresponding input-output relationship is

y =

√
P
LNt

H4
1
2 x+ n (1)

where y ∈ CNr×1 denotes the receive signal vector at the BS,
x ∈ CLNt×1represents the transmit signal vector from the L
RAPs, P is the total transmit power, n ∈ CNr×1 is the additive

white Gaussian noise (AWGN) with covariance E
[
nnH

]
=

N0INr , where N0 is the noise power.
The diagonal matrix 4 ∈ CLNt×LNt captures the large-

scale fading, whose elements are independent and identically
distributed (i.i.d.) random variables (RVs), which can be
expressed as

4 =
L
⊕
l=1

{
INt ξl/D

υ
l
}

(2)

Where Dl is the distance between the BS and the l th RAP,
l = 1, · · · ,L, while υ is the path loss exponent, which
is a key parameter to characterize the rate of decay of the
signal power with distance, taking values in the range of 2
(corresponding to signal propagation in free space) to 6 [6].
Typical values for the path loss are 4 for an urban macro cell
environment and 3 for urban micro cell environment. The
coefficient ξl captures large-scale shadowing fading, which
follows Gamma distribution as

pξl (ξl) =
ξ
sl−1
l

0 (sl)�
sl
l
exp

(
−
ξl

�l

)
, ξl, �l, sl ≥ 0 (3)

where sl and �l = E [ξl]/sl are the shape and scale param-
eters of Gamma distribution, respectively, while 0 (·) is the
Gamma function as defined in [21, eq. (8.310.1)].

The random matrix H ∈ CNr×LNt models the small-
scale fading, which is assumed to follow a semi-correlated
Rayleigh distribution. The expression can be written as

H = HωR
1/2
T (4)
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where the elements of matrix Hω are modeled as i.i.d.
CN (0, 1) RVs, while RT ∈ RLNt×LNt is the transmit cor-
relation matrix which can be expressed as

RT = diag {RTl}
L
l=1 (5)

where RTl denotes the correlation matrix between the trans-
mit antennas of the l th RAP for l = 1, · · · ,L. It is assumed
that the common exponential correlation model is adopted
as [22]

[RTl]mn = ρ
|m−n|
l , m, n = 1, · · · ,Nt (6)

where ρl ∈ [0, 1] is the transmit correlation coefficient. It is
noted that transmit correlation only occurs between anten-
nas of the same RAP since different RAPs are, in general,
geographically separated.

B. PERFORMANCE WITH ZF RECEIVERS
In the following, we provide the exact analytical expres-
sions on the achievable sum rate, SER, and outage
probability of D-MIMO system with ZF receivers over
semi-correlated K fading channels. For convenience of
derivation, we define Z = H41/2, and the ZF detector is
defined as

T†
=

(
P
LNt

)−1/2(
ZHZ

)−1
ZH (7)

After ZF detection, the instantaneous received SNR at the
l th output is given as

γl =
γ

LNt
[(
ZHZ

)−1]
ll

=
γ [4]ll

LNt
[(
HHH

)−1]
ll

= ξlζl (8)

where γ is the average SNR (γ = P/N0). The RV ξl rep-
resents large scale fading coefficient, which follows Gamma
distribution ξl ∼ G (sl, �l) and its PDF is given in (3). For
convenience of exposition, we define the RV ζl as

ζl =
1[(

HHH
)−1]

ll

(9)

where ζl denotes small scale fading coefficient, which fol-
lows a complex semi-correlated central Wishart distribution
ζl ∼ CW

(
Nr − LNt + 1, 1/

[
R−1T

]
ll

)
and its PDF is given as

fζl (ζl) =
ρle−ζlρl

(Nr − LNt)!
(ζlρl)

Nr−LNt (10)

where ρl denotes the l th diagonal element of R−1T , while (·)!
is the factorial of a non-negative integer number.

Combining (3), (8) with (10), the composite PDF is
given as

fγl (γl) =
2

(Nr − LNt)!0 (sl)

(
LNtDυl ρl
γ�l

)Nr−LNt+sl+1
2

× γl
Nr−LNt+sl−1

2 KNr−LNt−sl+1

2

√
LNtDυl ρl
γ�l

γl


(11)

where Kv (·) is the modified Bessel function of the second
kind and order v [21, eq. (8.407.1)].
Utilizing a similar line of reasoning as in [3] and [13], the

achievable sum rate of D-MIMO system with ZF receivers
over semi-correlated K fading channels can be obtained as

For {sl,Nr − LNt + 1,Nr − LNt − sl + 1} ∈ Z

R =
1

ln 2 (Nr − LNt)!

LNt∑
l=1

1
0 (sl)

×G14
42

(
γ�l

LNtDυl ρl

∣∣∣∣ 1− sl,LNt − Nr , 1, 11, 0

)
(12)

where Gmnpq [·] is the Meijer’s G function, with m,n,p,q being
non-negative integers [21, eq. (9.301)].

For {sl,Nr − LNt + 1,Nr − LNt − sl + 1} /∈ Z

R =
1
ln 2

LNt∑
l=1

[
0 (1− sl) 0 (I− sl)

sl0 (I)

(
ρlLNtDυl
�lγ

)sl
× 1F2

(
sl; 1+ sl, sl − I+ 1;−

ρlLNtDυl
�lγ

)
+
0 (LNt − Nr ) 0 (sl − I)

(I) 0 (sl)

(
ρlLNtDυl
�lγ

)lI
× 1F2

(
I; I+ 1, I+ 1− sl;−

ρlLNtDυl
�lγ

)
+ϕ (sl)+ ϕ (I)−ln

(
ρlLNtDυl
�lγ

)
+

ρlLNtDυl
�lγ (sl−1) (I−1)

× 2F3

(
1, 1; 2, 2− sl, 2− I;−

ρlLNtDυl
�lγ

)]
(13)

where I = Nr−LNt+1 pFq (·) is the hypergeometric function
for non-negative integer p and q [21, eq. (9.14.1)].
Similarly, the SER of the the l-th subchannel of the

D-MIMO system with ZF receivers over semi-correlated K
fading channels can be written as [13]

For {sl,Nr − LNt + 1,Nr − LNt − sl + 1} ∈ Z

SERl =
αl

2
√
π (Nr − LNt)!0 (sl)

×G22
32

(
γ�lβl

LNtDυl ρl

∣∣∣∣ LNt − Nr , 1− sl, 10, 1/2

)
(14)

For {sl,Nr − LNt + 1,Nr − LNt − sl + 1} /∈ Z

SERl =
√
παl

(I− 1)!0 (sl) sin (π (I− sl))

×


∞∑
m=0

(
LNtDυl ρl
γ�l

)m+sl 0(m+sl )0(m+sl+ 1
2

)
2β

m+sl
l 0(m+sl+1)

m!0 (m− I+ 1+ sl)

−

∞∑
m=0

(
LNtDυl ρl
γ�l

)m+I 0(m+I)0
(
m+I+ 1

2

)
2βm+Nr−LNt+1l 0(m+I+1)

m!0 (m+ I+ 1− sl)

 (15)

where αl and βl are modulation-specific constants, typical
values for modulation are 1,1 for BPSK and 2, sin2 (π/M)
for M-ary PSK [23].
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Moreover, the outage probability of the the l-th sub-
channel of the D-MIMO system with ZF receivers
over semi-correlated K fading channels can be written
as [13]

For {sl,Nr − LNt + 1,Nr − LNt − sl + 1} ∈ Z

Pout,l (γth) =
1

(Nr − LNt)!0 (sl)

×G21
13

(
LNtDυl ρl
γ�l

γth

∣∣∣∣ 1
Nr − LNt + 1, sl, 0

)
(16)

For {sl,Nr − LNt + 1,Nr − LNt − sl + 1} /∈ Z

Pout,l =
π csc (π (I− sl))
(I− 1)!0 (sl)

×

1F2
(
sl; 1+ sl, sl − I+ 1,

ρlLNtDυl
�lγ

γth

)
sl0 (sl − I+ 1)

(
ρlLNtDυl
�lγ

γth

)sl
−

(
ρlLNtDυl
�lγ

γth

)I
×

1F2
(
I; I+ 1, I− sl + 1,

ρlLNtDυl
�lγ

γth

)
(I) 0 (I− sl)

(17)

where γth is the SNR threshold value.
From the aforementioned analysis, it can be observed that

the expressions above involve complicated functions such
as Bessel, Meijer’s G, and hypergeometric functions, which
hinder us to further analyze the performance of the D-MIMO
system over semi-correlated K fading channels and do not
provide engineering insights into the impact of system and
fading parameters on D-MIMO performance. To overcome
this disadvantage, we pursue a tractable approximate analysis
by using the moment matching method.

III. EFFICIENT APPROXIMATION
In this section, we devote to using a PDF to approximate the
PDF in (11) through the moment matching method. Herein
we consider using the Gamma distribution on account of the
following reasons:

(1) The PDF of Gamma distribution is simple and tractable,
which allows the use of the closed-form expressions devel-
oped in [9] and [15] to approximate shadow and composite
fading channels.

(2) The Gamma distributions (G (α, β)) is a special case
of generalized Gamma (GG (α1, α2, β)) distribution with
α1 = α and α = 1, which has been use to approximate
Gamma-Gamma distribution [24], [25].1

For convenience of manipulation, we onlymatch the small-
scale and shadowing fading. Then, we define zl = ξlζl .
Capitalizing on the result of (11), the PDF of RV zl can be

1Generalized Gamma distribution is also known as α-µ distribution.
Beside,K distribution is a special case of Gamma-Gamma distribution with
α = 1.

evaluated as

pzl (zl) =
2

(Nr − LNt)!0 (sl)

(
ρl

�l

)Nr−LNt+sl+1
2

× z
Nr−LNt+sl−1

2
l KNr−LNt−sl+1

(
2
√
ρl

�l
zl

)
(18)

Based on (18) and the definition of expectation, the n-th
moment of zl can be expressed as

E
[
znl
]
=
0 (Nr − LNt + 1+ n) 0 (sl + n)

(Nr − LNt)!0 (sl)

(
�l

ρl

)n
(19)

We define χl ∼ G (ωl, ηl) as a Gamma RV with a shape
parameter ωl and a scale parameter ηl . Thus, the PDF of χl
can be derived as [26]

pχl (χl) =
η
−ωl
l χ

ωl−1
l

0 (ωl)
exp

(
−
χl

ηl

)
(20)

Furthermore, the n-th moment of the Gamma RV χl can be
expressed as [26]

E
[
χnl
]
=
0 (ωl + n)
0 (ωl)

ηnl (21)

Combining (19) with (21), the relationships between
parameters of the approximate PDF and the composite PDF
can be derived by matching the first (mean) and second
(variance) moments of the two RVs γl and χl as

ωlηl =
(Nr − LNt + 1) sl�l

ρl
(22)

(ωl + 1) ωlη2l =
(I+ 1) I (sl + 1) sl�2

l

ρ2l
(23)

Solving equations of (22) and (23) with respect to
ωl and ηl , we can obtain the solutions as

ωl =
(Nr − LNt + 1) sl
Nr − LNt + sl + 2

=
1
Al

(24)

ηl =
�l (I+ sl + 1)

ρl
=
�lIslAl
ρl

(25)

Al =
1

Nr − LNt + 1
+

1
sl
+

1
(Nr − LNt + 1) sl

(26)

where Al is the amount of fading in wireless fading environ-
ment as defined in [6], which is used to measure the severity
of composite fading channel.

Therefore, the PDF of the approximate Gamma distribu-
tion is re-expressed as

pχl (χl) =

(
�l (Nr−LNt+1)slAl

ρl

)− 1
Al

l
χ

1
Al
−1

l

0 (1/Al)

× exp

(
−

χl
�l (Nr−LNt+1)slAl

ρl

)
(27)

As the previous analysis, we use a Gamma distribution
to approach the composite distribution. Capitalizing on the
above approximate PDF, we deduce the closed-form expres-
sions of the achievable sum rate, SER, and outage probability
of D-MIMO system with ZF receivers over semi-correlated
K fading channels in section 4, respectively.
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IV. APPROXIMATE PERFORMANCE ANALYSIS
In this section, we perform approximate performance analysis
of D-MIMO system with ZF receivers by using the derived
PDF. To further analyze the effects of the fading parameters
on the D-MIMO system, we execute the achievable sum
rate analysis in the asymptotically high-SNR and low-SNR
regimes. In order to simplify the following manipulations, we
useωl and ηl to derive the performance, which are determined
by (24) and (25).

A. APPROXIMATE ACHIEVABLE SUM RATE ANALYSIS
Motivated by the above discussion, we first derive an approx-
imate achievable sum rate of D-MIMO system with ZF
receivers over semi-correlated fading channels, which is pro-
posed in the following theorem.
Theorem 1: The approximate achievable sum rate of

D-MIMO system with ZF receivers over semi-correlated K
fading channels is given as

For ωl ∈ Z, we obtain the expression of (28) as

RA =
1
ln 2

LNt∑
l=1

ωl−1∑
µ=0

1
0 (ωl − µ)

(
−
LNtDυl
ηlpu

)ωl−µ−1

×

− exp
(
LNtDυl
ηlpu

)
Ei
(
−
LNtDυl
ηlpu

)

+

ωl−µ−1∑
k=1

0 (k)
(
−

ηlpu
LNtDυl

)k (28)

where Ei (·) is the exponential integral function as defined in
[21, eq. (8.211.1)].

For ωl /∈ Z, we obtain the expression of (29) as

RA =
1
ln 2

LNt∑
l=1

{(
LNtDυl
ηlγ

)ωl
π0 (1− ωl)

×G11
31

[
ηlγ

LNtDυl

∣∣∣∣ 1, ωl + 1, 1/2
ωl, 1/2

]
+ ln

(
ηlγ

LNtDυl

)
+ ϕ (ωl)

+
πLNtDυl 0 (2− ωl)
ηlγ (1− ωl)

G21
32

[
−

ηlγ

LNtDυl

∣∣∣∣ 1, 2, 2− ωl1, 1

]}
(29)

Proof: A detail proof is provided in Appendix I. �
Corollary 1: For i.i.d K fading channels (L = 1, � = 1,

ρ = 1), the approximate achievable sum rate reduces to

RA =
Nt
ln 2

exp
(
NtDυ

ηγ

) ω∑
k=1

(
ηγ

NtDυ

)k−ω
×0

(
k − ω,

NtDυ

ηγ

)
(30)

where 0 (a, x) =
∫
∞

x ta−1 exp (−t) dt is the complementary
Gamma function as defined in [21, eq.(8.350.2)].

Proof: The proof starts by utilizing the theorem 1 and
taking L = 1, � = 1, ρ = 1, then we apply the expressions
of [6, eq.(15.24)] and [6, eq.(15.B7)]. After some simple
manipulations, we can conclude the proof. �
Note that the derived expressions of the sum rate in the-

orem 1 and corollary 1 can be simplified, especially for the
case of ωl setting as integers. For ωl ∈ Z, the final analytical
expressions involve simple functions, which can bemore effi-
ciently evaluated and provide practical insights for systems
design. However, they do not offer useful insights into the
effects of system parameters such as fading parameters and
the number of antennas. To this end, the high and low SNR
asymptotic analyses are considered, respectively.
Corollary 2: For high-SNRs, the approximate sum rate of

D-MIMO system with ZF receivers over semi-correlated K
Fading channels is given by

RHA = LNt log2

(
γ

LNt

)
+

LNt∑
l=1

[
1
ln 2

ϕ

(
Isl

I+ sl + 1

)
+ log2

(
�l (I+ sl + 1)

ρl

)
− log2

(
Dυl
)]

(31)

Proof: The proof starts by taking γ large in (43) and
applying the integral identity [21, eq.(4.352.1)]∫

∞

0
xv−1 exp (−µx) ln xdx =

0 (v)
µv

[ϕ (v)− ln (µ)] ,

Re (µ, v) > 0 (32)

and after some manipulations, we can complete the proof. �
The result in (31) reveals that the proposed approximate

sum rate increases logarithmically with the transmit power
and the number of receiver antennas when the SNR is large,
which is consistent with the result of [3]. Furthermore, we
can also observe that the proposed approximate sum rate
also decreases with the transceiver distances. Similar results
appear in [18].

In general, the low-SNR performance analysis of any
MIMO channels can be investigated by taking the first order
expansion of the sum rate around pu = γ = 0+. Neverthe-
less, this approach is vulnerable because it does not reflect the
impact of the channel and leads to misleading results in the
low-SNR regime. Thus, we explore the low-SNR sum rate via
the normalized transmit energy per bit Eb/N0 rather than per-
SNR, which is originally proposed in [27]. The approximate
sum rate in the low-SNR regime can be expressed as

RLA

(
Eb
N0

)
≈ S0log2

( Eb
N0

Eb
N0 min

)
(33)

Eb
N0 min

=
1

ṘA (0)
, S0 = −2 ln 2

(
ṘA (0)

)2
R̈A (0)

(34)

where Eb
N0 min

and S0 are the two key parameters for the low-
SNR analysis, which represent minimum normalized energy
per information bit to reliably convey any positive rate and
wideband slope, respectively. ṘA (0) and R̈A (0) are the first
and second derivatives of the approximate sum rate in (46)

9296 VOLUME 5, 2017



X. Li et al.: Performance Analysis of Distributed MIMO With ZF Receivers Over Semi-Correlated K Fading Channels

with respect to SNR γ . We then investigate the low-SNR
regime in the following proposition.
Proposition 1: The minimum energy per information bit

and wideband of D-MIMO system with ZF receivers over
semi-correlated K fading channels are derived, respectively

Eb
N0 min

=
LNt

log2 (e)

(LNt∑
l=1

ωlηl

Dυl

)−1
(35)

S0 =

2Nt

(
LNt∑
l=1

ωlηl
Dυl

)2

LNt∑
l=1

ωl (ωl+1)η2l
D2υ
l

(36)

Proof: The proof is provided in Appendix II. �
Clearly, the required minimum energy per bit increases

with the distances between BS and RAPs while decreases
with the parameters ωl and ηl . We also note that the wide-
band slope in (36) is greater than one based on the binomial
expansion formula.

B. APPROXIMATE SER ANALYSIS
We then analyze the approximate SER of D-MIMO system
with ZF receivers over semi-correlated K fading channels.
Based on the generic formula of [23], the approximate SER
of modulation formats (e.g. BPSK, M-ary PSK, M-ary PAM)
can be given as

SERA,l
1
= αlE

[
Q
(√

2βlγl
)]
, l = 1, · · · ,LNt (37)

where Q (·) is the Gaussian Q-function as defined in [6],
while αl and βl represent the modulation-specific constants,
which are key parameters to characterize modulation model.
The values are αl = 1, βl = 1 for BPSK while αl = 2
and βl = sin (π/M) for M-ary PSK [23]. The approximate
analytical expression for the l-th SER is given in the following
theorem.
Theorem 2: The approximate SER of the l-th subchannel

of D-MIMO system with ZF receivers over semi-correlated
K fading channels is provided as

For ωl ∈ Z, the approximate SER is given by (38)

SERA,l =
αl

2

1− µ (c) ωl−1∑
k=0

(
2k
k

)(
1−

[
µ(c)2

]
4

)k
(38)

For ωl /∈ Z, the approximate SER is given by (39)

SERA,l =
αl
√
c

2(1+ c)ωl+
1
2

G21
33

1+ c
∣∣∣∣∣∣∣
1,

1
(1+ c)

,
1
2

1, ωl +
1
2
,
1
2

 (39)

where c = γ ηlβl
LNtDυl

, µ (c) =
√

c
1+c .

Proof: A detailed proof is given in Appendix III.
It is worth noting that the SER decreases with the parame-

ters ωl and ηl while increases with the modulation-specific

constant αl . More importantly, the approximate analytical
expression of SER for {ωl} ∈ Z only involves the simple
functions.

C. APPROXIMATE OUTAGE PROBABILITY ANALYSIS
When considering the case of non-ergodic channels such as
quasi-static or block-fading, it is appropriate to investigate the
outage probability performance of D-MIMO system with ZF
receivers over the approximate PDF. The outage probability,
Pout,l , is defined as the probability that the instantaneous error
probability is less than or equal to a specified value that the
output SNR falls below a certain specified threshold, γth

Pout,l
1
= Pr (γl ≤ γth) (40)

Based on this definition, we investigate the approximate
outage probability performance of D-MIMO system with ZF
receivers in the following theorem.
Theorem 3: The outage probability of the l-th subchannel

of D-MIMO system with ZF receivers over the approximate
PDF is derived as

For ωl ∈ Z, the approximate outage probability is given
by (41)

Pout,l = 1− exp
(
−
LNtDυl
ηlγ

γth

)ωl−1∑
k=0

γ kth

k!

(
LNtDυl
ηlγ

)k
(41)

For ωl /∈ Z, the approximate outage probability is given
by (42)

Pout,l =
1

0 (ωl)
γ

(
ωl,

LNtDυl
γ ηl

)
(42)

where γ (α, x) =
∫ x
0 t

α−1 exp (−t) dt is the lower incomplete
Gamma function as defined in [28].
Proof: The proof is provide in Appendix IV. �
From theorem 3, we can see that the outage probability

is suffered from the effects of the number of RAPs L, the
number of antennas of each RAP Nt , transmit power γ , the
distances Dl between BS and RAP, and SNR threshold γth.
The outage probability increases with the parameters L, Nt ,
Dl and γth, while decreases with γ and ηl .

V. ASYMPTOTIC SUM RATE ANALYSIS
Recently, large-scaleMIMO has demonstrated great potential
to provide significant capacity and power savings, and has
been known as a disruptive technology for the future 5Gwire-
less communication [17], [29]. In the following, we pursue
a large-system analysis and provide sum rates by using the
result of corollary 2.

(i) Fixed L, Nt , γ , while Nr → ∞: It is quite intuitive
that the received SNR grows into infinity when the number
of receive antennas grows without bound whilst keeping L,
Nt , γ fixed.
Corollary 3: For D-MIMO composite fading channel, as

Nr growing into infinity and L, Nt , γ keeping fixed, the
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asymptotic approximate sum rate converges to

R̄HA
Nr→∞
= LNt log2

(
γNr
LNt

)
+

LNt∑
l=1

[
ϕ (sl)
ln 2
+ log2

(
�l

ρl

)
− log2

(
Dυl
)]

(43)

Proof: The proof starts by taking Nr → ∞ of (31). After
some approximate manipulations, we complete the proof of
corollary 3. �
From corollary 3, we can conclude that the effects of small-

scale fading are eliminated with Nr →∞ and fixed L, Nt , γ .
The similar result can be found in [18].Moreover, we can also
observe that the asymptotic sum rate increase logarithmically
with γ and Nr , while decreases with Dl .
(ii) Fixed L, Nt , Eu, and Nr →∞, let γ = Eu/Nr : In this

scenario, we can scale down transmit power to γ /Nr with no
reduction in performance. This is relevant in practice since
it is vital not only from a business point of view but also to
address environment and health concerns.
Corollary 4: For D-MIMO composite fading channels, as

Nr grows into infinity with fixed L, Nt , Eu, the asymptotic
approximate sum rate approaches

R̄HA
Nr→∞
= LNt log2

(
Eu
LNt

)
+

LNt∑
l=1

[
ϕ (sl)
ln 2
+ log2

(
�l

ρl

)
− log2

(
Dυl
)]

(44)

Proof: Starting by taking Nr → ∞ of (31) and
γ = Eu/Nr , we can conclude the proof after some approxi-
mate manipulations. �

Through corollary 4, we can observe that as the number
of receiver antennas grows to infinity, the transmit power of
each RAP can be cut proportionally to 1/Nr without loss of
performance. The same result is proposed in [18] and [19].
Besides, we can find that the asymptotic approximate sum
rate tends to a deterministic constant when the number of the
receive antenna grows into infinity.

(iii) Fixed L, Nt , γ , κ , and Nr ,L → ∞, letting
κ = Nr/LNt : This asymptotic scenario is significant in
theory and practice since Nr is large but not much greater
than LNt . Note that this scenario consists two separate cases:
i) fixed Nt while L →∞ and ii) fixed L while Nt →∞. The
two cases receive similar results. Therefore, we only take the
case i) into account.
Corollary 5: For D-MIMO composite fading channel,

when the numbers of Nr and L grow into infinity with a fixed
ratio Nr/(LNt) ≥ 1, the asymptotic approximate sum rate
tends to

R̄HA
Nr ,L→∞
= LNt log2 (γ (κ − 1))

+

LNt∑
l=1

[
ϕ (sl)
ln 2
+ log2

(
�l

ρl

)
− log2

(
Dυl
)]

(45)

Proof: The proof starts by taking Nr ,L → ∞ of (31) and
substituting κ = Nr/LNt into (31), then we can obtain (45)

FIGURE 2. Sum rate and approximate sum rate versus SNR
(Nr = 12,24,60, Nt = 2, L = 3, ρl = 0.3,0.8, sl = 1,�l = 1, υ = 4,
D1 = 1000m,D2 = 1500m,D3 = 2000m, the tuple in the legend
represents

(
Nr , ρ

)
, SR and ASR represent sum rate and approximate,

respectively).

after appropriate simplifications. We can conclude the proof
of corollary 5. �

The result of corollary 5 reveals that the asymptotic
approximate result increases linearly with the number of
RAPs and logarithmically with transmit power γ and κ . This
result is identical with the result of [19].

From corollary 3, 4, and 5, we can conclude some common
characteristic: First, the effect of small-scale fading can be
canceled for large number of receive antennas. Second, the
proposed sum rate increases with the numbers of transceiver
antennas and the transmit power while decreases with the
transceiver distances.

VI. NUMERICAL RESULTS
In this section, some numerical results are provided to vali-
date the accuracy of our analysis in section 4 and section 5.
Through this section, it is assumed that there are L = 3,
Nt = 2 in all simulated settings.
In Fig. 2, we compare the proposed approximate sum rate

of (28) with the analytical sum rate of [13, eq. (13)] for
different transmit correlation coefficient ρl = 0.3, 0.8. In this
simulation, we set Nr = 12, 24, 60, Nt = 2, L = 3,
ρl = 0.3, 0.8, sl = 1, �l = 1, υ = 4,D1 = 1000m,
D2 = 1500m,D3 = 2000m, l = 1, · · · ,L. It can be readily
observed from Fig. 2 that the proposed approximate sum rate
is sufficiently tight across the entire SNR range of interest
for different value of ρl , especially when the number of
receive antenna isNr = 60, thereby validating the correctness
of the proposed approximate expressions. The figure shows
that adding more receive antennas significantly stabilizes the
MIMO link by improving the receive diversity and reduc-
ing the noise enhancement effect. Further, for large Nr , the
proposed approximate sum rate becomes almost exact with
the analytical sum rate. In addition, Fig. 2 also indicates that
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FIGURE 3. Sum rate and approximate sum rate for high SNR
(Nr = 12,24,60, Nt = 2, L = 3, ρl = 0.3,0.8, sl = 1,�l = 1, υ = 4
D1 = 1000m,D2 = 1500m,D3 = 2000m, the tuple in the legend
represents

(
Nr , ρ

)
, SR and ASR represent sum rate and approximate sum

rate, respectively).

FIGURE 4. Simulated SER and approximate SER versus SNR
(Nr = 12,60, Nt = 2, L = 3, ρl = 0.5, sl = 1,�l = 1, υ = 3,D1 =

800m,D2 = 1000m,D3 = 1400m, α = 2, β = 0.5, the tuple in the legend
represents

(
Nr , l

)
, ASER and l represent approximate SER and the l -th

subchannel, respectively).

spatial correlation limits the advantages of D-MIMO system
due to the reduced diversity.

Comparisons between the approximate sum rate (31) and
the analytical sum rate of [13, eq. (16)] at high SNR with
different values of ρ are presented in Fig. 3. For the sake
of simplicity, the parameter settings are the same as Fig. 2.
As anticipated, the match between approximate sum rate
and analytical sum rate becomes more excellent for the high
SNR and when the number of antennas grows large. At high
SNR, the sum rate performance increases linearly with SNR.
As similar with Fig 2, the sum rate decreases with the value
ρl due to the reduced diversity.

Fig. 4 illustrates the impact of SNR on the approximate
SER in (38) and the analytical SER in [13, eq. (40)] for

FIGURE 5. Simulated outage probability and approximate outage
probability versus SNR (Nr = 12,60, Nt = 2, L = 3, ρl = 0.5, sl = 1,�l =

1, υ = 3,D1 = 800m,D2 = 1000m,D3 = 1400m, γth = 1, the tuple in the
legend represents

(
Nr , l

)
, OP, AOP and l represent outage probability,

approximate outage probability and the l -th subchannel, respectively)).

different BS antennas Nr . In this simulation, the parameters
are set as follows: Nr = 12, 60, Nt = 2, L = 3,
ρl = 0.5, sl = 1, �l = 1, υ = 3,D1 = 800m,
D2 = 1000m,D3 = 1400m.2 In addition, all subchan-
nels are using QPSK modulation with modulation parame-
ters α = 2, β = 0.5. The figure indicates that the difference
between approximate SER and the analytical SER is about
0.8 dB for Nr = 12. When Nr = 60, the approximate expres-
sion in (38) almost coincides with the analytical expression
of [13, eq. (40)].

In Fig. 5, the individual subchannel approximate out-
age probability in (41) and analytical outage probability
in [13, eq. (49)] against the SNR for a fixed threshold
γth = 1 is addressed. It is noted that the settings of param-
eters in Fig. 5 are the same as that of Fig. 4. From Fig. 5,
we can observe that the gap between the proposed approx-
imate expression in (41) and the analytical expression in
[13, eq.(49)] decreases as Nr gets large. For instance, when
Nr = 12, there is about 1.76 dB between the (41) and
[13, eq.(49)]. However, whenNr = 60, the difference is about
0.11 dB. Thus, there is a sufficient agreement between the
proposed approximate expression and the analytical expres-
sion for Nr = 60. In addition, the 5th subchannel correspond
to the pessimistic performance due to the highest transceiver
distance and the strongest path loss.

In Fig. 6, we analyze the proposed approximate sum
rate versus the number of receive antennas Nr for the case
of P = 30 dB and P/Nr = 30 dB, respectively. For
P = 30 dB, the approximate sum rate and the analytical
sum rate increase logarithmically with the value Nr , and the

2Note that each subchannel of the same RAP experiences the same SER
and outage probability since each has the same distance and location, thus
we only simulate the performance (SER and outage probability) of L sub-
channels in section 6.
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FIGURE 6. Simulated sum rate, approximate sum rate and asymptotic
sum rate versus the number of receive antennas (Nt = 2, L = 3, ρl =

0.5, sl = 1,�l = 1, υ = 4,D1 = 1000m,D2 = 1500m,D3 = 2000m).

approximate sum rate is sufficiently tight for arbitrary number
of receive antennas Nr . For P/Nr = 30, the performances of
approximate sum rate and the analytical sum rate converge to
a deterministic constant when the number of receive antennas
Nr grows into infinity. More importantly, we can observe that
the curves of the asymptotic approximate sum rate and the
approximate sum rate overlap with the analytical sum rate.

VII. CONCLUSION
In this paper, we investigate the approximate performance
of D-MIMO system with ZF receivers over semi-correlated
K fading channels. First, we approximate the composite
distribution with a Gamma distribution employing moment
matching method. Then, we derive the novel approximate
expressions for the achievable sum rate, SER and outage
probability of the D-MIMO systems with ZF receivers by
using the derived distribution function. In parallel, we present
the tractable closed-form approximations in the asymptoti-
cally high and low SNR regimes. It is demonstrated that the
derived expressions become extremely exact across the entire
SNRs for large value Nr . Based on the approximate sum rate,
we pursue the large system analysis at high SNR. Through
the previous analysis, we can conclude that the approxi-
mate Gamma distribution derived by the moment matching
method relatively approaches the composite distribution, and
the derived expressions provide the engineering insights for
practical system design. However, this approximate analysis
is only applicable to integer parameters. How to tame the
approximate analysis for non-integer parameters is left to the
future work.

APPENDIX I
PROOF OF THEOREM 1
Proof: The proof starts by using the PDF of RV χl to approx-
imate the PDF of RV zl . Thus, the achievable sum rate can be

expressed as

RA =
LNt∑
l=1

E
[
log2

(
1+

γ

LNtDυl
χl

)]
(46)

The above expression can be further re-written in integral
form as

RA =
1
ln 2

LNt∑
l=1

∫
∞

0
ln
(
1+

γ

LNtDυl
χl

)
pχl (χl) dχl (47)

Substituting (19) into (44), we can obtain

RA =
1
ln 2

LNt∑
l=1

η
−ωl
l

0 (ωl)

×

∫
∞

0
ln
(
1+

γ

LNtDυl
χl

)
χ
ωl−1
l exp

(
−
χl

ηl

)
dχl

(48)

For ωl ∈ Z, we can obtain the final expression by adopting
the result of [30]

RA =
LNt∑
l=1

ζl∑
µ=0

ζl !

(ζl − µ)!

 (−1)ζl−µ−1
aζ−µl

exp
(
−

1
al

)

× Ei
(
−

1
al

)
+

ζl−µ∑
k=1

0 (k)
(
−

1
al

)ζl−µ−k (49)

where al =
γ

LNtDυl
and ζl = ωl − 1.

Substituting al =
γ

LNtDυl
and ζl = ωl − 1 into (49), we can

obtain the result of (27).
For ωl /∈ Z, we use the following integral identity as [31,

eq. (2.6.23.4)]∫
∞

0
xα−1 exp (−px) ln (a+ bx) dx

=

(a
b

)α π

α sin (απ)

× 1F1
(
α;α + 1;

ap
b

)
− 0 (α) p−α

×

{
ln
(p
b

)
− ϕ (α)−

ap
b (1− α) 2

F2
(
1, 1; 2, 2− α;

ap
b

)}
(50)

Substituting (47) into (45), the achievable sum rate of (45)
can be further re-expressed

RA =
1
ln 2

LNt∑
l=1

(
LNtDυl
ηlγ

)ωl π

ωl sin (ωlπ)0 (ωl)

× 1F1

(
ωl;ωl + 1;

LNtDυl
ηlγ

)
− ln

(
LNtDυl
ηlγ

)
+ϕ (ωl)+

LNtDυl
ηlγ (1− ωl)

2F2

(
1, 1; 2, 2− ωl;

LNtDυl
ηlγ

)
(51)

9300 VOLUME 5, 2017



X. Li et al.: Performance Analysis of Distributed MIMO With ZF Receivers Over Semi-Correlated K Fading Channels

using the following Euler’s reflection formula [32, eq.
(2.10.2)]

π

sin (πωl)
= 0 (ωl) 0 (1− ωl) (52)

in addition, expressing the hypergeometric functions
1F1 (·) and 2F2 (·) via Meijer-G function [33, eq.
(07.20.26.0005.01)] and [33, eq. (07.25.26.0004.01)]

1F1 (a; b; z) =
π0 (b)
0 (a)

G11
23

[
z

∣∣∣∣ 1− a, 1/2
0, 1− b, 1/2

]
(53)

2F2 (a1, a2; b1, b2; z) =
π0 (b1) 0 (b2)
0 (a1) 0 (a2)

×G12
23

[
−z

∣∣∣∣ 1− a1, 1− a2
0, 1− b1, 1− b2

]
(54)

Substituting (52), (53), (54) into (51), formula (51) can be
further simplified as

RA =
1
ln 2

LNt∑
l=1

{(
LNtDυl
ηlγ

)ωl
π0 (1− ωl)

×G11
23

[
LNtDυl
ηlγ

∣∣∣∣ 1− ωl, 120,−ωl, 12

]
+ ln

(
ηlγ

LNtDυl

)
+ ϕ (ωl)

+
πLNtDυl 0 (2− ωl)
ηlγ (1− ωl)

G12
23

[
−
LNtDυl
ηlγ

∣∣∣∣ 0, 0,
0,−1, ωl − 1

]
(55)

Utilizing the following identity [21, eq. (9.31.2)]

Gmnpq

[
x−1

∣∣∣∣ arbs
]
= Gnmqp

[
x

∣∣∣∣ 1− bs
1− ar

]
(56)

Substituting (56) into (55), we can obtain the result of (28).
Therefore, we complete the proof of Theorem 1.

APPENDIX II
PROOF OF PROPOSITION 1
The proof starts by taking the first and second derivatives of
(43) with respect to γ . For γ → 0, we can obtain as

ṘA (0) =
1
ln 2

LNt∑
l=1

E

 1
LNtDυl

χl

1+ γ
LNtDυl

χl

∣∣∣∣∣∣
γ=0


=

log2 (e)
LNt

LNt∑
l=1

E
[
χl

Dυl

]
(57)

R̈A (0) = −
1
ln 2

LNt∑
l=1

E


(

1
LNtDυl

χl

)2
(
1+ γ

LNtDυl
χl

)2
∣∣∣∣∣∣∣
γ=0


= −

log2 (e)

(LNt)2

LNt∑
l=1

E

[
χ2
l

D2υ
l

]
(58)

The above expressions in (53) and (54) can be further
simplified by combining the definition of expectation with

the PDF of χl in (19)

ṘA (0) =
log2 (e)
LNt

LNt∑
l=1

ωlηl

Dυl
(59)

R̈A (0) = −
log2 (e)

(LNt)2

LNt∑
l=1

ωl (ωl + 1) η2l
D2υ
l

(60)

Substituting (55) and (56) into (33), we can derive the result
of proposition after simple manipulations. Then we conclude
the proof of proposition 1.

APPENDIX III
PROOF OF THEOREM 2
Proof: The proof starts from (20), we can obtain the approx-
imate PDF of γl as

pγl (γl) =
LNtDυl
γ

pχl

(
LNtDυl
γ

)
=

1
0 (ωl)

(
LNtDυl
γ ηl

)ωl
γ
ωl−1
l exp

(
−
LNtDυl
γ ηl

γl

)
(61)

Combining (57)with the expression in [6, eq. (4.2)], we can
express the SER in (37) in integral form as

SERA,l =
αlη
−ωl
l

π0 (ωl)

(
LNtDυl
γ

)ωl ∫ π
2

0

∫
∞

0
γ
ωl−1
l exp

×

[
−

(
βl

sin2 (θ)
+
LNtDυl
ηlγ

)
γl

]
dγldθ (62)

Applying the integral identity [21, eq. (3.381.4)]∫
∞

0
xv−1 exp (−µx) dx =

1
µv
0 (v) (63)

the expression in (62) can be further simplified as

SERA,l =
αl

π

∫ π
2

0

(
βlηlγ /LNtDυl

sin2 (θ)
+ 1

)−ωl
dθ (64)

When {ωl} ∈ Z, the expression in (64) can be re-written
via the result of [34]

SERA,l =
√

c
1+ c

(1+ c)−ωl0
(
ωl+

1
2

)
0(ωl+1) (1+ c)ωl

2
√
π0 (ωl + 1)

(
1
2

)
ωl

×

√1+ c
c
−

ωl−1∑
k=0

(1/2)k
k!

(
1

1+ c

)k (65)

where (a)b =
0(a+k)
0(a) = a (a+ 1) · · · (a+ k − 1) and

c = γ ηlβl
LNtDυl

.

Substituting
√
π
(
1
2

)
ωl
= 0 (ωl + 1/2) and (1/2)k

k! =(
2k
k

)(
1
4

)
into (65), we can derived the expression as

SERA,l =
1
2

[
1−

√
c

1+ c

n−1∑
k=0

(
2k
k

)(
1

4 (1+ c)

)k]
(66)
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Letting µ (c) =
√

c
1+c , we can derive the expression

of (37).
When {ωl} /∈ Z, the expression in (64) can be simplified

by using [34, eq. (A8)]

SERA,l =
√

c
c+ 1

(1+ c)−ωl0 (ωl + 1/2)
2
√
π0 (ωl + 1)

× 1F1

(
1, ωl +

1
2
;ωl + 1;

1
1+ c

)
(67)

Applying the formula [33, eq. (07.23.26.0005.01)]
and (52)

2F1 (a, b; c; z) =
π0 (c)

0 (a) 0 (b)

×G12
33

[
z

∣∣∣∣ 1− a, 1− b, 1/20, 1− c, 1/2

]
(68)

After simple simplemanipulations, we can obtain the result
of (38). Thus, we conclude the proof of the theorem 2.

APPENDIX IV
PROOF OF THEOREM 3
Proof: The proof starts by combining the definition of outage
probability in (40) and the PDF of SNR in (57), the outage
probability is re-expressed as follows

Pout,l =
1

0 (ωl)

(
LNtDυl
γ ηl

)ωl
×

∫ γth

0
γ
ωl−1
l exp

(
−
LNtDυl
γ ηl

γl

)
dγl (69)

When {ωl} ∈ Z, we apply the integral identity
[21, eq. (3.351.1)]∫ υ

0
xn exp (−µx) dx =

n!
µn+1

− exp (−uµ)
n∑

k=0

n!uk

k!µn−k+1

(70)

After some simplifications, we can obtain the result of (41).
When {ωl} /∈ Z, we introduce the integral identity

[21, eq.(3.381.1)]∫ u

0
xv−1 exp (−µx) dx = µ−vγ (v, µu) (71)

After some algebraic manipulations, we can obtain the
result of (42). Then, we conclude the proof.
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