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ABSTRACT In science and engineering, many concepts are introduced without a clear physical meaning,
e.g., imaginary numbers in mathematics and reactive power in electrical engineering. In this paper, a new
operator, coined the ghost operator g, is introduced to physically construct the ghost of a system. It satisfies
g2 = −1 but is different from the imaginary operator. With the help of the port-Hamiltonian systems
theory, it is proved that the ghost of a system behaves exactly in the opposite way as the original system.
This brings the ghost of a system into reality and paves the way to reveal the physical meaning of some
imaginary concepts. Two applications are given as an example. One is to reveal the physical meaning of
reactive power in electrical systems: it is the (real) power of the ghost system, which leads to a significantly
simplified instantaneous power theory called the ghost power theory. The other is to define the reactive power
for mechanical systems to complete the electrical–mechanical analogy. As a matter of fact, the resulting
instantaneous power theory is generic and applicable to any dynamic system that can be described by the
port-Hamiltonian model.

INDEX TERMS Ghost operator, imaginary operator, reactive power, power factor, instantaneous power
theory, ghost power theory, electrical-mechanical analogy, mechanical systems, port-Hamiltonian systems,
physical meaning, quantum mechanics.

I. INTRODUCTION
In electrical engineering, real power and reactive power are
two well-known concepts. The physical meaning of the real
power is very clear: it represents the real power (energy)
that is consumed. But what is the physical meaning of the
reactive power? It is a mathematical concept and has dif-
ferent interpretations; see e.g. [1]–[4] and the references
therein. It reflects the quantity of power due to the phase
mismatch between the current and the voltage caused by
reactive elements like capacitors and inductors. The reac-
tive power is conventionally defined as a component of the
instantaneous (real) power. It is sometimes regarded as the
power oscillating in the system. However, for balanced three-
phase systems there is no oscillating power; for single-phase
resistive systems there is no reactive power although the
power pulsates. Many attempts have been made to reveal the
physical meaning of reactive power, e.g., by using the vector
product [1], the Clarke transformation [2], the Poynting the-
orem [3], and the newly-introduced mno transformation [4].

To the best knowledge of the author, the physical meaning of
reactive power is still not well established. It is imaginary.

Actually, this phenomenon is quite common in science and
engineering: many imaginary concepts are introduced with-
out a physical meaning. Reactive power is just one of them.
Another famous example is the imaginary number, as the
name itself indicates. An imaginary number is a complex
number that can be written as a real number multiplied by the
imaginary unit j, which is defined by j2 = −1. Imaginary
numbers do not exist physically but have been playing a
fundamental role in science and engineering. The searching
for the physical meaning of these imaginary concepts has
been ongoing for years. The objective of this paper is to
reveal the physical meaning of the reactive power, not just
for electrical systems but also for mechanical systems.

In this paper, a new mathematical operator called the
ghost operator, in short the g-operator, is introduced to shift
the phase of a sine or cosine function by 90◦ leading. The
ghost operator is similar to the imaginary operator because it
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satisfies g2 = −1 but it does not return imaginary numbers.
Here, by g2 = −1, it means applying the ghost opera-
tor g twice to a sine or cosine function returns the opposite of
the sine or cosine function. The ghost operator is then applied
to physically construct the ghost of a signal and furthermore
the ghost of a system. Interestingly and surprisingly, by adopt-
ing the port-Hamiltonian systems theory [5], it is proven that
the ghost of a system behaves exactly in the opposite way
as the original system if the input to the ghost is the ghost
of the input to the original system. A significant property

of the g-operator is that the operator
[
0 −g
g 0

]
transforms

the signal and its ghost into themselves. The ghost operator
is then applied to reveal the physical meaning of reactive
power: the instantaneous reactive power of a system is the
instantaneous (real) power of its ghost system. This leads to
an instantaneous power theory, called the ghost power theory
for the sake of ease reference. It is potentially very useful for
power electronics-enabled future power systems [6].

It is well known that electrical systems and mechanical
systems are dual to each other [7], [8]. While the role and
importance of reactive power is well recognized for electrical
systems, it is rarely mentioned for mechanical systems. There
are only very limited attempts in the literature, e.g. [9], [10],
trying to understand the role of reactive power and power
factor in mechanical systems. Following the understanding of
the physical meaning of reactive power for electrical systems,
the electrical-mechanical analogy is reviewed and a missing
term, the reactive power, is identified. The ghost operator
is then applied to define the reactive power for mechanical
systems, completing the electrical-mechanical analogy.

The rest of the paper is organized as follows. In Section II,
the ghost operator is introduced at first, followed by the
physical construction of the ghost of a signal and the ghost
of a system. The behavior of the ghost of a system is then
characterized according to the port-Hamiltonian systems
theory. In Section III, the ghost operator is applied to reveal
the physical meaning of the reactive power of electrical
systems, leading to a simple instantaneous power theory.
In Section IV, the electrical-mechanical analogy is reviewed
and then the ghost operator is applied to define the reac-
tive power for mechanical systems. Conclusions are made
in Section V, together with discussions on other potential
applications of the ghost operator. It is pointed out that the
instantaneous power theory is actually generic and applicable
to any dynamic system that can be described by the port-
Hamiltonian model.

II. PHYSICAL CONSTRUCTION OF GHOST SYSTEMS
A. THE GHOST OPERATOR
Definition 1: The ghost operator, in short the g-operator,

is coined to describe the operator that shifts the phase of a
sine or cosine function by π2 rad leading.
Lemma 2: The ghost operator satisfies g sin θ = cos θ ,

g cos θ = − sin θ and g2 = −1.

Proof: It is straightforward to see that

g sin θ = sin(θ +
π

2
) = cos θ,

g cos θ = cos(θ +
π

2
) = − sin θ.

Applying the g-operator once more, then

g2 sin θ = g cos θ = cos(θ +
π

2
) = − sin θ,

g2 cos θ = −g sin θ = − sin(θ +
π

2
) = − cos θ.

Hence, g2 = −1. This completes the proof.
Note that by g sin θ it means ‘‘applying’’ the ghost operator
g to the function sin θ , instead of ‘‘multiplying’’ it with sin θ ,
and by g2 = −1 it means applying the ghost operator g to
a sine or cosine function twice returns the opposite of the
sine or cosine function. Other notation involving the ghost
operator g is similar. Apparently, g3 = −g and g4 = 1.
It seems that the ghost operator is very similar to
the commonly-used imaginary operator j, which satisfies
j2 = −1, but they are actually very different. The ghost
operator is applicable to a sine or cosine function but the
imaginary operator is applicable to any (complex) number.
Moreover, applying the g-operator to a sine or cosine func-
tion always returns a real function (value) but applying the
imaginary operator to a real number returns an imaginary
number. Fig. 1 illustrates the operation of the two opera-
tors. When both operators are applied to cos θ , respectively,
the imaginary operator returns j cos θ but the ghost operator
returns g cos θ = − sin θ . When both are applied to sin θ ,
respectively, the imaginary operator returns j sin θ but the
ghost operator returns g sin θ = cos θ .

B. THE GHOST SIGNAL
Without loss of generality, for a sinusoidal signal

e = E sin(ωt + φ),

its ghost signal is defined as

eg = ge = Eg sin(ωt + φ) = E cos(ωt + φ).

It leads the signal e by 90◦.
Lemma 3: The signal e and its ghost eg satisfy[
eg
e

]
=

[
0 g
−g 0

] [
eg
e

]
or

[
e
eg

]
=

[
0 −g
g 0

] [
e
eg

]
.

Proof: It is straightforward to show these.

In other words,
[
0 g
−g 0

]
and

[
0 −g
g 0

]
are identity operators,

which transform the signal e and its ghost eg into themselves
without any change. This is a significant property because
the eigenvalues of a skew-symmetric matrix always appear
in pairs ±λ (plus an unpaired 0 eigenvalue in the odd-
dimensional case) and the nonzero eigenvalues of a real skew-
symmetric matrix are all purely imaginary. The fact that the

eigenvalues of the skew-symmetric operators
[
0 g
−g 0

]
and
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FIGURE 1. Illustrations of the imaginary operator and the ghost operator.
(a) The imaginary operator applied to cos θ and sin θ . (b) The ghost
operator applied to cos θ . (c) The ghost operator applied to sin θ .

[
0 −g
g 0

]
are all equal to 1 may open a door for many new

applications and deserve to be further explored.

C. THE GHOST SYSTEM
Systems take signals in the form of inputs and generate
signals as outputs. There are many ways to describe a system.
In this paper, the port-Hamiltonian framework is adopted.

Port-Hamiltonian systems theory [5] offers a systematic
mathematical framework for structural modeling, analysis
and control of complex networked multi-physics systems
with lumped and/or distributed parameters. It combines
the historical Hamiltonian modeling approach in geometric
mechanics [11]–[13] and the port-based network modeling
approach in electrical engineering [14]–[16], via geometri-
cally associating the interconnected network with a Dirac
structure [5], which is power-conserving. The Hamiltonian
dynamics is defined with respect to the Dirac structure and
the Hamiltonian representing the total stored energy. Port-
Hamiltonian systems are open dynamical systems and inter-
act/interconnect with their environment through ports.

For a dynamical system Z , if (i) there are no algebraic
constraints between the state variables, (ii) the interconnec-
tion port power variables can be split into input and output

variables, and (iii) the resistive structure is linear and of the
input-output form, then the system Z can be described in the
usual input u-state x-output y format [17] as

ẋ = [J (x)− R(x)]
∂H
∂x

(x)+ G(x)u, (1)

y = GT (x)
∂H
∂x

(x), (2)

where x ∈ Rn×1 is the state vector, and u and y ∈
Rm×1 are the input and the output, H (x) is the Hamiltonian
representing the total energy of the system and ∂H(x)

∂x ∈

Rn×1 is its gradient, J (x) = −JT (x) is a skew-symmetric
matrix representing the network structure, R(x) is a posi-
tive semi-definite symmetric matrix representing the resistive
elements of the system, and G(x) is the input matrix. All
these matrices depend smoothly on the state x. Note that, the
Hamiltonian H (x) is not necessarily non-negative nor
bounded from below.

In general, the input to a system can be arbitrary but in this
paper it is assumed that the input u is periodic and hence can
be described by the sum of a series of sinusoidal signals. This
covers a wide range of engineering systems.

The time-derivative of the Hamiltonian H (x) is

dH
dt

(x(t)) = −
∂TH
∂x

(x)R(x)
∂H
∂x

(x)+ yT u, (3)

which characterizes the power conservation/balance property
of port-Hamiltonian systems. The product yT u is called the
supply rate and has the unit of power. As a result, the Hamil-
tonian always satisfies

H (x(t)) ≤ H (x(0))+
∫ t

0
yT udt (4)

because of the dissipated energy associated with R(x). More-
over, if the Hamiltonian H (x) is bounded from below by
C > −∞, then the system is passive [18] with the non-
negative storage function beingHs(x) = H (x)−C ; the system
is lossless if dHdt (x(t)) = yT u = 0 [5].

FIGURE 2. The system pair that consists of the original system and its
ghost. (a) the original system Z . (b) the ghost system Zg.

Definition 4: The ghost of a system is an exact copy of the
system cascaded with the ghost operator at its input.
The system Z described in (1)-(2) and its corresponding ghost
Zg are illustrated in Fig. 2; both together form a system
pair (Z , Zg). Denote the state of the ghost system Zg as xg and
the output as yg. Then the following result holds.
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Lemma 5: If the input to the ghost system Zg is the ghost
ug of the input u to the original system Z, then the ghost state
xg is exactly the opposite of the system state x, i.e., xg = −x,
and the ghost output is exactly the opposite of the system
output, i.e., yg = −y. Moreover, if the system Z is passive,
then its ghost Zg is passive as well.

Proof: Since the ghost contains an exact copy of the
system Z , its Hamiltonian can be chosen the same as H . The
state equation of the ghost system satisfies

ẋg = (J − R)
∂H
∂xg
+ Ggug

= (J − R)
∂H
∂xg
− Gu, (5)

where the property g2 = −1 from Lemma 2 is invoked.
Multiplying −1 to both sides, then

−ẋg = (J − R)
∂H

∂(−xg)
+ Gu.

Substituting xg = −x recovers the state equation of the
system given in (1). Note that the Hamiltonian H satisfies
H (xg) = H (−x) = H (x) so there is no need to differentiate
it for the system and its ghost.

Substituting xg = −x into the output equation of the ghost

yg = GT
∂H
∂xg

,

then
yg = −GT

∂H
∂(−xg )

= −y. (6)

If the system Z is passive, then H can also be chosen as
the storage function of the ghost system as well. According
to (5) and (6), the time derivative of the storage function is

Ḣ =
∂TH
∂xg

ẋg

= −
∂TH
∂xg

R
∂H
∂xg
+
∂TH
∂xg

Ggug

= −
∂TH
∂xg

R
∂H
∂xg
+ yTg (−u)

≤ −yTg u = yT u,

because R is positive semi-definite and
∂TH
∂xg

J
∂H
∂xg

= 0.

According to the definition of passive systems, the ghost
system is passive as well. It has the same supply rate as the
system Z . This completes the proof.
Remark 6: The ghost system behaves symmetrically

(or oppositely) as the original system with respect to the
origin but does not exist in reality and, hence, the name.

III. APPLICATION TO REVEAL THE PHYSICAL MEANING
OF REACTIVE POWER IN ELECTRICAL SYSTEMS
Assume that the system Z described in (1)-(2) is an AC elec-
trical system with the input voltage u and the output current i,

i.e., y = i. Then the supply rate to the system Z is the
instantaneous power

p = yT u = iT u. (7)

For a single-phase system with

u =
√
2U sin(ωt), i =

√
2I sin(ωt − φ),

where U and I represent the root-mean-square (rms) values
of the voltage and current, respectively, there is

p = UI cosφ − UI cos(2ωt − φ), (8)

which can be rewritten as

p = UI cosφ(1− cos(2ωt))− UI sinφ sin(2ωt).

The first term UI cosφ(1 − cos(2ωt)) is non-negative and
the second term UI sinφ sin(2ωt) has a zero mean over the
period τ = 2π

ω
, both oscillating at twice the frequency. The

average value of p over one period τ is the same as the average
value of the first term over one period, which is known as the
active power P, i.e.,

P =
1
τ

∫ τ

0
pdt =

1
τ

∫ τ

0
iT udt = UI cosφ.

It is also often called the real power or the average power. The
maximum of the second term UI sinφ sin(2ωt) is defined as
the reactive power Q, i.e,

Q = UI sinφ.

The physical meaning of the real power has been very
clear: it is the power that is actually consumed or does the real
work. However, the physical meaning of the reactive power
is not clear and it is just a mathematical formulation. It is
known as an unwanted but unavoidable part of AC electric
circuits, which is often regarded as the oscillating power in the
system. However, this is not generally true [2]. For example,
for balanced three-phase systems, the (real) power p is not
oscillating.

Now, the puzzle is solved. The reactive power is the (real)
power of the ghost system Zg!
Indeed, the instantaneous power of the ghost system is the

product of its voltage and current given by

q = uTg yg = uTg ig = iTg ug = −i
T ug, (9)

which is

q = −iT ug

= −
√
2I sin(ωt − φ)×

√
2U cos(ωt)

= UI sinφ − UI sin(2ωt − φ) (10)

Its average over one period τ is the average reactive power

Q =
1
τ

∫ τ

0
qdt = −

1
τ

∫ τ

0
iT ugdt = UI sinφ.

For balanced three-phase systems, the oscillating terms
in (8) and (10) all disappear, and the instantaneous real and
reactive power are all equal to the average real and reactive
power, respectively.
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Comparing (8) and (10), it is easy to see that[
p
q

]
=

[
0 g
−g 0

] [
p
q

]
.

Moreover, there is[
P
Q

]
=

[
0 g
−g 0

] [
P
Q

]
.

This is a very interesting result: P = gQ andQ = −gP. Once

again, it is shown that
[
0 g
−g 0

]
is an identity operator.

Actually, the reactive power is widely known as the imag-
inary power. The ghost system does not exist in reality so its
power is of course imaginary. Since the definition of reactive
power is now dual to the real power, it is applicable to systems
under different scenarios like the real power: with any number
of phases and any number of harmonics, and without any
intermediate transformation.

Assume that, for a general system Z , the voltage and
current are, respectively,

u = 6n
√
2Un sin(nωt − αn),

i = 6m
√
2Im sin(mωt − βm).

The corresponding ghost voltage is

ug = gu = 6n
√
2Un cos(nωt − αn).

Then, the instantaneous real power and reactive power are,
respectively,

p = iT u

= 6m
√
2Im sin(mωt − βm) ·6n

√
2Un sin(nωt − αn),

q = −iT ug

= −6m
√
2Im sin(mωt − βm) ·6n

√
2Un cos(nωt − αn).

Integrating both over one period, then the average real power
and reactive power can be obtained as

P = 6nUnIn cosφn,

Q = 6nUnIn sinφn,

where φn = βn − αn, because the integration of the cross-
frequency terms with m 6= n over one period is 0. This is
consistent with the conventional definition for reactive power
(and real power) [19]. The apparent power S is defined to
reflect the capacity of the system as

S = UI ,

where U =
√
6nU2

n and I =
√
6mI2m are the rms values

of the voltage and the current, respectively. The difference
between S2 and P2+Q2 is then characterized by the distortive
power D, also called the harmonic power, via

S2 = P2 + Q2
+ D2.

Finally, the power factor of the system is defined as P
S to

reflect the utilization of the capacity.

What is described above is actually an instantaneous
power theory for AC electrical systems that is significantly
simpler than existing power theories, e.g. the commonly-
used instantaneous p − q power theory [2]. Simplicity is
beauty. For the convenience of future references, this power
theory is called the ghost power theory. Since the control
of power electronic converters heavily relies on the accu-
rate calculation of real and reactive power [4], [20], [21],
the ghost power theory is expected to play an important
role in future power electronics-enabled autonomous power
systems [6], [22].

IV. APPLICATION TO COMPLETE THE
ELECTRICAL-MECHANICAL ANALOGY
Voltage, current, flux linkage and charge are fundamental
concepts in electrical systems. The voltage is defined as the
change of the flux linkage and the current is defined as the
change of the charge. The other relationships among these
four concepts are then characterized by the four basic electric
elements: resistor (voltage ∼ current), inductor (flux link-
age ∼ current), capacitor (charge ∼ voltage) and memristor
(flux linkage ∼ charge) [23]. The term impedance is defined
in the frequency domain as the ratio between the voltage
and the current, with its inverse called admittance. The term
power is defined as the product of the voltage and the current
in the time domain, with its average called the real power. For
AC electrical systems, there is also the term reactive power as
discussed in the previous section.

TABLE 1. The Electrical-Mechanical Analogy.

It is well known that electrical systems and mechanical
systems are analogous [7], [8], [24]. The fundamental con-
cepts in both fields are summarized in Table 1 to demon-
strate this duality. Here, the force-current analogy, which
has led to the discovery of the two-terminal mechanical
device (called the inerter) corresponding to the capacitor [25],
instead of the commonly-used force-voltage analogy is
adopted. Most of the dual concepts in Table 1 are well known,
except the charge-momentum and flux linkage-displacement
pairs. According to the Newton’s second law, the rate of
change of the momentum of a particle is proportional to the
force acting on it, which makes the momentum dual to the
charge in electric systems. For rotational mechanical systems,
the corresponding term is the angular momentum. As to the
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flux linkage-displacement analogy, it is clear from the fact
that the derivative of the flux linkage is the voltage and
the derivative of the displacement is the velocity. For rota-
tional systems, the corresponding term is the angle. Note that
the fourth electric element, the memristor that describes the
relationship between the charge and the flux linkage, is not
included in the table. As a side note, for the sake of complete-
ness of the electrical-mechanical analogy, there should exist
a mechanical element that describes the relationship between
the momentum and the displacement, corresponding to the
memristor. However, no known mechanical device exists and
efforts should be made to identify this device. Anyway, this
is not the focus of the paper so it is not discussed further.
The term impedance is defined as the ratio of velocity to
force for translational systems and as the ratio of angular
velocity to torque for rotational systems. Note that this is
consistent with [24] and [25] but is not with those adopt-
ing the force–voltage analogy. The inverse of impedance is
called admittance. As a result, a mechanical system can be
analyzed or synthesized in the same way as its dual electrical
system, if one more term— the reactive power— is properly
defined.

For mechanical systems, the term of work, which is the
integral of power, is used more often than the term power.
For translational systems, the work done is the product of the
force with the displacement; for rotational systems, the work
done is the product of the torque with the angle. This leads to
the power defined as the product of the force and velocity for
translational systems and as the product of the torque and the
angular velocity for rotational systems. Apparently, the power
defined in this way represents the power actually consumed,
i.e., the real power.

For AC electrical systems, there are real power and
reactive power as described in the previous section. How-
ever, for mechanical systems, there does not exist a well-
accepted way to define the reactive power. Actually, there
are only very limited attempts trying to understand the role
of reactive power and power factor in mechanical systems,
e.g. [9], [10]. Here, the reactive power in mechanical sys-
tems can be defined dually as the real power, following
the electrical-mechanical analogy and the newly-introduced
ghost operator.

One barrier for this might be due to the fact that mechan-
ical motions are caused by forces and torques, which
are dual to current sources, but electrical motions are often
caused by voltage sources. In order to better understand
reactive power in mechanical systems, consider the case of
an inductor L driven by a current source i = −

√
2I sin(ωt −

π
2 ) =

√
2I cos(ωt) at first. The voltage induced

is

u = L
di
dt
= −
√
2IωL sin(ωt) = −

√
2ωLI sin(ωt),

and its ghost is

ug = gu = −
√
2ωLI cos(ωt).

According to (9), the (instantaneous) reactive power of the
system is the power of its ghost given by

q = iTg ug = −i
T ug

=
√
2I cos(ωt)×

√
2ωLI cos(ωt)

= ωLI2 − ωLI2 sin(2ωt), (11)

with the average reactive power being

Q = ωLI2.

This is consistent with the value obtained from the conven-
tional way.

Now, consider a rigid body Z with the moment of inertia
Jm driven by the torque y =

√
2T cos(ωt), as described

in Fig. 2(a). The resulting angular velocity is u =√
2 T
ωJm

sin(ωt), with its ghost angular velocity being ug =
gu =

√
2 T
ωJm

cos(ωt). As a result, dual to (9), the instan-
taneous reactive power is the power of the ghost illustrated
in Fig. 2(b), given by the product of yg = −y and the ghost
angular velocity ug as

q = yTg ug = −y
T ug

= −
√
2T cos(ωt)×

√
2
T
ωJm

cos(ωt)

= −
T 2

ωJm
+

T 2

ωJm
sin(2ωt),

with its average reactive power being

Q = −
T 2

ωJm
.

The negative sign indicates that the rigid body ‘‘generates’’
reactive power, similar to the case of a capacitor. The second
example to be considered is a spring with stiffness K subject
to the force y =

√
2F cos(ωt). The resulting velocity is

u = −
√
2ωFK sin(ωt), with its ghost velocity being ug = gu =

−
√
2ωFK cos(ωt). As a result, dual to (9), the instantaneous

reactive power is the power of the ghost given by the product
of yg = −y and the ghost velocity ug as

q = yTg ug = −y
T ug

= −
√
2F cos(ωt)× (−

√
2
ωF
K

cos(ωt))

=
ωF2

K
−
ωF2

K
sin(2ωt),

with its average reactive power being

Q =
ωF2

K
.

The positive sign indicates that the spring ‘‘consumes’’ reac-
tive power, similar to the case of an inductor.

Because of the electrical-mechanical analogy, the two
examples illustrated above can be generalized to anymechan-
ical system. That is, the reactive power of a mechanical
system is the power of its ghost system, i.e.,

q = yTg ug = −y
T ug,
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FIGURE 3. The ghost power theory that physically interprets the instantaneous reactive
power of a system as the (real) power of its ghost system, where g is the ghost operator.

where yg and ug are, respectively, the output and input of the
ghost. For translational systems, they are related to the force
and velocity of the system; for rotational systems, they are
related to the torque and angular velocity of the system.

Note that for the real power defined in the normal way as

p = uT y = yT u

there are

q = −gp and p = gq.

Furthermore, the average reactive power and the power factor
can be defined for mechanical systems as well in a similar
way as for electrical systems. This completes the electrical-
mechanical analogy, as shown in Table 1.

It is well known that reactive power plays a critical role
in electrical systems. However, this has not been well recog-
nized for mechanical systems. The definition introduced here
is expected to help understand the role of reactive power in
mechanical systems and opens a new door for the analysis
and synthesis of mechanical systems.

V. GENERALIZATION, CONCLUSIONS AND DISCUSSIONS
A new mathematical operator called the ghost operator g has
been introduced in this paper for sine or cosine functions,
followed by the physical construction of the ghost for a
signal and the ghost for a system. The operator satisfies
g2 = −1 but it is different from the well-known imaginary
operator j. The g-operator does not return an imaginary num-
ber but the imaginary operator j does when both are applied
to cos θ or sin θ with θ being a real number. The ghost of a
system behaves exactly in the opposite way as the original
system when its input is the ghost of the input to the original
system, showing perfect symmetry with respect to the origin.
This has then been applied to reveal the physical meaning
of reactive power: it is the (real) power of the ghost system.
Moreover, it has been shown that it can be applied to introduce
reactive power for mechanical systems, providing a missing
concept in the electrical-mechanical analogy.

As a matter of fact, the instantaneous power theory
described above can be generalized to any dynamical system
Z that is described by the port-Hamiltonian model (1)-(2)
with a periodic input u. Its instantaneous real power and
reactive power are

p = uT y = yT u,

and

q = yTg ug = −y
T ug,

where ug = gu is the ghost of the input u to the original
system Z and yg = −y is the output of the ghost. The average
real power and reactive power can be easily obtained by
taking the averages of p and q over one period. Since the port-
Hamiltonian system (1)-(2) can be applied to model complex
networked multi-physics systems with lumped and/or dis-
tributed parameters [5], the above interpretation/definition for
instantaneous real power and reactive power is very generic
and can be applied to other systems involving energy or power
conversion as well, including fluid, thermal, magnetic, and
chemical systems, in addition to the electrical andmechanical
systems illustrated above. This ghost power theory can be
summarized as illustrated in Fig. 3.

The Chinese yin-yang philosophy describes how seem-
ingly opposite or contrary objects may actually be comple-
mentary, interconnected, and interdependent, and how they
may give rise to each other as they interrelate to one another.
The ghost of a system and the original system actually form a
perfect pair of yin-yang. Some interesting results may emerge
after further research on this.

Another possible application of the ghost operator is in
quantum mechanics, where the imaginary operator and com-
plex numbers play a critical role. However, does quantum
mechanics have to be based on complex numbers [26]?
The ghost operator introduced in this paper may shed some
new light on this.
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