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ABSTRACT Bluetooth low energy (BLE)-based indoor localization has attracted increasing interests
for its low-cost, low-power consumption, and ubiquitous availability in mobile devices. In this paper,
a novel denoising autoencoder-based BLE indoor localization (DABIL) method is proposed to provide high-
performance 3-D positioning in large indoor places. A deep learning model, called denoising autoencoder,
is adopted to extract robust fingerprint patterns from received signal strength indicator measurements, and a
fingerprint database is constructed with reference locations in 3-D space, rather than traditional 2-D plane.
Field experiments show that 3-D space fingerprinting can effectively increase positioning accuracy, and
DABIL performs the best in terms of both horizontal accuracy and vertical accuracy, comparing with
a traditional fingerprinting method and a deep learning-based method. Moreover, it can achieve stable
performance with incomplete beacon measurements due to unpredictable BLE beacon lost.

INDEX TERMS Bluetooth low energy, indoor localization, fingerprinting, denoising autoencoder.

I. INTRODUCTION
With the rapid development ofmobile Internet, location based
services (LBS) in large public indoor places, such as shop-
ping malls, offices, and airports, have become increasingly
popular. To date, a lot of indoor localization technologies
have been proposed based on various measuring techniques,
including ultrasound [1], [2], infrared [3], image [4], [5],
light [6], magnetic field [7], and wireless signals [8]–[16].
For example, Bordoy et al. [1] presented an indoor localiza-
tion approach based on measuring the time of flight (TOF)
of ultrasound signal reflections in human bodies and walls.
Similarly, ultrasonic signals can also be used to estimate
distance between receiver and transmitter by measuring the
TOF [2]. Gorostiza et al. [3] presented a sensorial system to
perform indoor localization by measuring differential phase-
shifts of sinusoidally modulated infrared signals from a robot.
Zheng et al. [4] developed a system that uses RGB-D cameras
for visual based localizations. Werner et al. [5] proposed a
positioning method which allows for a fine-grained detection
of the position and orientation of users with smartphone
cameras. In SpinLight [6], spatial beams are identified with
a unique time sequence of light signals generated by a coded
shade which cover and rotate around an infrared LED light
source. LocateMe [7] uses magnetic field as spatial patterns

for indoor localization. In addition to the diversified measur-
ing primitives above, wireless signals, especiallyWiFi signal,
are very popular in indoor localization due to their wide avail-
ability on mobile devices and indoor environments. In [8],
EZ models wireless propagation with the log-distance path
loss (LPDL) model and uses a genetic algorithm for indoor
localization. Li et al. [9] proposed a WiFi indoor localization
method based on collaboration of fingerprinting and assis-
tant nodes. The authors in [10] proposed a WiFi localiza-
tion system based on the channel state information (CSI)
of WiFi signals and the deep belief network (DBN). The
deep learning model is used to learn the fingerprint patterns
from high dimensional CSI signals. Shu et al. [11] proposed
gradient fingerprinting (GIFT) which leverages a more stable
RSSI gradient. Liu et al. [12] proposed a peer assisted local-
ization approach to eliminate large errors of WiFi signals.
Beside WiFi, other wireless signals are also widely used by
indoor localization technologies, including ZigBee, UWB,
and RFID. For example, Sugano et al. [13] implemented an
autonomous indoor localization system for wireless sensor
network with ZigBee signals. In [14], a method was pro-
posed to estimate the Time-Difference-of-Arrival (TDOA)
for UWB indoor positioning. Wang et al. [15] proposed a
robust algorithm named residual weighted multidimensional
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scaling (RWMDS) based on multipath channel model for
passive UHF RFID tag localization. Saab and Nakad [16]
also used RFID tags to implement indoor positioning with
Kalman filter.

Till now, most of the indoor localization methods are
designed for 2D localizations only. In some special appli-
cations, such as indoor navigation of unmanned aerial vehi-
cle (UAV), commodities positioning and tracking in large
supermarkets, and so on, 3D indoor localization is very
important. To solve this problem, several technologies have
been proposed with different measuring primitives [17]–[19].
For example, Lu et al. [17] introduced a 3D Structure-from-
Motion (SfM) model for 3D indoor localization from videos
records. Xu et al. [18] designed and implemented a RFID
based 3D indoor localization system using RSSI measure-
ments for multiple trilateral positioning. In [19], a visible
light based 3D indoor positioning system was proposed,
adopting code division multiple access (CDMA) technique
for spatial positioning from multiple reference light sources.

Recently, Bluetooth Low Energy based localization has
attracted intense interests and gained popularity in practi-
cal use due to its low cost, low power consumption, and
ubiquitous availability in mobile devices. Similar with other
wireless techniques, BLE can be used from two different
approaches: trilateration [20] and fingerprinting [21], [22].
The trilateration approach exploits the relationship between
the receiver’s RSSI measurement and its distance to the BLE
beacon station. By estimating distances to multiple beacon
stations, the receiver’s location can be recovered with a
least square algorithm. The fingerprinting approach is imple-
mented in two phases: an offline phase and an online phase.
The offline phase is called the training phase. During this
phase, a fingerprint database is constructed with position-
dependent parameters extracted from the measured RSSIs
of reference locations. The online phase is known as the
localization phase. It maps the current RSSI measurements
to a reference location by finding the most relevant RSSI
fingerprint from the database. However, as wireless signals
are not stable and may vary greatly across location and time,
both of these two approaches suffer from large positioning
errors. Moreover, BLE suffers severe beacon lost comparing
with WiFi and other wireless techniques due to the following
three reasons. Firstly, there are only three broadcast channels
allocated for BLE beacons. When there are multiple beacon
stations installed in vicinity of the receiver, collisions may
easily happen such that the receiver cannot recover the beacon
signals correctly. Secondly, with much lower transmission
power of BLE beacons, the transmission range of BLE is
much shorter than that of WiFi. It’s thus more likely for
receivers to be in the boundary areas of BLE beacon stations
and suffer from beacon lost due to fluctuations of receiving
signal power. Thirdly, BLE beacon stations are usually bat-
tery powered, so there would be signal vacuums when the
batteries run out.

To address these problems, a novel denoising autoencoder
based BLE indoor localization method, DABIL, is proposed

in this paper. A deep learningmodel, called denoising autoen-
coder [23], is adopted to extract robust fingerprint pat-
terns from noisy RSSI measurements. Based on these robust
fingerprints, a 3D fingerprint database is constructed offline
for reference locations in 3D space, to provide accurate
3D online positioning. As demonstrated by our experimental
results, a 3D fingerprinting database can effectively improve
localization accuracies, in terms of both horizontal and ver-
tical accuracy. Extensive performance evaluations show that
DABIL outperforms other methods in both horizontal and
vertical location accuracies.

The remainder of this paper is organized as follows.
Section II presents technical details of DABIL. Experi-
ment results are demonstrated and discussed in Section III.
Section IV concludes our work.

II. DEEP LEARNING BASED BLE INDOOR LOCALIZATION
DABIL adopts the fingerprinting approach. Comparing with
trilateration approach, fingerprinting exhibits robust perfor-
mances against multi-path effect of indoor radio propaga-
tion. Complex layout of indoor environment, including walls,
furniture, decorations, etc., can bring complex reflections to
indoor radio propagations, and multiple copies of the same
signal may reach the receiver side from different reflection
paths, each with different attenuations and delays. The unpre-
dictable weakening or strengthening combination effect of
these multi-path signals will break the relationship between
RSSI and transmission distance, and thus render the trilatera-
tion positioning less effective. Fingerprinting approach does
not rely on the recovery of distances. It uses the measured
RSSIs as spatial patterns only and is thus less vulnerable to
the multi-path effect.

A. FINGERPRINTING
The key step in the fingerprinting method is to build a
fingerprint database. A typical fingerprint database can be
expressed as:

� = {(f1,p1), (f2,p2), . . . , (fN ,pN )} (1)

where N is the total number of reference locations in the
database, fi denotes the fingerprint pattern of the ith reference
location and pi is the spatial coordinates of this reference
location.

The fingerprint pattern f can be raw RSSI values frommul-
tiple beacon stations, or any other feature vectors extracted
from those RSSIs.Most of the existing fingerprinting systems
use raw RSSI values as spatial patterns. In this case, f can be
expressed as:

f = [r1, r2, . . . , rm] (2)

where m is the total number of BLE beacon stations, and
ri represents the measured RSSI value from the ith station.
This fingerprinting is simple but suffers from several draw-
backs. First, the set of covering beacon stations could vary
violently across locations and it is hard to divide them into
different subsets in the RSSI space. Second, the value of
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FIGURE 1. System architecture of DABIL.

RSSIs fluctuate frequently and widely. In DABIL, a denois-
ing autoencoder is used in the training phase, which can learn
features from measured RSSIs with its simple and symmet-
rical structure and behave robustly against signal fluctuation
as well as beacon lost.

In other words, a deep network is trained with fluctuated
raw RSSI measurements, and the trained network itself is
used as the fingerprint pattern for this reference location.
Since a deep network can be represented by its weights of
each layer, the fingerprint pattern of DABIL can be expressed
as follows:

f = [w1,w2, . . . ,wl,w′1,w
′

2, . . . ,w
′
l] (3)

where l is the number of encoding hidden layers of the
denoising autoencoder, wi and w′i represent the weights of the
ith encoding hidden layer and its decoding mirror layer.

The architecture of DABIL is shown in Fig. 1. Differ-
ent from other methods, RSSIs of BLE beacon stations are
measured at different heights in the training phase. At each
reference location, a serial of RSSI measurements are first
collected from all the nearby BLE beacon stations and then
used to train a denoising autoencoder for fingerprint. In the
localization phase, these trained denoising autoencoders are
used as fingerprints to calculate the probabilities that the
target is located at each reference location. And finally, the
estimated target location is calculated by a KNN algorithm.

B. TRAINING OF FINGERPRINT USING
DENOISING AUTOENCODER
Deep learning [24], also known as deep structured learning,
is a branch of machine learning based on a set of algorithms
that attempt to model high-level abstractions in data by using
a deep graph with multiple processing layers, composed of
multiple linear and non-linear transformations. It has been

widely used to learn features from non-structed data, such as
images [25], sounds [26], EEG signals [27], and texts [28].
An autoencoder [29] is an artificial neural network designed
to learn efficient encodings of an original data set. And it is
widely used for the purpose of dimensionality reduction and
feature extraction.

The autoencoder is an unsupervised learning method, the
input and output layers of which are of the same size. With
encoding hidden layers, it predicts a target z with given
input x, and then reconstructs the input with z through decod-
ing mirror layers. By defining the encoding and decoding
functions as φ and ψ , the process can be expressed as:

z = φ(x) (4)

x′ = ψ(z) (5)

where x′ is the reconstructed input. The aim of an autoen-
coder is to minimize the difference between the original and
reconstructed input.

min
φ,ψ
‖x− ψ(φ(x))‖2

In DABIL, input x is a column vector of measured RSSIs
from multiple beacon stations at a reference location:

x = [r1, r2, . . . , rm]T (6)

where ri is the RSSI value measured from the ith BLE beacon
station and m is the number of BLE beacon stations.

Denoising autoencoder [23] is a stochastic version of
autoencoder. It tries to encode the input in a way that can undo
the effect of a stochastic corruption process applied to it. This
requires that the trained network can capture the statistical
dependencies among different inputs. It has two obvious
advantages. Firstly, it can cast away the dependency among
input dimensions for better feature extraction. Secondly, it is
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FIGURE 2. Structure diagram of a denoising autoencoder.

more stable when there are noises in the input. For these
reasons, the denoising autoencoder is adopted in DABIL to
both improve localization accuracy and provide robustness
with RSSI fluctuations and beacon lost.

To convert an autoencoder into a denoising autoencoder,
a stochastic corruption step should be added to the training
input, which is shown in Fig. 2. The training input can be
corrupted in many ways. In DABIL, the input is corrupted
in the way that entries of x are randomly set to zero. This
corruption function is designed to simulate the randomized
loss of BLE beacon signals.

During the training phase, a denoising autoencoder with
three encoding hidden layers is constructed for each refer-
ence location and trained with multiple measurements. All
these trained denoising autoencoders are used as fingerprints
to construct the fingerprint database. A denoising autoen-
coder with three encoding hidden layers cannot be trained
in one step. It should be trained in a layer-by-layer fashion.
Let z1, z2, z3 denote the output of the first, second and
third encoding hidden layer, as shown in Fig. 3. The training
process can be described as the following steps:
0) Corrupt the input.

Corrupt the input x to x̃ with:

x̃ = w0 � x (7)

where � represents entry-wise production, and w0 is a
column vector whose entries are randomly set to either
0 or 1with a probability ofPc and 1−Pc. In the following
training process, Pc is set to 50%. It is noteworthy
that w0 is regenerated in each training batch, insuring
stochastic corruptions so as to reduce the dependencies
between every two entries of the input as much as
possible.

1) Train the first hidden layer.
Construct a three-layer artificial neural network with the
corrupted input layer, the first encoding hidden layer,

and its decoding mirror layer. The corrupted input x̃ is
first mapped to z1 with:

z1 = σ (w1x̃+ b1) (8)

where w1 is the weighting matrix of the first encoding
hidden layer, and b1 is its bias vector. σ is the activation
function of each node in the hidden layer, which is sig-
moid function inDABIL. After this, z1 is furthermapped
to reconstruct x. Denoting the reconstructed input as x′,
we can have

x′ = σ (w′1z1 + b′1) (9)

wherew′1 is the weighting matrix of the decoding mirror
layer, and b′1 is its bias vector. This three layer network
is trained to minimize the reconstruction error of:

L(x, x′) = ‖x− x′‖2

= ‖x− σ (w′1(σ (w1x̃+ b1))+ b′1)‖
2 (10)

The gradient descent algorithm is used for the adjust-
ment of weights, and the network is trained for 100 times
or until the error is less than 0.001.

2) Train the second hidden layer.
Construct a three-layer artificial neural network with
input z1, the second encoding hidden layer, and its
decoding mirror layer. Similarly, the input z1 is mapped
to z2 and z2 is mapped to a reconstructed z′1:

z2 = σ (w2z1 + b2) (11)

z′1 = σ (w
′

2z2 + b′2) (12)

and the network is trained tominimize the reconstruction
error of:

L(z1, z′1) = ‖z1 − z′1‖
2

= ‖z1−σ (w′2(σ (w2z1+b2))+b′2)‖
2 (13)

3) Train the third hidden layer.
The third hidden layer of the denoising autoencoder is
trained in the same way as Step 2, with the minimization
target of:

L(z2, z′2) = ‖z2 − z′2‖
2

= ‖z2−σ (w′3(σ (w3z2+b3))+b′3)‖
2 (14)

After the whole denoising autoencoder is trained, the
weighting matrix and bias vector of each layer is obtained,
and the fingerprint pattern of the ith reference location can be
represented as:

fi = [w1,w2,w3,w′1,w
′

2,w
′

3]. (15)

where the bias vectors are combined into each weighting
matrix as an extra row. Then the fingerprint database is con-
structed with the fingerprint patterns and position coordinates
of all the reference locations.
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FIGURE 3. Training process of the denoising autoencoder.

C. LOCATION ESTIMATION
To estimate a target location, the posteriori probabilities that
the target locates at each reference locations can be calcu-
lated first. Then the target location can be estimated with a
weighted KNN method as follows:

p̂ =
k∑
i=1

P(i|x)pi (16)

where P(i|x) is the posteriori probability of target locat-
ing at reference location i, and pi is the coordinate of the
ith reference location. In existing fingerprinting methods, the
heights of fingerprints are always ignored and the fingerprints
are usually collected at a fixed height, i.e., pi = [xi, yi].
In fact, RSSI varies across different heights. Without tak-
ing height information into consideration, the positioning
accuracy could fluctuate violently across different heights.
So in our method, a 3D fingerprinting approach is adopted
to deal with this issue. Fingerprints are collected in 3D space
and each reference location has its 3D coordinates pi =
[xi, yi, zi]. This design can both provide height information
and improve horizontal localization accuracy.

According to Bayes’ law, we can get:

P(i|x) =
P(i)P(x|i)∑
i P(i)P(x|i)

(17)

Here, P(i) is the prior probability that the target point is
located at the ith reference location. Assuming that P(i) is
uniformly distributed for each reference location, (17) can be
simplified as:

P(i|x) =
P(x|i)∑
i P(x|i)

(18)

For each reference location i, a denoising autoencoder is
built with its fingerprint pattern fi, and the measured RSSIs

at the target location are used as the input x of the denoising
autoencoder. In this phase, the corruption step is not required
anymore. And the distance is calculated between the input x
and its reconstructed version of x′i:

di = ‖x− x′i‖ (19)

There are relationships between P(x|i) and di. Fig. 4 shows
the mean value and standard deviation of di with differentDi,
which is the 3D space distance between the target location
and the ith reference location. From Fig. 4, it is found that
di increases generally with Di, though there are some vari-
ations due to the instability of BLE signals. It can thus be
inferred that the larger di is, the largerDi is, and consequently
the smaller P(x|i) is. P(x|i) is therefore defined as,

P(x|i) = exp (−
di
λ
) (20)

the curve of which is shown in Fig. 5. The choice of this
exponential function can be roughly attributed to two rea-
sons. Firstly, P(x|i) decreases with di under this function,
which conforms to the findings from Fig. 4. Secondly, P(x|i)
falls into the range of (0, 1] for positive di, and the shape
of the function conforms to our intuitive of the probabil-
ity distributions. In Fig. 4, the values of di are within the
range of (0.1, 0.7) when Di is in the range of (0, 8). Taking
into consideration that the coverage range of BLE is around
10 meters, and reference locations outside coverage range
are of no use as their signals cannot be correctly recognized.
Combining with Fig. 5, it can be found that the shape of
the curve gives a better discrimination for the range of di ∈
(0.1, 0.7) with λ = 1/3. The distribution range of P(x|i) is
too small when λ = 1/2, and the shape of the function is
too steep when λ = 1/4. So in this paper, the value of λ is
set to 1/3.
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FIGURE 4. Coding distance d vs location distance D.

FIGURE 5. The curve of exp (− d
λ

).

With the calculated value of each P(x|i), the estimated
position can be calculated with Eq. (16), which is represented
as following:

p̂ =
k∑
i=1

P(x|i)∑
i P(x|i)

pi (21)

III. PERFORMANCE EVALUATION
As shown in Fig. 6, a testbed of BLE beacon system are
deployed in a conference room for the purpose of perfor-
mance evaluation. The layout of the conference room mea-
sures 17.5 × 9.6 meters. Ten BLE beacon stations are placed
on the wall at height of 2.54 meters. Reference locations (red
points in Fig. 6) are measured at three different heights of
0.8m, 1.6m, and 2.4m, respectively. The distance between
adjacent reference locations from a same height is 0.8m.
Thus, the total number of the reference points is 8 × 8 ×
3 = 192. Two layers of test locations (green points in Fig. 6)
are measured at heights of 1.2m and 1.9m respectively.

A. RSSI FILTERING AND PARAMETER SELECTION
The raw RSSI readings are not directly used due to its severe
fluctuation across time. Fig. 7 shows the measured RSSIs of
a same BLE beacon station at different time. It shows that

RSSIs are unstable and have strong signal fluctuations due
to fading and multi-path effects. Besides this, there could
also be beacon lost during the measurement of RSSIs. So, in
DABIL, a filter with timewindow T is used to smooth the raw
RSSI readings and eliminate the effect of RSSI fluctuation
and beacon lost. The filter can be mean filter, median filter,
or other low pass filters. In DABIL, a mean filter is adopted
with T = 1s.
To achieve high localization accuracy and robustness, it’s

essential to choose the optimal model parameters. The input
node number of the denoising autoencoder is set to ten, which
is the same as the installed beacon stations. And there are
four parameters left in DABIL to be determined, including the
node numbers of three different hidden layers in the denoising
autoencoder and the number of neighbours k in KNN. Let
n1, n2, n3 be the node numbers of the first, second and third
hidden layers respectively. Taking into consideration that a
denoising autoencoder can be seen as a process of feature
extraction, the node number of its hidden layers usually
decrease along the data pass. The range of parameters are
thus roughly set as n1 ∈ [8, 18], n2 ∈ [5, 14], n3 ∈ [3, 10],
and k ∈ [1, 30] for an affordable exhaustion. Using the
localization accuracy as selection criterion, the optimal con-
figuration is found to be n1 = 9, n2 = 13, n3 = 5, and
k = 9. Fig. 8 and Fig. 9 depict the effect of value k to
the localization accuracy of DABIL, in terms of mean and
standard deviation of localization errors. As shown in these
two figures, k = 9 provides a balance among precision,
stability, and computational complexity.

B. LOCALIZATION ACCURACY
The performance of DABIL is compared with Faragher’s
method [22] and Zhang’s method [30]. Faragher’s method
is a widely accepted BLE fingerprinting method, which
was designed with reference locations in 2D plane (RL-2D)
and supports 2D localization only. DABIL uses reference
locations in 3D space (RL-3D) and provides 3D localization.
In Zhang’s method, a four-layer Deep Neural Net-
work (DNN) and a Hidden Markov Model (HMM) are
combined to realize indoor localization. The DNN is used
as a classifier to achieve coarse localization, which can be
deemed as fingerprinting, and the HMM is introduced to
smooth the initial localization so as to improve localiza-
tion accuracy. For the purpose of a fair performance eval-
uation, Faragher’s method and Zhang’s method are tested
with RL-3D setting, and DABIL is also tested with RL-2D
setting. Denoting [xe, ye, ze] and [xr , yr , zr ] as the estimated
and real coordinates of the test location, localization accu-
racies are compared in terms of horizontal error Eh =√
((xe − xr )2 + (ye − yr )2) and vertical error Ev = |ze − zr |

respectively, so as to accommodate 2D and 3D localization
into a same comparison. Besides these, a degenerated version
of DABIL, which is trained with basic autoencoder only,
is also tested to verify the robustness brought by denoising
autoencoder.
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FIGURE 6. Testbed layout.

FIGURE 7. Time variation of BLE RSSIs.

FIGURE 8. Mean localization error vs k .

1) HORIZONTAL LOCALIZATION ACCURACY
As shown in Fig. 10 and Table 1, DABIL performs the
best in 2D positioning. It achieves distance errors of 1.0m
and 2.0m for 52.69% and 92.56% of total instances, and its
mean accuracy is about 1.09m. Faragher’s method produces
location errors of 1.0m and 2.0m for only 32.82% and 76.28%
of the instances. The mean accuracy is about 1.51m, which
is about 50% worse than that of DABIL. Zhang’s method
produces location errors of 1.0m and 2.0m for 48.69% and
89.76% of the instances, and the mean accuracy is 1.18m,
which is slightly inferior to that of DABIL. When trained

FIGURE 9. Standard deviation of localization error vs k .

FIGURE 10. CDFs of horizontal localization accuracy.

with autoencoder only, the positioning accuracy of DABIL
decreases to 48.72% and 86.15% for 1.0m and 2.0m accuracy,
and the mean accuracy decreases to about 1.23m. The perfor-
mance gap between denoising autoencoder and autoencoder
shows the improved stability by using denoising autoencoder
for fingerprint training.

When applying RL-3D settings to Faragher’s method,
it could be found that the location accuracy improves
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TABLE 1. Horizontal mean accuracy and standard deviation.

significantly comparing with its RL-2D settings, though not
as good as DABIL. 47.82% and 86.03% of the total instances
achieve positioning errors within 1.0m and 2.0m, and the
mean accuracy is about 1.23m. These experimental results
demonstrate that by collecting fingerprint in 3D space, the
accuracy of 2D positioning with traditional fingerprinting
can be increased. When applying RL-2D settings to DABIL,
the location accuracy also decreases, though still better than
that of Faragher’s method. 38.59% and 83.97% of the total
instances achieve position errors of 1.0m and 2.0m, and the
mean accuracy is about 1.30m. When applying RL-3D set-
tings to Zhang’s method, the accuracy decreases to 45.36%
and 85.95% for 1.0m and 2.0m, and the mean accuracy
decreases to about 1.25m. The reason for this unexpected
degradation of localization accuracies can be attributed to
the HMM used by the algorithm. With RL-3D settings, the
number of states in the HMM would be tripled comparing
with RL-2D settings. This enlarged state number, together
with the error propagation effect of HMM, aggravate the
accuracy of Zhang’s method.

TABLE 2. Vertical mean accuracy and standard deviation.

2) VERTICAL LOCALIZATION ACCURACY
To compare performances in terms of vertical accuracy,
Faragher’s method and Zhang’s method are modified to pro-
vide 3D positioning with RL-3D settings. Fig. 11 and Table 2
show the comparison results. DABIL still performs the best
with 36.41% and 92.44% for 0.2m and 0.6m accuracy, and its
mean accuracy is about 0.34m. Faragher’s method performs
slightly worse, with 36.79% and 84.74% for 0.2m and 0.6m
height errors. Its mean vertical accuracy is about 0.37m.
When trained with basic autoencoder, DABIL’s vertical accu-
racy slightly decreases to the level of 33.97% and 90.26%
for 0.2m and 0.6m. And the mean accuracy is about 0.36m,
which is still better than that of Faragher’s. Zhang’s method
performs the worst as expected, with 11.67% and 76.43% for
0.2m and 0.6m height errors, and its mean accuracy is 0.50m,
which further proves that HMM is not compatible with
RL-3D settings.

FIGURE 11. CDFs of vertical localization accuracy.

FIGURE 12. Horizontal localization accuracy vs beacon lost rate.

3) LOCALIZATION ACCURACY IN CASE OF BEACON LOST
To validate the robustness of DABIL in case of beacon lost,
entries of measured RSSIs are stochastically masked by zeros
with a certain probability (beacon lost rate). Corrupted inputs
are used to test the robustness of DABIL and other algorithms.
The results are shown in Fig. 12 and Fig. 13. These emulated
results demonstrate that DABIL performs the best among all
the evaluated methods despite the beacon lost rate.

In terms of horizontal localization, DABIL can retain accu-
racy level of 1.27m and 1.60m when the beacon lost rates are
20% and 50% respectively. When trained with basic autoen-
coder only, the positioning accuracy of DABIL decreases
to about 1.37m and 1.69m for 20% and 50% beacon lost.
Faragher’smethod performs evenworse. The accuracy is only
about 1.66m and 1.90m. With RL-3D settings, the accuracy
of Faragher’s method increases to 1.37m and 1.70m, which
are still worse than that of DABIL. Zhang’s method is very
vulnerable to the corruption of inputs and its accuracy acutely
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FIGURE 13. Vertical localization accuracy vs beacon lost rate.

TABLE 3. Computational time per instant.

decreases to 2.42m and 3.00m for 20% and 50% beacon lost
rate. With RL-3D settings, Zhang’s method is not stable and
its accuracy is about 2.25m and 2.85m for 20% and 50%
beacon lost rate.

For vertical performance, it is found that the localization
error does not increase monotonously with beacon lost rate.
This can be attributed to the relatively small range of refer-
ence locations in the vertical direction. Nevertheless, the gen-
eral tendency of localization error is increasing as expected,
excluding Zhang’smethod, andDABIL still performs the best
under all beacon lost rates.

C. SPEED ANALYSIS
Computational complexities of each algorithm are compared
in terms of time needed for the calculation of each loca-
tion. Average results of 840 instances are listed in Table 3.
As shown in Table 3, Faragher’s method costs the least
computational time as expected due to its simple localiza-
tion process, i.e. 0.08ms and 0.06ms for RL-3D and RL-2D
settings. DABIL and Zhang’s method demand much longer
calculation time, even though their major computational bur-
dens are in the offline training phase and not counted in
the results. DABIL with denoising autoencoder can estimate
the target’s location in 0.84ms, and DABIL with autoen-
coder costs 0.81ms. This sub-second calculation time can
meet the requirement of real-time indoor localization. When
use RL-2D settings only, DABIL only needs 0.28ms to
calculate one position, which is about 1/3 that of using
RL-3D settings. Zhang’s method costs the longest calculation

time, with 3.8ms and 1.1ms for RL-3D and RL-2D settings.
Generally, with much less reference locations, computational
time with RL-2D settings are shorter than that of RL-3D
settings.

IV. CONCLUSION
In this paper, a novel denoising autoencoder based BLE
indoor localization method, DABIL, is proposed. Reference
locations are collected in 3D space instead of commonly used
2D plane. A deep learning model, denoising autoencoder,
is adopted for robust fingerprint extraction from measured
RSSIs. Denoising autoencoders are trained with RSSIs of
reference locations, and the weights of each trained denois-
ing autoencoder are used as the fingerprint of this reference
location. By sending the measured RSSIs of a target location
into the trained denoising autoencoders of each reference
location, the distances between the outputs and the input
can be used indicators of the likelihood of each reference
location. A KNN method is then applied for location estima-
tion with a weighted average of those most related reference
locations. Field experiments are conducted to evaluate the
accuracy of DABIL and its robustness against beacon lost.
Experimental results demonstrate that, DABIL outperforms
Faragher’s method [22] and Zhang’s method [30] in both
location accuracies (horizontal and vertical) and robustness
against beacon lost. Besides, 3D reference locations can
help increase traditional fingerprinting localization accuracy
effectively, comparing with 2D settings.
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