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ABSTRACT This paper discusses the problem of robust controller design for two-dimensional (2-D)
Markovian jump linear systems. The problem is demonstrated using Fornasini–Marchesini local state-space
models, which are affected by uncertainties. The transition-mode probability matrix is homogenous and
known. It is assumed that the mode information is available for the controller design and implementation.
Then, a mode-dependent state-feedback controller is proposed. By substituting the controller into the 2-D
system, a stochastic closed-loop system is obtained, because the stochastic variable, external disturbance, and
uncertainties are all included in the closed-loop system. Based on the analysis results, an approach to design
the controller and its gains is proposed, and the gains are calculated by solving linear matrix inequalities.
In section V, a 2-D case is used to verify the performance of the controller.

INDEX TERMS Two-dimensional digital system, Markovian jump system, passivity analysis, linear matrix
inequality (LMI), dissipation analysis.

I. INTRODUCTION
During the past decades, much attention has been focused
on multi-dimensional systems, mainly because these systems
have a wide variety of applications, including multi-
dimensional signal processing, image processing, and phys-
ical and chemical analysis [1]–[4]. On the theoretical side,
much effort has been devoted to enhancing the applications
of multi-dimensional systems. Liu [5] presented a stability
analysis for two-dimensional (2-D) linear systems. A stability
analysis was performed by Chen [6] for 2-D systems with
interval time-varying delays and saturation nonlinearities.
Peng and Guan [7] studied the output feedback in the design
problem for 2-D state-delayed systems. The delay-dependent
stabilizability of 2-D delayed continuous systems, in which
the input is constrained and the state is subject to delay,
was investigated by Mohamed et al. [8]. The nonlinear
case was studied by Liang et al. [9], and the switched case
was studied in [10]–[12]. Zhang et al. [13] aimed to study
the observer design problem for polytopic linear parameter
varying systems with uncertain measurements of scheduling
variables. The filtering problem, which is an important aspect

of control, has been examined in various studies
of 2-D systems, such as [14]–[20] and the references therein.

The study of Markovian jump systems has attracted
significant attention because, according to a review by
Zhang and Boukas [21], their applications include diverse
fields, such as economics, fault diagnosis, biomedicine, and
communication networks. Markovian jump systems have
been reported to better capture systems that are subject to
abrupt changes such as those in structures or parameters
induced by external causes. The external causes could include
sudden environmental changes or component failures accord-
ing to Zhang et al. [22]. Due to their significant application
prospects, much work on Markovian jump systems has been
performed and presented in the literature. Souza et al. [23]
presented a design for mode-independent filters for Marko-
vian jump linear systems, and the filter gains were calculated
via solving a set of linear matrix inequalities (LMIs). The
mode-reduction problem, in which a low-order system can
replace a high-order system, was studied by Zhang et al. [24].
Costa and Marques [25] investigated the controller-design
problem. de Souza [26] exploited the robust stability and
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stabilization of uncertain discrete-time Markovian jump lin-
ear systems. The performances of both H2 and H∞ were
considered simultaneously. hang et al. [27] developed amixed
H/H∞ fault detector design method. Xiong and Lam [28]
demonstrated that the stabilization problem for discrete-time
Markovian jump linear systems can be solved via time-
delayed controllers. Other works include [29]–[36] and the
references therein.

If a system is subject to external noise, an optimal con-
troller or filter should have the capacity to attenuate the
effect of noise. In the literature, various approaches have
been used to achieve specific targets, such as Kalman fil-
tering and H2 and H∞ filtering/control. Another method
termed passive control has gained relatively less attention.
Passivity not only offers a useful physical interpretation of
system stability/stabilization but also attenuates the noise.
Zhang and Wang [37] developed an observer gain tuning
method based on the stability analysis of the estimation error
system. Thus, passive control has played important roles
in many areas, including circuit systems and mechanical
systems [38]–[40]. The investigation of passive control for
different types of setups can be seen in [41]–[49]. Despite the
extensive research on robust control, Markovian jump sys-
tems, and 2-D systems,most studies are focused on one or two
aspects. Little progress has been made for passivity analysis
of 2-D Markovian jump systems. Because passive systems
have played an important role in many practical applica-
tions [50], it is worth examining robust passive control for
2-D Markovian jump linear systems.

Based on the application perspectives of the AGV (Auto-
mated Guided Vehicle) carrier platform and its sensors (such
as image sensors and 2-D laser sensors), in this work,
we investigate the robust passive controller design problem
for 2-DMarkovian jump linear systems. TheMarkovian jump
mode is employed to improve the controller design, that is,
the controller is dependent on the mode. To design a robust
passive controller, the stability and passivity were analysed
simultaneously for the closed-loop systems by assuming that
the controller gains are given. A set of matrix inequalities was
obtained for the stability and passivity analysis. According
to the obtained condition, the mode-dependent controller
gains could be calculated by solving a set of LMIs. The pro-
posed controller design method is validated via a numerical
example.

II. PROBLEM FORMULATION AND PRELIMINARIES
Consider the following 2-D uncertain Markovian jump linear
discrete-time systems
x(i+ 1, j+ 1) = A1(rk )x(i, j+ 1)+ A2(rk )x(i+ 1, j)

+B1(rk )ω(i, j+ 1)+ B2(rk )ω(i+ 1, j)

+B3(rk )u(i, j+ 1)+ B4(rk )u(i+ 1, j)

+B5(rk )p(i, j+ 1)+ B6(rk )p(i+ 1, j)

z(i, j) = C1(rk )x(i, j)+D1(rk )ω(i, j)+D2(rk )u(i, j)

q(i, j) = C2(rk )x(i, j)

p(i, j) = 1(i, j)q(i, j), ‖1(i, j)‖ ≤ I , (1)

where x(i, j) ∈ Rn is the state vector; u(i, j) ∈ Ro is the control
input; ω (i, j) ∈ Rs is the external disturbance; z (i, j) ∈ Rl is
the controlled output; q(i, j) and p(i, j) are used to denote the
uncertain structures of the systems i, j ∈ Z+; and1 (i, j) is the
uncertain element. In addition, A1(rk ), A2(rk ), B1(rk ), B2(rk ),
B3(rk ), B4(rk ), B5(rk ), B6(rk ), C1(rk ), C2(rk ), D1(rk ) and
D2(rk ) are mode-dependent real matrices with compatible
dimensions; rk with k = i + j represents a discrete-time,
discrete-state Markovian chain that uses values in a finite
set 8 =

{
1 2 · · · N

}
; and the transition-mode probability

matrix is denoted by 3 = [λlm]. The element λlm in the
transition-mode probability matrix3 denotes the probability
of jumping from the lth mode to the mth mode, which can be
represented by

λlm = Pr(rk+1 = m|rk = l) (2)

According to the mode property, λlm,∀l,m ∈ N is a
non-negative scalar and

∑N
m=1 λlm = 1. In this study,

the transition-mode probability matrix 3 is assumed to be
known a priori. To simplify the notation, when rk has a
value of,A1(rk ),A2(rk ),B1(rk ),B2(rk ),B3(rk ),B4(rk ),B5(rk ),
x (t) ∈ Rn, C1(rk ),C2(rk ),D1(rk ) and D2(rk ) are represented
by A1,l , A2,l , B1,l , B2,l , B3,l , B4,l , B5,l , B6,l , C1,l , C2,l ,D1,l
and D2,l . Moreover, it is assumed that the mode information
is available for the controller to be designed.
Because the mode information is available for the

controller design, the controller in this work uses a
mode-dependent state-feedback controller expressed by the
following:

u(i, j) = K (rk )x(i, j) (3)

where K (rk ) is the mode-dependent gain to be deter-
mined. By substituting the control law in (3) into the
system dynamics in (1), the closed-loop 2-D system
becomes

x(i+ 1, j+ 1) = Ā1(rk )x(i, j+ 1)+ Ā2(rk )x(i+ 1, j)

+B1(rk )ω(i, j+ 1)

+B2(rk )ω(i+ 1, j)+B5(rk )p(i, j+ 1)

+B6(rk )p(i+ 1, j)

z(i, j) = C̄1(rk )x(i, j)+ D1(rk )ω(i, j) (4)

where

Ā1(rk ) = A1(rk )+ B3(rk )K (rk ), Ā2(rk )

= A2(rk )+ B4(rk )K (rk ),

C̄1(rk ) = C1(rk )+ D2(rk )K (rk ).

Expression (4) describes a random system because rk is
a variable in the Markovian jump system. Therefore,
the closed-loop control system defined in (4) is not suit-
able for the classical asymptotic-stability method. The
feedback-control strategy is designed based on the relation-
ship between passivity and stability (mean-square asymptotic
stability).
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Definition 1: The closed-loop system in (4) with
ω (i, j) = 0 is termed mean-square asymptotically stable
with any initialization boundary conditions if the following
condition is satisfied:

lim
i+j→∞

E
{
|x(i, j)|2

}
= 0 (5)

Definition 2 [33]: If the closed-loop system specified in (4)
with an initial condition of zero satisfies the inequality in (6),
it is termed mean-square passive.

∞∑
i=0

∞∑
j=0

E
{
ω̄T(i, j)z̄(i, j)

}
≥ 0 (6)

where

ω̄(i, j) =
[
ω(i, j+ 1)
ω(i+ 1, j)

]
, z̄(i, j) =

[
z(i, j+ 1)
z(i+ 1, j)

]
Definition 3: If the closed-loop system in (4) with
an initial condition of zero satisfies the dissipation
inequality in (7),it is termed mean-square passive with
dissipation η.

∞∑
i=0

∞∑
j=0

E
{
ω̄T(i, j)z(i, j)− ηω̄T(i, j)ω̄(i, j)

}
≥ 0 (7)

For the closed-loop system in (4), we now state the passiv-
ity control problem of 2-D Markovian jump linear systems
as follows: the mode-dependent controller defined by (3) is
determined such that the closed-loop system in (4) is mean-
square asymptotically stable and passive with a prescribed
dissipation rate η. Before proceeding, we introduce a useful
lemma for robust control.

Lemma1 [50]: Let X and Y be real matrices with appropri-
ate dimensions, and let Z be a symmetric matrix. Then, the
condition

Z + X1Y + Y T1XT < 0 (8)

is satisfied for all1with1T1 ≤ I if and only if a positive
scalar ε exists such that Z X εY T

∗ −εI 0
∗ ∗ −εI

 < 0 (9)

III. ANALYSIS OF PASSIVITY AND STABILITY
We will analyse the closed-loop system in (4) in
terms of the two aspects of stability and passivity by
assuming that the mode-dependent controller gains are
given.

Theorem 1. Suppose that the mode-dependent gain K (rk )
is given. As a closed-loop system in (4) with zero input, the
system is mean-square asymptotically stable if matrices Pl =
PTl > 0 and Q = QT > 0 exist for ∀l ∈ 8 that follow the
condition 91 92 93

∗ Q− Pl 0
∗ ∗ −Q

 < 0 (10)

where

91 = diag
{
−P1 −P2 · · · −PN

}
,

92 =


√
λl1P1Â1,l
√
λl2P2Â1,l
...

√
λlNPN Â1,l

 ,

93 =


√
λl1P1Â2,l
√
λl2P2Â2,l
...

√
λlNPN Â2,l


Â1,l = Ā1,l+B5,l1 (i, j)C2,l,

Â2,l = Ā2,l+B6,l1(i, j)C2,l

Proof: Select the mode-dependent Lyapunov function
candidate(11) for the closed-loop system in (4) with zero
external input:

V (i, j, rk ) = xT
i1j1

(i, j)Wi1j1 (rk )xi1j1 (i, j) (11)

where

xi1j1 (i, j) = x(i+ i1, j+ j1),Wi1j1 (rk ) = WT
i1j1

(rk ) > 0,

i1 ∈ Z, j1 ∈ Z.

If rk = l, the Lyapunov function candidate expected
difference can be described as

1V (i, j)=E {V11 (i, j)−V10 (i, j)−V01 (i, j) |rk = l}, (12)

where

V11 (i, j) = xT11 (i, j)W11(rk+1)x11 (i, j) ,

V10 (i, j) = xT10 (i, j)W10(l)x10 (i, j) ,

V01 (i, j) = xT01 (i, j)W01(l)x01 (i, j) .

With zero inputs and considering the dynamics of the
closed-loop system in (4), the expected difference is com-
puted using equation(13) as follows:

1V (i, j)

=E

{{
Ā1,lx(i, j+ 1)+ Ā2,lx(i+ 1, j)+
B5,l1(i, j)C2,lx(i, j+1)+B6,l1(i, j)C2,lx(i+1, j)

}T
×W11(rk+1)

×

{
Ā1,lx(i, j+1)+Ā2,lx(i+ 1, j)+
B5,l1(i, j)C2,lx(i, j+1)+B6,l1(i, j)C2,lx(i+1, j)

}}
− xT(i+1, j)W10,lx(i+1, j)−xT(i, j+1)W01,lx(i, j+1)

= E
{{
Â1,lx(i, j+ 1)+ Â2,lx(i+ 1, j)

}T
W11(rk+1)

×

{
Â1,lx(i, j+ 1)+ Â2,lx(i+ 1, j)

}}
− xT(i+1, j)W10,lx(i+1, j)−xT(i, j+1)W01,lx(i, j+1)

=

N∑
m=1

λlmxT(i, j+ 1)ÂT1,lW11,mÂ1,lx(i, j+ 1)
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+

N∑
m=1

λlmxT(i, j+ 1)ÂT1,lW11,mÂ2,lx(i+ 1, j)

+

N∑
m=1

λlmxT(i+ 1, j)ÂT2,lW11,mÂ1,lx(i, j+ 1)

+

N∑
m=1

λlmxT(i+ 1, j)ÂT2,lW11,mÂ2,lx(i+ 1, j)

− xT(i+1, j)W10,lx(i+1, j)−xT(i, j+1)W01,lx(i, j+1)

=

[
x (i, j+ 1)
x (i+ 1, j)

]T
×

[
ÂT1,lŴ11,l Â1,l −W01 ÂT1,lŴ11,l Â2,l

∗ ÂT2,lŴ11,l Â2,l −W10

]
[
x (i, j+ 1)
x (i+ 1, j)

]
(13)

With Ŵ11,l =
∑N

m=1 λlmW11,m, suppose that the Lya-
punov matrices have the following representatives: W11,l =

Pl,W10,l = Q, and W01,l = Pl − Q.. According to
the Schur complement, if the condition in (10) is satisfied,
1V (i, j) is negative. Using similar steps as in [20], we can
conclude that the system is mean-square asymptotically
stable.

It is necessary to note that the system uncertainties are
restricted by condition (10). Using Lemma 1, the uncer-
tainties can be eliminated, and the following theorem is
obtained.

Theorem 2. Suppose that the mode-dependent gains K (rk )
are given. Under the same conditions as Theorem 1, the fol-
lowing expression is feasible if matrices Pl = PTl > 0 and
Q = QT > 0 exist for ∀l ∈ 8:

91 9̄2 9̄3 94
∗ Q− Pl 0 95
∗ ∗ −Q 96
∗ ∗ ∗ 97

 < 0 (14)

where

9̄2 =


√
λl1P1Ā1,l√
λl2P2Ā1,l
...

√
λlNPN Ā1,l

 , 9̄3 =


√
λl1P1Ā2,l√
λl2P2Ā2,l
...

√
λlNPN Ā2,l

 ,

94 =


√
λl1ε1P1B5,l 0

√
λl1ε2P1B6,l 0

√
λl2ε1P2B5,l 0

√
λl2ε2P2B6,l 0

...
...

...
...

√
λlN ε1PNB5,l 0

√
λlN ε2PNB6,l 0

 ,
95 =

[
0 CT

2,l 0 0
]
, 96 =

[
0 0 0 CT

2,l

]
,

97 =


−ε1I 0 0 0
∗ −ε1I 0 0
∗ ∗ −ε2I 0
∗ ∗ ∗ −ε2I

 .

Proof: The condition in (10) can be rewritten as:91 9̄2 9̄3
∗ Q− Pl 0
∗ ∗ −Q

+
 9̄4

0
0

1 (i, j)
[
0 C2,l 0

]

+

 9̄4
0
0

1 (i, j)
[
0 C2,l 0

]T

+

 9̄5
0
0

1 (i, j)
[
0 0 C2,l

]

+

 9̄5
0
0

1 (i, j)
[
0 0 C2,l

]T

< 0 (15)

where

9̄4 =


√
λl1P1B5,l 0
√
λl2P2B5,l 0
...

...
√
λlNPNB5,l 0

 , 9̄5 =


√
λl1P1B6,l 0
√
λl2P2B6,l 0
...

...
√
λlNPNB6,l 0


By applying the lemma twice, we can obtain the condition

in (14).
Theorem 1 and Theorem 2 provide the stability condition

for the closed-loop system without any external input. In the
following, we will study the passivity with dissipation when
the system is subject to external inputs.

Theorem 3. Suppose that the mode-dependent gains � are
given. Under the same conditions as Theorem 1, then (16),
as shown at the top of this page is feasible if matrices Pl =
PTl > 0 and Q = QT > 0 exist for ∀l ∈ 8 where

98 =


√
λl1P1B1,l√
λl2P2B1,l
...

√
λlNPNB1,l

 , 99 =


√
λl1P1B2,l√
λl2P2B2,l
...

√
λlNPNB2,l


Proof: The expected difference of the Lyapunov function

can be recalculated according to equation (17). If interference
is present, then

1V (i, j)

= E
{{
Â1,lx(i, j+ 1)+ Â2,lx(i+ 1, j)

+B1,lω(i, j+ 1)+ B2,lω(i+ 1, j)
}TW11(rk+1)

×

{
Â1,lx(i, j+ 1)+ Â2,lx(i+ 1, j)+ B1,lω(i, j+ 1)

+B2,lω(i+ 1, j)
}}

− xT(i+1, j)W10,lx(i+1, j)−xT(i, j+1)W01,lx(i, j+1)

= xT(i, j+ 1)ÂT1,lŴ11,l Â1,lx(i, j+ 1)

+ xT(i, j+ 1)ÂT1,lŴ11,l Â2,lx(i+ 1, j)

+ xT(i, j+ 1)ÂT1,lŴ11,lB1,lω(i, j+ 1)

+ xT(i, j+ 1)ÂT1,lŴ11,lB2,lx(i+ 1, j)

+ xT(i+ 1, j)ÂT2,lŴ11,l Â1,lx(i, j+ 1)
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91 9̄2 9̄3 94 98 99
∗ Q−Pl 0 95 −C̄T

1,l 0
∗ ∗ −Q 96 0 −C̄T

1,l
∗ ∗ ∗ 97 0 0
∗ ∗ ∗ ∗ −D1,l − DT

1,l + 2ηI 0
∗ ∗ ∗ ∗ ∗ −D1,l − DT

1,l + 2ηI


< 0 (16)

+ xT(i+ 1, j)ÂT2,lŴ11,l Â2,lx(i+ 1, j)

+ x(i+ 1, j)ÂT2,lŴ11,lB1,lx(i, j+ 1)

+ x(i+ 1, j)ÂT2,lŴ11,lB2,lx(i+ 1, j)

+ωT(i, j+ 1)BT1,lŴ11,l Â1,lx(i, j+ 1)

+ωT(i, j+ 1)BT1,lŴ11,l Â2,lx(i+ 1, j)

+ωT(i, j+ 1)BT1,lŴ11,lB1,lω(i, j+ 1)

+ωT(i, j+ 1)BT1,lŴ11,lB2,lω(i+ 1, j)

+ωT(i+ 1, j)BT2,lŴ11,l Â1,lx(i, j+ 1)

+ωT(i+ 1, j)BT2,lŴ11,l Â2,lx(i+ 1, j)

+ωT(i+ 1, j)BT2,lŴ11,lB1,lx(i, j+ 1)

+ωT(i+ 1, j)BT2,lŴ11,lB2,lω(i+ 1, j)

− xT(i+1, j)W10,lx(i+1, j)−xT(i, j+1)W01,lx(i, j+1).

(17)

To study the passivity with a dissipation rate η, the follow-
ing cost function is considered:

J = 1V (i, j)+E
{
−ω̄T (i, j) z̄ (i, j)− z̄T (i, j) ω̄ (i, j)

}
+ 2ηω̄T (i, j) ω̄ (i, j)

= 1V (i, j)+E
{
−ωT (i+ 1, j) z (i+ 1, j)

−ωT (i, j+ 1) z (i, j+ 1)
}

+E
{
−zT (i+1, j) ω(i+1, j)−zT(i, j+1) ω (i, j+1)

}
+ 2ηωT (i+1, j) ω (i+1, j)+2ηωT (i, j+1) ω (i, j+1).

(18)

The difference in equation (17) is substituted into the com-
posite cost function (18)

J = ζT (i, j)�ζ (i, j) , (19)

with

ζ (i, j) =


x (i, j+ 1)
x (i+ 1, j)
ω (i, j+ 1)
ω (i+ 1, j)

 , � =

�11 �12 �13 �14
∗ �22 �23 �24
∗ ∗ �33 �34
∗ ∗ ∗ �44

,
�11 = ÂT1,lŴ11,l Â1,l −W01,l, �12 = ÂT1,lŴ11,l Â2,l,

�13 = ÂT1,lŴ11,lB1,l − C̄T
1 ,

�14 = ÂT1,lŴ11,lB2,l�22 = ÂT2,lŴ11,l Â1,l −W10,l,

�23 = ÂT2,lŴ11,lB1,l,

�24 = ÂT2,lŴ11,lB2,l − C̄T
1 ,

�33 = BT1,lW11,lB1,l − D1 − DT
1 + 2ηI ,

�34 = BT1,lW11,lB2,l,

�44 = BT2,lW11,lB2,l − D1 − DT
1 + 2ηI

The matrix inequality(16) indicates that matrix � is
a negative-definite matrix; using the Schur complement,
the value of the cost function is observed to be negative.
According to the methods used in [20], with positive integers
p and q, we obtain

E


p∑
i=0

q∑
j=0

{
−ω̄T (i, j) z̄ (i, j)− z̄T (i, j) ω̄ (i, j)

+ 2ηω̄T (i, j) ω̄ (i, j)
}}
< 0. (20)

When p and q approach infinity,

E


∞∑
i=0

∞∑
j=0

{
ω̄T (i, j) z̄ (i, j)− ηω̄T (i, j) ω̄ (i, j)

} > 0.

(21)

Suppose that W11,l = Pl,W10,l = Q, and W01,l =

Pl−Q.According to Definition 3, with the dissipation rate η,
the closed-loop system in (4) is mean-square asymptotically
stable and passive.

IV. CONTROLLER DESIGN
Theorem 3 provides the robust mean-square stability and
passivity conditions for the closed-loop system by assuming
that the controller gain is given. In this section, the controller
design method will be provided according to the conditions
in Theorem 3.
Theorem 4. Suppose that with dissipation rate η, the

closed-loop system in (4) is mean-square asymptotically sta-
ble and passive. Condition (22), as shown at the bottom of
the next page is feasible if matrices K̄l , Rl = RTl > 0 and
Ml = MT

l > 0 exist for ∀l ∈ 8.
In addition, the gains of the controller can be computed as:

Kl = K̄lS
−1
l (24)

Proof: This theorem can be proven by performing a congru-
ence transformation with diag{P−11 P−12 · · ·P

−1
N P−1l P−1l III }

using the condition in (16) and defining new variables as
Sl = P−1l , Ml = P−1l QP−1l , and K̄l = KlSl .
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FIGURE 1. Markovian jumping modes during the simulation.

V. RESULTS AND DISCUSSION
In this section, we provide a set of case data to verify the
validity of the controller in Theorem 4. In the first mode,
the system parameters are as follows:

A1,1 =
[
0.5 0.2
0.3 0.1

]
,A2,1 =

[
0.9 0.2
0.3 0.3

]
,

B1,1 =
[
0.2 0.1
0.1 0.3

]
,B2,1 =

[
0.1 0.1
0.1 0.3

]
,

B3,1 =
[
0.7 0.4
0.5 0.3

]
,B4,1 =

[
0.5 0.1
0.9 0.2

]
,

B5,1 =
[
0.1 0.1
0.1 0.1

]
,B6,1 =

[
0.15 0.15
0.15 0.15

]
,

FIGURE 2. The first state trajectories when the system is not controlled.

C1,1 =

[
0.1 0
0 0.3

]
,C2,1 =

[
0.1 0
0 0.2

]
,

D1,1 =

[
0.8 0.3
0.3 0.3

]
,D2,1 =

[
0.6 0.6
0.1 0.2

]
,

η = 0.2,1 (i, j) = sin (i+ j).

In the second mode, the system parameters are given as
follows:

A1,2 =
[
0.4 0.2
0.3 0.2

]
,A2,2 =

[
0.3 0.2
0.3 0.9

]
,

B1,2 =
[
0.3 0.1
0.1 0.2

]
,B2,2 =

[
0.4 0.1
0.1 0.3

]
,



9̂1 9̂2 9̂3 9̂4 9̂8 9̂9

∗ Ml − Rl 0 9̂5 −SlCT
1,l − K̄

T
l D

T
2,l 0

∗ ∗ −Ml 9̂6 0 −SlCT
1,l − K̄

T
l D

T
2,l

∗ ∗ ∗ 9̂7 0 0
∗ ∗ ∗ ∗ −D1,l − DT

1,l + 2ηI 0
∗ ∗ ∗ ∗ ∗ −D1,l − DT

1,l + 2ηI


< 0 (22)

where

9̂1 = diag
{
−R1 −R2 · · · −RN

}
, 9̂2 =


√
λl1

(
A1,lS1 + B3,lK̄l

)
√
λl2

(
A1,lS2 + B3,lK̄l

)
...

√
λlN

(
A1,lSN + B3,lK̄l

)
 , 9̂3 =


√
λl1

(
A2,lS1 + B4,lK̄l

)
√
λl2

(
A2,lS2 + B4,lK̄l

)
...

√
λlN

(
A2,lSN + B4,lK̄l

)


9̂4 =


√
λl1ε1B5,l 0

√
λl1ε2B6,l 0√

λl2ε1B5,l 0
√
λl2ε2B6,l 0

...
...

...
...

√
λlN ε1B5,l 0

√
λlN ε2B6,l 0

 , 9̂5 =
[
0 SlCT

2,l 0 0
]
, 9̂6 =

[
0 0 0 SlCT

2,l

]
,

9̂7 =


−ε1I 0 0 0
∗ −ε1I 0 0
∗ ∗ −ε2I 0
∗ ∗ ∗ −ε2I

, 9̂8 =


√
λl1B1,l√
λl2B1,l
...

√
λlNB1,l

 , 9̂9 =


√
λl1B2,l√
λl2B2,l
...

√
λlNB2,l

 (23)
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FIGURE 3. The second state trajectories when the system is not
controlled.

FIGURE 4. The first state trajectories when the system is controlled.

FIGURE 5. The second state trajectories when the system is controlled.

B3,2 =
[
0.3 0.4
0.5 0.7

]
,B4,2 =

[
0.2 0.1
0.9 0.5

]
,

B5,2 =
[
0.1 0.05
0.05 0.07

]
,B6,2 =

[
0.02 0.01
0.1 0.05

]
,

C1,2 =

[
0.3 0
0 0.1

]
,C2,2 =

[
0.2 0
0 0.1

]
,

D1,2 =

[
0.3 0.3
0.3 0.8

]
,D2,2 =

[
0.2 0.6
0.1 0.8

]
,

η = 0.2,1 (i, j) = sin (i+ j).

The transition-mode probability matrix is

3 =

[
0.5 0.5
0.4 0.6

]
According to Theorem 4, the calculated controller gains

are

K1 =

[
-0.3985 0.4224
0.0774 -0.7818

]
,K2 =

[
-0.5249 -0.4458
-0.0974 0.2722

]
.

To illustrate the performance of the designed controller,
it is assumed that the external disturbance is

ω =
[

1
i+j+1

1
2(i+j+1)

]T
Moreover, x (0, 0) = x(0, 1) = x(1, 0) =

[
1 1

]T . The
Markovian jumping modes during the simulation are shown
in Fig.1 in which rk = 1 indicates that the system is in
the first mode and rk = 2 indicates that the system is in
the second mode. With the mode information and the initial
values, a simulation can be run when the system is not con-
trolled by the designed controller. Fig.2 and Fig.3 illustrate
the state trajectories when the system is not controlled. It is
obvious that the system is unstable. Fig.4 and Fig.5 depict
the state trajectories when the system is controlled by the
designed controller. We can see that the states converge to
zero asymptotically, that is, the designed controller success-
fully stabilizes the unstable 2-D system.

VI. CONCLUSIONS
We have investigated robust passivity control for
2-D uncertain Markovian jump linear discrete-time systems.
It was assumed that the 2-D system parameters are subject
to homogenous Markovian jumps and the transition-mode
probability matrix is known beforehand. A mode-dependent
state-feedback controller was proposed, and a stochastic
closed-loop system was obtained. Both the passivity and the
dissipation of the closed-loop systemwere investigated,and
the gains were calculated. The performance of the controller
was verifiedusing a2-D case.
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