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ABSTRACT In this paper, a fractional calculus operator for image denoising is constructed based on the
characteristic of local entropy and the gradient feature, and an adaptive fractional calculus image denoising
algorithm is proposed. First, the effects on the entropy and gradient by noise are analyzed, respectively.
Second, the noise points are regarded as small probability events in an image, and the noise points, edges,
texture regions, and smooth regions are divided combining with the local structure. Finally, for improving the
image denoising effect, we consider employing different fractional orders to deal with different pixels and a
piecewise function is constructed to make the differential order to be adaptive. The function is with respect
to the local entropy and gradient on the pixel. The experimental results show that the peak signal-to-noise
ratio and the entropy (ENTROPY) of the proposed adaptive fractional calculus image denoising algorithm
are higher than that of the other algorithms compared in this paper. The proposed algorithm can not only
preserve image edges and texture information while removing the noise, but also obtain a good visual effect.

INDEX TERMS Entropy, gradient, adaptive, fractional calculus, image denoising.

I. INTRODUCTION
At present, fractional calculus is rapidly developing in many
fields of science and engineering. As a result, differential
equations with arbitrary orders have been widely investigated
for different applications in physics, fluid mechanics, physi-
ology, engineering, potential theory and elasticity, etc [1]–[4].
In recent years, employing differential equation to image pro-
cessing has become a hot research topic, and a large number
of research results have been reported [5]–[12]. Compared
with integer order calculus, fractional calculus method can
enhance the edges and make the texture more clear while
preserving the details information of smooth regions in the
process of image denoising [13]. The traditional fractional
calculus method employs the same order to deal with the
image edges, texture and smooth regions. When a high frac-
tional order is used to process the image noise, the weak
texture and smooth regions will be ignored, for using a
low fractional order, the image edges will be weakened.

Therefore, the image denoising effect is not very good in prac-
tice by only using integer fractional calculus order. To cope
with this problem, some combining with improved fractional
calculus denoising algorithms are proposed.

Images are easy to be blurred by all kinds of noises
in its proceeding of acquisition or transmission. Gaussian
noise, impulse noise and speckle noise are usually met in
the practice. Among them, the impulse noise is a kind of
typical image noise, which including salt and pepper noise
and random valued noise. Salt and pepper noise has a great
impact on various image processing. For the salt and pep-
per noise denoising, the traditional filtering methods mainly
include the linear mean filtering [14] and the non-linear
median filtering [15]. At present, there are many methods
have been developed to treat the salt and pepper noise.
Fan et al. [16] regarded appearance of a noise point as a
small probability event, and changed the noise point to be
an objective or background pixel by replacing its gray level
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with its neighborhood average gray level. Li and Xie [17]
also regarded the appearance of a noise point as a small
probability event, and segmented the noises from the edges
and weak textures by using the improved two-dimensional
Otsu algorithm, and constructed an adaptive fractional order
function. Karthikeyan [18] proposed an efficient decision
based algorithm for the removal of high density salt and pep-
per noise. For salt-and-pepper noise denoising, Nnolim [19]
proposed an effective anisotropic diffusion mean filter which
is robust to the impulse noise ranging from low to high
density levels. Kannan [20] proposed an adaptive weighted
fuzzy mean filter based on cloud model. Wang et al. [21]
proposed a novel adaptive fuzzy switching weighted mean
filter. In [22], a support vector machine classification based
fuzzy filter is proposed. Lu et al. [23] proposed a novel
three-values-weighted method. Deng et al. [24] presented an
adaptive filtering method by using the multilayered pulse
coupled neural network.

Since the traditional order of the fractional calculus
is usually obtained by carrying out a large number of
experiments, it can not achieve automatically and is not con-
ducive to the practical application of the fractional calculus.
In this paper, a fractional calculus operator for image
denoising is constructed based on the characteristic of the
local entropy and gradient feature, and an adaptive frac-
tional calculus image denoising algorithm is proposed. Based
on the quantitative assessment criteria of image denoising
effect, such as peak signal to noise ratio(PSNR), informa-
tion entropy(ENTROPY) and structural similarity indexmea-
surement (SSIM), the denoised performance is analyzed.
The experimental results show that the proposed adaptive
fractional calculus image denoising algorithm can not only
preserve the image edges and texture, and image smoothing
areas details while removing the noise, but also obtain a better
visual effect.

The paper is organized as follows. In Section II, the con-
struction of the fractional order denoising model is presented.
In Section III, the realization of the adaptive fractional order
calculus operator is described. In Section IV, the experimental
results and their analysis is given. Finally, some conclusions
are drawn in Section V.

II. FRACTIONAL ORDER DENOISING MODEL
For an arbitrary square integrable signal f (t) ∈ L2(R), its α
order differential is represented as

Dαf (t) =
dαf (t)
dtα

. (1)

According to the basic theory of signal processing, its Fourier
transform is defined as

Dαf (t) FT⇔ (D̂αf )(ω) = (iω)αf (̂ω)

= |ω|α exp[iθα(ω)]f (̂ω)

= |ω|α exp[
απ i
2
sgn(ω)]f (̂ω), α ∈ R, (2)

FIGURE 1. Amplitude-frequency characteristic curves of the fractional
order integral.

where Dα is the differential operator with order α, ω is the
angular frequency, (iω)α = |ω|α exp[απ i2 sgn(ω)] is the filter
function of fractional calculus filter, and sgn(·) represents the
numeric symbol of the integer part. According to formula (2),
we can draw the amplitude frequency characteristic curves
with different fractional orders of ω as shown in Figure 1.

From Figure 1, it can be obviously seen that in the low
frequency field with 0 < ω < 1, which corresponding to the
image of the smooth regions, the fractional integral operator
enlarges the amplitude values. However, in the intermediate
frequency and high frequency part with ω > 1, the frac-
tional integral operator acts as an attenuation function, and
the attenuation amplitude will be stronger as the fractional
order or frequency increasing. This characteristic shows that
the fractional integral operator can enhance the low frequency
signal while attenuating the high frequency signal, and has a
certain denoising effect on the noised images.

Taking into account the frequency characteristics of
the fractional calculus, the calculus definition can be
extended order from integer order to fraction order by
using Gamma function 0(t). The fractional calculus for-
mula with α-order of Grumwald-Letnikov(for short: G-L)
definition [25], [26] is

DαG−L f (t) = lim
h→0

h−α
[(t−a)/h]∑
k=0

(−1)k
0(α+1)

k!0(α−k+1)
f (t−kh),

(3)

where [·] represents the integer portion, the duration of the
signal f (t) is [a, t], α is an any real number (including
fraction), DαG−L represents the fractional calculus operator
defined by G-L, 0 is the Gamma function. When α > 0,
DαG−L is the fractional differential operator with α order,
when α < 0, DαG−L is the fractional integral operator with
α order [13].

It is known that the shortest distance of grey intensity
changes in a two-dimensional digital image is between
its two adjacent pixels [27], so the duration time of a
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two-dimensional digital image on the direction of x axis and
y axis could only be measured in the pixel unit. Thus h = 1,
then n = [(t − a)/h] = [t − a]. Therefore, according to
G-L fractional calculus expression, we can get the differential
expression with α order of signal f (t) as:

DαG−L f (t) ≈ f (t)+ (−α)f (t − 1)+
(−α)(−α + 1)

2
f (t − 2)

+ . . .+
0(−α + 1)

k!0(−α − k + 1)
f (t − k). (4)

For any function f (x, y) ∈ L2(R2), the differential expres-
sions for the partial calculus with α order with respect to
x and y are as follows respectively:

dαf (x, y)
dxα

≈ f (x, y)+ (−α)f (x − 1, y)

+
(−α)(−α + 1)

2
f (x − 2, y)

+ · · · +
0(−α + 1)

k!0(−α − k + 1)
f (x − k, y), (5)

dαf (x, y)
dyα

≈ f (x, y)+ (−α)f (x, y− 1)

+
(−α)(−α + 1)

2
f (x, y− 2)

+ · · · +
0(−α + 1)

k!0(−α − k + 1)
f (x, y− k). (6)

With formulas (5) and (6), we can get a 5 × 5 frac-
tional integral mask as shown in Figure 2. The mask is
obtained by superimposing the partial fractional integral in
eight directions, so it is rotation invariant. Where w1, w2
and w3 are the first, second and third coefficient respec-
tively of formulas (5) or (6), and w1 = 1, w2 = −α and
w3 = (−α)(−α + 1)/2. In practice, the coefficients are
divided by 8 − 12α + 4α2 for normalization. Now, we can
get the image processed by α order fractional integral by
considering airspace filtering of this mask convolution.

FIGURE 2. Fractional integral mask.

III. IMPLEMENTATION OF THE ADAPTIVE FRACTIONAL
CALCULUS OPERATOR
A. ANALYSIS OF IMAGE LOCAL FEATURES
AFFECTED BY NOISE
1) GRADIENT
The gradient of an image reflects the spatial variation rate
of the image. The gradient on the region with image edges

and the texture rich is relatively large, and that on the regions
with smoothing is small [28]. The gradient at pixel (x, y) of
image u0(x, y) can be expressed asG[u0(x, y)] = [G′xG

′
y]
T
=

[ ∂u0
∂x

∂u0
∂y ]

T . The formula of the gradient modulus is defined as

mag(G[u0(x, y)]) =
√
G′2x + G

′2
y , (7)

where mag(·) represents the gradient modulus,

G′x = 1xu0(x, y) = u0(x + 1, y)− u0(x, y),

G′y = 1yu0(x, y) = u0(x, y+ 1)− u0(x, y).

In order to analyze the influence of noise on the gradi-
ent of an image, for the original image (a) and the noise
image (b) shown as in Figure 3, we calculate their gradients
and get the gradient image as shown in Figure 3(c) and
Figure 3(d) respectively, where the density of the salt and
pepper noise is set to be 0.03.

FIGURE 3. Gradient image. (a). Original image. (b). Noised image.
(c). Gradient image of the original image. (d). Gradient image of the
noised image.

From Figure 3(c) and Figure 3(d), we can see that the
texture contours in the gradient image of the original image
are clear, while the texture contours in the gradient image of
the imagewith salt and pepper noise become blurred. It shows
that the gradient of the image is greatly affected by noise.
Taking into account the complexity of the pixel value range
and more clearly showing the effect of noise on the gradient
of the image, we use the area of 3×3 shown as in Figure 4 to
further explain the influence of the noise.

Figure 5(a) shows the three-dimensional graph of the gra-
dient of Figure 4(a) (in which the region is smooth), and
Figure 5(b)shows that of Figure 4(b) with noise polluted.

From Figure 5(a), it can be seen that the change of the
gradient value in the smooth region is relatively smooth.
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FIGURE 4. Current pixel and its neighbors. (a) Original pixels,
(b) The center pixel has been blurred.

FIGURE 5. Three-dimensional graphs of gradient value. (a) Smooth
region. (b) Noise region.

From Figure 5(b), it can be seen that the change of the gradi-
ent value of the noise polluted region is severe. In summary,
we know that the image gradient value has a local mutation in
the noise point, so it can be considered that the gradient value
of the image is affected by the noise greatly. The stronger
intense the noise is, the larger the gradient value is, and also
the larger the attenuation amplitude of the image should be.
Therefore, when doing denoising on a heavy noise point, the
smaller (negative) the value of the adaptive operator should
be taken to effectively suppress the image noise.

2) LOCAL ENTROPY
We know that the entropy plays an important role in the
analysis of anomalous diffusion processes and fractional

diffusion equations, some novel entropy indices and frac-
tional operators are used to implement the complex dynam-
ical systems [29], [30]. Entropy (ENTROPY) represents the
probability of a particular information occurrence. The for-
mula to calculate the entropy is defined as

H = −
255∑
g=0

p(g) log2 p(g), (8)

where p(g) is the probability of occurrence of the image gray
value g, i.e. p(g) = 1

s×s

∑
u0(x,y)=g

u0(x, y), g ∈ Z+, (x, y) ∈

Dlocal , Dlocal is the local region with size of s × s, we take
s = 9 in our experiments. Since the change of the grayscale
value of the texture rich regions is larger than that of the
smooth regions in the image, the value of entropy is rela-
tively larger at the edges and the texture rich regions of the
image.

In order to analyze the influence of noise on the local
entropy of the image, we calculate the local entropy of the
original image Figure 6(a) and the noise image Figure 6(b)
respectively, and get the three-dimensional graphs as shown
in Figure 6(c) and Figure 6(d), where the density of the salt
and pepper noise is set to be 0.03.

Figure 6 (e) shows the histogram of residual error of
the local entropy values between the original image and
the noised image. Form Figure 6 (e), we can see that the
difference value is mainly ranging on −0.05∼0.15, so we
can conclude that the noise points have a little effect on the
local entropy value of the image. In summary, we know that
the noise points have a little effect on the local entropy of
the image, and the value of the local entropy can reflect the
distribution of edges and texture regions in image. Therefore,
the adaptive order used in the image denoiding should be
constructed related to the local entropy of the image edges
and texture regions. The larger the local entropy is, the richer
the texture in the image is, the higher the order of the adap-
tive operator should be taken to enhance the boundaries and
texture and to preserve more the texture detail information.

B. SEGMENT IMAGE COMBINED WITH
SMALL PROBABILITY STRATEGY
Generally speaking, if we want to preserve or enhance the
texture information of the image in the process of image
denoising, we need to distinguish the noise points from the
texture regions. We regard the appearance of the noise points
in the image as a small probability event, and combine with
the local structure to segment out the noise points, edges,
texture regions and smooth regions.

Considering the pixel value range and the complexity of
the local structure, we use a 3×3 region to analyze the image
structure information as shown in Figure7, where P or Pi is
the pixel.

The domain gray distance is defined as [31]:

Di = I (P)− I (Pi), i = 1, 2, · · · , 8, (9)
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FIGURE 6. Local entropy. (a) Original image. (b) Noise image. (c) Local
entropy of the original image. (d) Local entropy of the noise image.
(e) Histogram of residual error.

where I (P) is the gray value of pixel P. The minimum gray
distance is:

Dmin = min(Di), i = 1, 2, · · · , 8. (10)

FIGURE 7. Current pixel and its neighborhood.

The minimum absolute gray distance is:

ADmin = min(|Di|). (11)

According to the analysis of literature [17], we know
that the gradient amplitudes of the image edges and noise
points are relatively larger. But the edge pixels are mostly
continuous, so the minimum absolute distance ADmin of
the edge pixels in the eight directions are small. The noise
points are generally random isolated points, so the mini-
mum absolute distance ADmin in the eight directions are
generally larger. For the noised image with low intensity
salt and pepper noise, the occurrence of the noise points can
be regarded as small probability events. Therefore, the min-
imum absolute distance ADmin of the pixels in the eight
directions is arranged in descending order, and then the salt
and pepper noise points can be segmented according to their
probabilities.

Small probability event refers to the event that its occur-
rence is in an extremely small probability, this probability
generally locates in the range of 0.01∼0.05 [16]. Assume that
the occurrence of the noise point is a random event ξ , and
the probability Pnoise of occurrence of ξ is small, then for an
imagewith size ofM×N , the mathematical expectation value
of the number of noise points is

E = M × N × Pnoise. (12)

Arranging the value ADmin of all the pixel of the image in
a descending order as {H (j)}, if j ∈ [1,E], we determine the
corresponding (Px ,Py) is a noise point, i.e. the point (Px ,Py)
which satisfying formula (13) should be regarded as a noise
point,

ADmin ≥ H (E). (13)

Assume that the average value of the gray distance in each
of the eight directions in the current pixel u0(x, y) isM (x, y),
then

M (x, y) =
1
8

8∑
i=1

|Di|. (14)

Here, the minimum valueM (x, y) of the divided noise points
is selected as the threshold value T of the image noise points.
WhenM (x, y) ≥ T , the corresponding pixel (x, y) is regarded
as a noise point, and the larger the value of M (x, y) is,
the stronger of the noise is. Therefore, the amplitude of
the gray should attenuate greatly when this pixel has been
polluted by noise.When 1 < M (x, y) < T , the corresponding
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FIGURE 8. Examples of three basic types. (a) Isolated point. (b) Smooth
regions. (c) Edges and texture regions.

pixel (x, y) is regarded as a point in the edges or texture
regions, and it need to be enhanced in the denoising process.
When 0 ≤ M (x, y) ≤ 1, the pixel (x, y) is regarded as a point
in the smooth regions, and the gray value of this pixel should
remain unchanged during denoising. Figure 8 shows several
examples of the three basic structure type pixels classified by
local structure.

C. CONSTRUCTION OF ADAPTIVE FUNCTION
From Figure 1, we can see that the high frequency image
noise can be effectively attenuated when the fractional dif-
ferential order being taken as α ∈ [−1.5,−0.5], but it is too
small to suppress noise satisfactorily. Therefore, for a pixel
with different local characteristics such as the noise, edge
and texture region, and smooth region, we should choose a
different fractional order to do denoising to achieve a better
effect.

From above analysis, it is known that the noise affects the
gradient value, and the image edges and the texture regions

FIGURE 9. Denoising result images of noisy Barbara image with different
types of algorithms. (a) Original image. (b) Noise image. (c) MF.
(d) α = −1.1. (e) SPS. (f) GAFIA. (g) AFC-SPS. (h) EN-AFC.

make the different value of the local entropy and gradient.
Therefore, we will devote to find a function mapping between
the fractional order α and the value of the local entropy and
gradient of the image, to adaptively generate the order α
depending on the local entropy and gradient. According to the
characteristics of the different image regions, as formula (15)
we construct an adaptive fractional order function respect to
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FIGURE 10. Denoising result images of noisy Lena image with different types of algorithms. (a) Original image. (b) Noise image. (c) MF.
(d) α = −1.1. (e) SPS. (f) GAFIA. (g) AFC-SPS. (h) EN-AFC.

FIGURE 11. Denoising result images of noisy Boat image with different types of algorithms. (a) Original image. (b) Noise image. (c) MF.
(d) α = −1.1. (e) SPS. (f) GAFIA. (g) AFC-SPS. (h) EN-AFC.

the local entropy and gradient.

α =


(−1.5)×

M (x, y)− T
Mmax −M (x, y)

, M (x, y) ≥ T

λ1 ×
M (x, y)
Mmax

+ λ2 ×
EN (x, y)− meane

max e
,

1 < M (x, y) < T
0, 0 ≤ M (x, y) ≤ 1,

(15)

where, M (x, y) can be calculated by formula (14), Mmax is
the maximum value of M (x, y), λ1, λ2 are the adjust-
ing parameters, EN (x, y) is the value of local entropy,
meane is the mean of local entropy, max e is the maxi-
mum value of the local entropy, T is the threshold of the
image noise points segmentation for the small probability
strategy.
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IfM (x, y) is larger than or equal to the noise points segmen-
tation threshold T , then we can consider the corresponding
pixel as a noised point. Therefore, the order should be taken
as a negative value in the process of image denoising, and the
value of the order is related to the value ofM (x, y). From the
above analysis we can know that for a pixel, the larger
the value ofM (x, y) is, the greater noise is, and the larger the
attenuation amplitude is. Therefore the absolute value of the
order is proportional to the value of M (x, y). According to
the experiment and analysis, we set the adaptive order for the
corresponding noised point to be α = (−1.5)× M (x,y)−T

Mmax−M (x,y) .

By selecting such an adaptive fractional order, if the noise
is great, the value of the adaptive integral order (negative)
will be small, and amplitude of the grey will be attenuated
greatly.

IfM (x, y) is smaller than the segmentation threshold T but
larger than 1, then the pixel can be regarded as a point in the
image edges or texture regions. Therefore, in the process of
image denoising, the fractional differential order should be
taken as a positive value, and the value of the order is related
to the value ofM (x, y) and EN (x, y). From the above analysis
we can conclude that if the value EN (x, y) is large, the local
area of the image will be a texture rich one, and the amplitude
of the image should be enhanced when doing denoising.
On the other hand, the noise points have little effect on the
local entropy, so the value of the order is proportional to the
value of M (x, y) and EN (x, y). According to the experiment
and analysis, we construct the adaptive order for such points
to be α = λ1 ×

M (x,y)
Mmax

+ λ2 ×
EN (x,y)−meane

max e .
According to the visual characteristics of the human eyes,

we set the segmentation threshold for the image smooth
regions to be 1. Therefore, if M (x, y) is smaller than 1, then
the pixel should be regarded as a point in the image smooth
regions, and the gray value should remain unchanged in the
process of image denoising.

IV. EXPERIMENTAL RESULTS AND ANALYSIS
In this section, the effectiveness of the proposed adaptive
fractional order calculus denoising algorithm (EN-AFC) will
be verified by comparing it with that of Median filter-
ing [15] (MF), the traditional filter with order α = −1.1,
SPS [16], GAFIA [17], AFC-SPS [17]. In the SPS algo-
rithm, the noise point is changed to be an objective or back-
ground pixel by using its neighborhood average gray value
to instead its gray value. The GAFIA algorithm uses the
fractional integral to process each pixel and finds the best
order according to the global adaptive fractional function.
In the AFC-SPS algorithm, the noise is divided based on
that the appearance of the noise points are regarded as small
probability events, and the image edges and weak textures are
segmented by an improved two-dimensional Otsu algorithm.
Thus they contructed a function of adaptive fractional order.
The experimental simulation is run with software of MAT-
LAB R2012a on a computer with 2.40GHz Intel Core i7 with
4GB RAM.

FIGURE 12. Local regions of denoising result images of noisy Barbara
image with different types of algorithms. (a) Original image. (b) Noise
image. (c) MF. (d) α = −1.1. (e) SPS. (f) GAFIA. (g) AFC-SPS. (h) EN-AFC.

The images employed in the experiments are of size
256×256 with different textures, including Barbara image,
Lena image, and Boat image. In this paper, we set λ1 =
0.4, λ2 = 0.6. As described above, small probability event
generally locates in the range of 0.01∼0.05, so we take their
average as the experimental noise intensity, which is the den-
sity of the salt and pepper noise set to be 0.03. The denoising
results with EN-AFC, Median filtering, the traditional filter
with order α = −1.1, SPS, GAFIA, AFC-SPS on above
three images are shown respectively as in Figure 9, Figure 10,
Figure 11.
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TABLE 1. Results of the PSNR of the denoised images with different types of algorithms.

TABLE 2. Results of the SSIM of the denoised images with different types of algorithms.

A. EVALUATION BY VISUAL EFFECTS
Here, we will evaluate the performance of image denoising
algorithms by comparing their visual effects.

The best effect of image denoising is that the details of
image boundaries and texture regions can be preserved while
removing the image noise. From Figure 9 to Figure 11,
we can see that Median filtering, SPS, GAFIA, AFC-SPS
and EN-AFC can remove the image noise in a certain extent.
Median filtering method almost eliminates all points of salt
and pepper noise, but in the same time, it makes the edges
and texture regions of the image blurred, and a lot of texture
details information are lost, especially in Figure 9(c) and
Figure 10(c), the textures are blurred seriously. The tradi-
tional order α = −1.1 makes the image blurred, and makes
the brightness of the image decreased at the same time.
In order to further perform the advantage of our proposed
method, in Figure 12 we present the denoising results of a
small patch of the original noisy image.

From Figure 12(c), we can clearly see that Median filtering
removes the noises, but makes the edges and texture regions
blurred, and a lot of texture details information are lost.
From Figure 12(e)–Figure 12(h), we can see that although
the noises in the textures are not completely removed, but
the edges and texture regions are clear. It shows that the
algorithms can remove the noises and preserve the details
information of the image edges and texture regions.

B. EVALUATION BY INDEXES
Here, different from section 4.1, we will objectively evaluate
the performance of image denoising with quantitative evalu-
ation indexes.

For an image denoising algorithm, its denoising effect can
be evaluated with the peak signal to noise ratio (PSNR). The
higher the value of PSNR is, the better the denoising effect
of the algorithm is. PSNR is an engineering term that affects
the fidelity of image representation [5]. It is the ratio of the
maximum possible power of a signal to the destructive noise
power and measured in decibels (dB). The peak signal to

noise ratio is defined as:

MSE =
1

M × N

M∑
i=1

N∑
j=1

[un(i, j)− u0(i, j)]2, (16)

PSNR = 10 lg
2552

MSE
, (17)

where, the size of the original image isM ×N , u0(i, j) repre-
sents the original image, and un(i, j) represents the denoised
image. The comparison results of PSNR of four different
algorithms are shown as in Table 1.

Structural similarity index measurement (SSIM) is mainly
used to inspect the similarity between two images [32]. The
higher the SSIM value is, the closer the image content is.
Structural similarity index measurement is defined as:

SSIM =
(2µaµb + c1)(2σab + c2)

(µ2
a + µ

2
b + c1)(σ

2
a + σ

2
b + c2)

, (18)

where a and b are two different images, µa and µb are the
mean of a and b, respectively. σ 2

a and σ 2
b are the variance of

a and b, respectively. σab is the covariance of a and b, c1, c2
are constants used to maintain stability. The comparison
results of SSIM of four different algorithms are shown as
in Table 2, and of ENTROPY in Table 3.

We can carry on the objective evaluation for the image
edges enhancement and image weak textures retention,
by analyzing the peak signal to noise ratio, the structural
similarity index measurement and the entropy of the denoised
images. Form Figure 9(c) - Figure 11(c), we can see that
Median filtering method can almost eliminate all of salt
and pepper noises. However, from Table 3, we can see that
the Median filtering obtains the lowest value of ENTROPY
of the denoised image, which means that Median filtering
makes the denoised image lost the details information. From
Table 1 and Table 3, we can see that the values of PSNR
of the denoised image with the SPS, GAFIA, AFC-SPS and
the proposed adaptive denoising algorithm are higher, and
the values of ENTROPY are also higher at the same time.
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TABLE 3. Results of the ENTROPY of the denoised images with different types of algorithms.

The values of PSNR and ENTROPY of the proposed adaptive
denoising algorithm are slightly higher than that of the other
compared algorithms. It shows that the proposed algorithm
has a stronger ability to enhance the edges, the texture regions
of the image, and preserve the smooth regions of the image
while removing the noise.

V. CONCLUSIONS
In this paper, an image denoising algorithm based on entropy
and adaptive fractional calculus is presented. In the proposed
algorithm, the noise points are regarded as small proba-
bility events, and the noise points, edges, texture regions
and smooth regions are segmented combined with the local
structure. Thus a fractional order function is constructed with
entropy and the gradient to improve the image denoising
effect.With the comparison results, it can be seen that the pro-
posed image denoising algorithm can effectively overcome
the drawbacks of losing contrasting information and texture
information. It can achieve improvement on keeping texture
detailed image information, boundary information, and get a
good visual effect, high values of PSNR and ENTROPY.

ACKNOWLEDGMENTS
The authors also thank sincerely the anonymous referee for
his or her valuable comments, which helped in improving
substantially the manuscript.

REFERENCES
[1] H. Jafari, H. K. Jassim, F. Tchier, and D. Baleanu, ‘‘On the approximate

solutions of local fractional differential equations with local fractional
operators,’’ Entropy, vol. 18, no. 4, pp. 1–12, 2016.

[2] S. B. Zhou, X. R. Lin, and H. Li, ‘‘Chaotic synchronization of
a fractional-order system based on washout filter control,’’ Com-
mun. Nonlinear Sci. Numer. Simul., vol. 16, no. 3, pp. 1533–1540,
2011.

[3] Y. Wang, Y. Shao, Z. Gui, Q. Zhang, L. Yao, and Y. Liu, ‘‘A novel
fractional-order differentiation model for low-dose CT image processing,’’
IEEE Access, vol. 4, pp. 8487–8499, 2016.

[4] X. R. Lin, S. B. Zhou, and H. Li, ‘‘Chaos and synchronization in complex
fractional-order Chua’s system,’’ Int. J. Bifurcation Chaos., vol. 26, no. 3,
p. 1650046, 2016.

[5] N. He et al., ‘‘An improved fractional-order differentiationmodel for image
denoising,’’ Signal Process., vol. 112, pp. 180–188, Sep. 2015.

[6] M. Srivastava, C. L. Anderson, and J. H. Freed, ‘‘A new wavelet denoising
method for selecting decomposition levels and noise thresholds,’’ IEEE
Access, vol. 4, pp. 3862–3877, 2016.

[7] E. M. Eksioglu, ‘‘Decoupled algorithm for MRI reconstruction using
nonlocal blockmatchingmodel: BM3D-MRI,’’ J.Math. Imag. Vis., vol. 56,
no. 3, pp. 430–440, 2016.

[8] G. Ghimpeteanu, T. Batard, and M. Bertalmío, ‘‘A decomposition frame-
work for image denoising algorithms,’’ IEEE Trans. Image Process.,
vol. 25, no. 1, pp. 388–399, Jan. 2016.

[9] X. H. Yin, S. B. Zhou, and M. A. Siddique, ‘‘Fractional nonlinear
anisotropic diffusion with p-Laplace variation method for image restora-
tion,’’ Multimedia Tools Appl., vol. 75, no. 8, pp. 4505–4526, 2016.

[10] B. Li and W. Xie, ‘‘Adaptive fractional differential approach and its appli-
cation to medical image enhancement,’’ Comput. Electr. Eng., vol. 45,
pp. 324–335, Sep. 2015.

[11] L. P. Wang, S. B. Zhou, and A. Karim, ‘‘Super-resolution image recon-
struction method using homotopy regularization,’’Multimedia Tools Appl.,
vol. 75, no. 23, pp. 15993–16016, 2016.

[12] X. H. Yin and S. B Zhou, ‘‘Image structure-preserving denoising based on
difference curvature driven fractional nonlinear diffusion,’’ Math. Prob-
lems Eng., vol. 2015, Apr. 2015, Art. no. 930984.

[13] Y.-F. Pu, J.-L. Zhou, and X. Yuan, ‘‘Fractional differential mask: A frac-
tional differential-based approach for multiscale texture enhancement,’’
IEEE Trans. Image Process., vol. 19, no. 2, pp. 491–511, Feb. 2010.

[14] A. Kundu, S.Mitra, and P. Vaidyanathan, ‘‘Application of two-dimensional
generalized mean filtering for removal of impulse noises from images,’’
IEEE Trans. Acoust., Speech, Signal Process., vol. 32, no. 3, pp. 600–609,
Jun. 1984.

[15] B. I. Justusson, Median Filtering: Statistical Properties, vol. 43. Berlin,
Germany: Springer, 1981, pp. 161–196.

[16] C. D. Fan, H. L. Ouyang, and Y. J. Zhang, ‘‘Small probability strategy
based Otsu thresholding method for image segmentation,’’ J. Electron. Inf.
Technol., vol. 35, no. 9, pp. 2081–2087, 2013.

[17] B. Li and W. Xie, ‘‘Image denoising and enhancement based on adap-
tive fractional calculus of small probability strategy,’’ Neurocomputing,
vol. 175, pp. 704–714, Sep. 2016.

[18] P. Karthikeyan, ‘‘Efficient decision based algorithm for the removal of high
density salt and pepper noise in images,’’ J. Commun. Technol. Electron.,
vol. 61, no. 8, pp. 963–970, 2016.

[19] U. A. Nnolim, ‘‘Entropy-guided switching trimmed mean deviation-
boosted anisotropic diffusion filter,’’ J. Electron. Imag., vol. 25, no. 4,
p. 043001, 2016.

[20] K. Kannan, ‘‘An adaptive weighted fuzzy mean filter based on cloud
model,’’ Int. Arab J. Inf. Technol., vol. 13, no. 6, pp. 609–613, 2016.

[21] Y.Wang et al., ‘‘An efficient adaptive fuzzy switching weighted mean filter
for salt-and-pepper noise removal,’’ IEEE Signal Process. Lett., vol. 23,
no. 11, pp. 1582–1586, Nov. 2016.

[22] A. Roy et al., ‘‘Impulse noise removal using SVM classification
based fuzzy filter from gray scale images,’’ Signal Process., vol. 128,
pp. 262–273, Sep. 2016.

[23] C. T. Lu et al., ‘‘Removal of salt-and-pepper noise in corrupted image
using three-values-weighted approach with variable-size window,’’ Pattern
Recognit. Lett., vol. 80, pp. 188–199, Apr. 2016.

[24] X. Y. Deng, Y. D. Ma, and M. Dong, ‘‘A new adaptive filtering method
for removing salt and pepper noise based on multilayered PCNN,’’ Pattern
Recognit. Lett., vol. 79, pp. 8–17, Aug. 2016.

[25] K. B. Oldham and J. Spanier, ‘‘The fractional calculus,’’ Math. Gazette,
vol. 56, no. 247, pp. 396–400, 1974.

[26] E. R. Love, ‘‘Fractional derivatives of imaginary order,’’ J. London Math.
Soc., vols. 2-3, no. 2, pp. 241–259, 1971.

[27] Y. F. Pu et al., ‘‘Fractional differential approach to detecting textural fea-
tures of digital image and its fractional differential filter implementation,’’
Sci. China Inf. Sci., vol. 51, no. 9, pp. 1319–1339, 2008.

[28] C. L. Wang, L. B. Lan, and S. B. Zhou, ‘‘Adaptive fractional differential
and its application to image texture enhancement,’’ J. Chongqing Univ.,
vol. 34, no. 2, pp. 32–37, 2011.

[29] C. Ingo, R. L. Magin, and T. B. Parrish, ‘‘New insights into the fractional
order diffusion equation using entropy and kurtosis,’’ Entropy, vol. 16,
no. 11, pp. 5838–5852, 2014.

[30] L. I. Karmele et al., ‘‘Symmetric fractional diffusion and entropy produc-
tion,’’ Entropy, vol. 18, no. 8, p. 275, 2016.

12284 VOLUME 5, 2017



J. Yu et al.: Image Denoising Algorithm Based on Entropy and Adaptive Fractional Order Calculus Operator

[31] Z. M. Wang and L. Zhang, ‘‘Local-structure-adapted image diffusion,’’
Acta Autom. Sinica, vol. 35, no. 3, pp. 244–250, 2009.

[32] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, ‘‘Image quality
assessment: From error visibility to structural similarity,’’ IEEE Trans.
Image Process., vol. 13, no. 4, pp. 600–612, Apr. 2004.

JIMIN YU received the Ph.D. degree in applied
mathematics from Zhengzhou University in 2003.
He is currently a Professor with the Key Labo-
ratory of Industrial Wireless Networks and Net-
worked Control, Ministry of Education, and the
College of Automation, Chongqing University of
Posts and Telecommunications. His research inter-
ests include fractional order dynamic systems,
numerical methods, and stability theory of func-
tional equations.

LIJIAN TAN received the B.S. degree in
mechanical electrical engineering from Hubei
University for Nationalities, China, in 2014. He is
currently pursuing theM.S. degree in control engi-
neering with the Chongqing University of Posts
and Telecommunications. His research interests
include image restoration and probe automatic
positioning.

SHANGBO ZHOU received the B.Sc. degree in
mathematics from the Gangxi National College
in 1985, the M.Sc. degree in mathematics from
Sichuan University in 1991, and the Ph.D. degree
in circuit and system from Electronic Science and
Technology University. From 1991 to 2000, he
was with the Chongqing Aerospace Electronic and
Mechanical Technology Design Research Insti-
tute. Since 2003, he has been with the College
of Computer Science and Engineering, Chongqing

University, where he is currently a Professor. His current research interests
include artificial neural networks, physical engineering simulation, image
processing, and nonlinear dynamics.

LIPING WANG received the B.Sc. degree in
information management and information system
from Zhengzhou University, Zhengzhou, China, in
2004, the master’s degree in technology of com-
puter application from the Chongqing University
of Posts and Telecommunications, Chongqing, in
2010. He is currently pursuing the Ph.D. degree
with the College of Computer Science, Chongqing
University. He was a Teacher with the College
of Shengda Economics Trade and Management,

Zhengzhou University, from 2004 to 2007. His research interests include
image restoration, pattern recognition, and inverse problems.

MUHAMMAD ABUBAKAR SIDDIQUE received
the B.Sc. degree in computer science and the mas-
ter in information technology (MIT) degree from
Bahauddin Zakariya University, Multan, Pakistan,
in 2003 and 2005, respectively, and the Ph.D.
degree from the College of Computer Science,
Chongqing University, China, in 2015. He is cur-
rently working as Assistant Professor in Khwaja
Fareed University of Engineering & Informa-
tion Technology, Rahim Yar Khan-Pakistan. His

research interests include multimedia mining and pattern recognition.

VOLUME 5, 2017 12285


