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ABSTRACT The last decades have seen a considerable progress on workflow scheduling in heteroge-
neous computing environments. However, existing methods still need to be improved on the performance
in the makespan-based metrics. This paper proposes a novel workflow scheduling algorithm named
Greedy-Ant to minimize total execution time of an application in heterogeneous environments. First, the
ant colony system is applied to scheduling from a new standpoint by guiding ants to explore task priorities
and simultaneously assign tasks to machines. Second, forward/backward dependence is defined to indicate
the global significance of each node, based onwhich, a new heuristic factor is proposed to help ants search for
task sequences. Finally, a greedy machine allocating strategy is presented. Experimental results demonstrate
that Greedy-Ant outperforms the state of the art up to 18% in the metric of speedup.

INDEX TERMS Workflow scheduling, makespan, heterogeneous computing, ant colony system.

I. INTRODUCTION
Heterogeneous computing environments provide scalable
computing resources for various applications, which is con-
structed by interconnecting machines with distinct process-
ing capacity via different networks. Workflow scheduling
in heterogeneous computing environments aims at assigning
tasks to machines to achieve highly efficient computing.
In practice, there are numerous resources in the environments
and many tasks to be scheduled. Thus workflow scheduling
is one of the key challenges to the performance enhancement
of heterogeneous computing.

Workflow scheduling has been proved to be an NP-hard
optimization problem [1]. There are various studies on how
to schedule tasks onto servers. Metaheuristic optimization
methods such as Ant Colony Optimization (ACO) [2]–[4],
Simulated Annealing (SA) [5], [6], Particle Swarm Opti-
mization (PSO) [7], Genetic Algorithm (GA) [8], Cat Swarm
Optimization (CSO) [9], etc., are largely introduced in work-
flow scheduling. Heuristic-based scheduling methods typi-
cally include HEFT [10] and PEFT [11].

Tawfeek et al. [2] proposed an ACO-based task schedul-
ing method to minimize the makespan of an application in
cloud environments. Chen and Zhang [3] exploited ACO to
schedule large-scale workflowswith various QoS parameters.
FATS [12] translated the scheduling issue into a TSP-likened

problem so that it can be solved by ACO algorithm. How-
ever, most of these methods do not make full use of task
priorities. Their task sequences are generated by randomly
and successively choosing tasks that satisfy precedence
constraints. To perform constrained workflow scheduling,
Kianpisheh et al. [4] proposed the probability of viola-
tion (POV) of run-time constraints as a criterion for the
schedule robustness, and utilized an ant colony system to
minimize an aggregation of violation of constraints and the
POV. SA-based scheduling algorithms [5], [6] were proposed
to handle scheduling problems in grid computing and cloud
computing by applying practical annealing rules to the opti-
mization process of task scheduling. PSO-based algorithms
denote the number of tasks by the dimension of particles
and let the positions of particles represent the correspondence
between virtualmachines and tasks [7]. InGA-based schedul-
ing schemes, a mapping from tasks to virtual machines is rep-
resented as a single gene in the valid chromosome. The gene
order exhibits the schedule execution order on the selected
machines. CSOwas introduced in [9] and operated in seeking
mode and tracing mode to complete task scheduling.

HEFT [10] algorithm, typically belonging to list-based
heuristic methods, selects the task with the highest upward
rank value and the corresponding processor. PEFT [11]
defines optimistic cost table (OCT) and outperforms HEFT
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in some cases, but its performance is not robust facing graphs
with complex structures. Since these heuristic methods only
determine the task sequence at the beginning of the algorithm
and do not change it afterwards, the scheduling results tend
to be trapped in a local optima.

The goals of workflow scheduling vary in different com-
puting environments. If we consider the general cloud envi-
ronment such as the public and private cloud, there may be
many QoS related metrics to be involved or targets to be
optimized. For instance, if a commercial provider is in con-
sideration, at least the economic costs of executions should
be taken into the optimization problem. Note that this paper
only focuses on scheduling static workflows in a pure het-
erogeneous computing environment. In a static workflow,
all the information of tasks such as the computation and
communication costs and the task graph structure are known
in advance.

The motivation behind our study is to apply Ant Colony
System (ACS) to workflow scheduling to obtain higher qual-
ity schedules for heterogeneous computing. ACS makes full
use of the instance-based heuristic information, which is
discovered to be essential to scheduling problems. Therefore,
the proposed Greedy-Ant takes advantage of ACS theory to
perform workflow scheduling. Unlike most of the previous
work [2], [3] making ant colony only search for machine
allocation for tasks, Greedy-Ant successively seeks tasks
according to their significances and simultaneously looks for
the most suitable machine for each task. Each time when
the ant colony completes searching once, the best schedule
is selected to generate a feedback for the ant colony via
pheromone. After several times of searching by the colony,
a high-quality scheduling result can be found.

FIGURE 1. A task DAG example. P1, P2 and P3 are the processors. The
nodes represent tasks and the edges indicate the dependency of tasks.
The weights on the edges denote the communication costs. The table
shows the computation costs of tasks on the machines.

Generally, an application can be represented as a directed
acyclic graph (DAG). A typical task DAG is shown
in Figure 1. Based on this DAG, we show an example of
comparison between the results of some existing scheduling
methods [2], [10] and Greedy-Ant in Figure 2. It is shown

FIGURE 2. A comparison between different methods on scheduling the
graph in Figure 1. The vertical axis represents the machine assignment,
while the horizontal axis indicates the order and execution time. The
makespan of tasks scheduled by HEFT [10] is 80. The ACO [2] allows the
makespan of tasks to be 78. Greedy-Ant reduces the makespan to 73.

that the scheduling scheme generated by Greedy-Ant has the
minimum makespan.

Our contributions are summarized as follows:
• A new perspective is provided on how to apply ACS
to workflow scheduling. Exactly, the ant colony not
only applies priority-based searching scheme to produce
task sequences but also performs low-complexity greedy
machine allocation.

• A new heuristic information is developed to form the
transition probability of ants to generate searching
paths during scheduling, based on the proposed forward
dependency and backward dependency definitions.

• Compared with state-of-the-art approaches, Greedy-Ant
significantly improves the scheduling quality in metrics
of makespan, speedup, schedule length ratio and fre-
quency of better results, especially in high-concurrency
and high-heterogeneity environments.

The remainder of this paper is organized as follows.
Section II introduces the workflow scheduling problem.
Section III presents the proposed mathematical models.
In section IV, we demonstrate the performance ofGreedy-Ant
via several experiments and discuss the limitations. Finally,
section V summarizes our work and describes some of our
future directions.

II. PROBLEM STATEMENT
In this paper, G(V, E) represents a task DAG. Each node
vi ∈ V indicates a task. Each directed edge e(i, j) ∈ E rep-
resents dependency constraint between vi and vj such that vi
should be completed before vj can be started.
In addition, the n × m computation matrix W stores the

execution costs of tasks V running on machines M. n = |V|
is the number of tasks and m = |M| represents that of
machines. The element wi,t is the execution time of task vi
on machine mt . In a task graph, e(i, j) is associated with a
weight ci,j which represents the communication time between
vi and vj. Note that when vi and vj are assigned to the same
machine, ci,j equals zero since it is negligible when compared
with interprocessor communication cost.
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In a task graph, a node with no predecessors is called an
entry task ventry, and a node with no successors is called an
exit task vexit . In practice, a pseudo entry node and an exit
node with zero-cost in computation and communication are
added to unify descriptions of a task graph. In other words,
the pseudo entry is the immediate predecessor of the original
entries and the pseudo exit is the immediate successor of the
original exits. This addition will not affect scheduling.

We list the basic assumptions of the computing environ-
ment as follows.
• All the machines are fully connected.
• Task execution and data communication between
machines can be at the same time.

• Task execution is nonpreemptive on each machine.
These assumptions are derived from general real systems,
which ensure a fair comparison with state-of-the-art schedul-
ing algorithms.

We present the following definitions for the scheduling
problem.
Definition 1: For a task node vi in a given task graph,

pred(vi) is the set of its immediate predecessors and succ(vi)
the set of its immediate successors.
Definition 2: For vi which has already been scheduled on a

machine, AST (vi) is its Actual Start Time (AST) and AFT (vi)
its Actual Finish Time (AFT).
Definition 3: Tready(vi,mt ) represents the time when vi is

ready to be scheduled on a machine mt . If vi is an entry node,
Tready(ventry,mt ) = 0, otherwise it is defined as

Tready(vi,mt ) = max
vk∈pred(vi)

{AFT (vk )+ ck,i}. (1)

Definition 4: EST (vi,mt ) indicates the Earliest Start
Time (EST) of vi on mt and is defined as

EST (vi,mt ) = max{Tready(vi,mt ),Tavail(mt )}, (2)

where Tavail(mt ) is the time whenmt is available for receiving
a task.
Definition 5: EFT (vi,mt ) denotes the Earliest Finish

Time (EFT) of vi on mt and is defined as

EFT (vi,mt ) = EST (vi,mt )+ wi,t . (3)
Definition 6: makespan represents the Actual Finish Time

of the exit task vexit and is defined as

makespan = AFT (vexit ). (4)
One of our aims is to assign tasks in a given task graph to
proper machines to minimize makespan.

III. GREEDY-ANT
Greedy-Ant generally operates in two phases: (1) task pri-
oritizing and (2) machine allocating. In the first phase, the
ant colony is employed to generate task sequences. A new
heuristic information considering global dependency of a task
node is proposed so that ants can find better task priorities
and the searching process can speed up. In the second phase,
a greedy minimum strategy is presented for the ant colony to
seek the best machine in each round of searching.

Ant colony system is a metaheuristic method inspired by
the foraging behavior of real ant colonies [13]. When a
group of ants tries to search for food, they use a special
chemical called pheromone to communicate with each other.
Each moving ant will deposit some pheromone along a path.
An ant will follow the trail containing the most pheromone
with the highest probability. As the foraging process con-
tinues, the ants tend to choose the shortest path which has
accumulated a large amount of pheromone.

A searching strategy for ant colony is needed for ants to
find a pleasant solution. First of all, we assume that valid
edges and paths should observe the following rules.

• Edge e(vi, vj) should merely include direct single-hop
connection from vi to vj;

• Path (vi → vj) can include both direct and indirect
connections satisfying precedence constraints.

A. NEW HEURISTIC INFORMATION
The heuristic information and the pheromone are the most
important factors in ACS based methods. In general, heuristic
information is a problem-based parameter to guide the mov-
ing direction of an ant, which can accelerate the convergence
of the algorithm. The pheromone records the trails that can
influence the subsequent searching behaviors of ants. The
ant colony searches for the best path based on these two
parameters to determine the scheduling scheme.

In order to reflect the dependence of a task node v upon
all its predecessors, the forward dependency function of v is
defined as

FD(v) =

{∑
vp∈pred(v)

FD(vp), if pred(v) 6= ∅,

1, otherwise.
(5)

Similarly, to indicate how important v is to all its succes-
sors, the backward dependency function of v is defined as

BD(v) =

{∑
vp∈succ(v)

BD(vp), if succ(v) 6= ∅,

1, otherwise.
(6)

FD(·) and BD(·) are computed in a recursive manner.
Online forward/backward dependency function is defined

to be the sum of forward/backward dependency relations of
all the unvisited predecessors/successors of vj when an ant
arrives at vi:

fFD(vj) =
∑
v∈Jij

FD(v), (7)

fBD(vj) =
∑

v∈succ(vj)

BD(v), (8)

where Jij = {v|v ∈ pred(vj) ∩ Si} denotes the set of the
unvisited immediate predecessors of vj when an ant arrives
at vi. Si is the set of the unvisited nodes.
In a given task graph, different nodes have different exe-

cution priorities. A node with many predecessors may have
lower priority since it can be started only if all its predecessors
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FIGURE 3. Heuristic information. There are some possible paths for the
current ant to move. The importance of the candidate vj is measured
based on FD(vj ) and BD(vj ).

are completed. In the meanwhile, a node with many succes-
sors may have higher priority since its successors can be exe-
cuted only if it is completed. Based on the above dependency
relations among tasks (see Fig. 3), this paper proposes the
heuristic information on path (vi→ vj) as follows:

ηij =


fBD(vj)
fFD(vj)

, if vi→ vj exists,

0, otherwise.
(9)

B. TRANSITION RULE OF THE ACS
The transition rule [13] followed by the kth ant is

vnext =

argmax
vj∈Ck (vi)

{[τij][ηij]α}, if r 6 r0,

vn, otherwise,
(10)

where Ck (vi) is the set of candidate nodes for the next move
of the kth ant, τij represents the amount of pheromone on path
(vi → vj) and α controls the importance of ηij. r is a random
number uniformly distributed in [0, 1] and r0 is a parameter
(0 6 r0 6 1). vn is the most likely next move randomly
selected according to the probability:

pkij =


[τij][ηij]α∑

vc∈Ck (vi)[τic][ηic]
α
, if vj ∈ Ck (vi),

0, otherwise.
(11)

C. PHEROMONE UPDATING
During foraging, ants pass through some edges and change
the pheromone by:

τij = (1− ξ )τij + ξτ0, (12)

where τ0 is an initial pheromone level and ξ is a parameter
(0 < ξ < 1). In order to decay the pheromone to make
the visited paths less desirable, τ0 is usually small. τ0 = 1/
(Lrand · |V|) is set by default, where Lrand is themakespan of a
random schedule.When one round of searching is completed,

the global best ant (i.e., the ant which constructs the shortest
tour) is allowed to update pheromone on the path (vi→ vj):

τij = (1− ρ)τij + ρ1τij, (13)

where ρ is the pheromone decay parameter.1τij = 1/Lbest if
(vi → vj) belongs to the best tour, otherwise 1τij = 0. Lbest
is the minimum time cost found by the best ant.

D. GREEDY-ANT
The basic idea of Greedy-Ant is elaborated in Algorithm 1.
Firstly, FD, BD and the initial pheromone matrix τ are com-
puted for each node. Then the ant colony is employed to
successively search for the best schedule for itermax times.
Each ant generates a task sequence, allocates machines to
run these tasks and locally updates the pheromone. When all
the ants finish searching, the global best ant performs global
pheromone updating. The best assignment corresponding to
the minimum makespan is recorded.

Algorithm 1 Greedy-Ant
1: iter = 0;
2: Initialize pheromone [τ iterij ];
3: Compute FD and BD value using Eq. (5) & (6);
4: while iter < itermax do
5: for k ← 1 to K do
6: list ← {ventry}; Sk ← ∅;
7: while list 6= ∅ do
8: Compute [ηij] using Eq. (9);
9: Compute p based on Eq. (11);
10: // Normalize the probability of vs→ vt .
11: PRWS ← {pst/

∑
vt∈list pst };

12: Select vnext from list via RWS method;
13: Update local trail using Eq. (12);
14: Sk ← {Sk , vnext }; // Record visited node.
15: list ← list − vnext ; // Remove vnext .
16: for all vt ∈ succ(vnext ) do
17: if pred(vt ) are all visited then
18: list ← {list, vt }; // Update list .
19: Compute EFT k via greedy minimum strategy;
20: Allocate mt ∈M to vi ∈ Sk w.r.t. EFT kmin;

21: Record best schedule w.r.t. min{makespan};
22: Update global trail using Eq. (13);
23: iter ← iter + 1;

Exactly, Lines 6-18 show the task prioritizing phase for
the kth ant. The heuristic information matrix η is dynamically
updated. The transition probability matrix p is then computed
combining τ and η. A list is constructed by initially inserting
ventry and gradually adding the tasks which satisfy precedence
constraints. To this end, for the successors of the latest vi
in the sequence, if all of their predecessors have been exe-
cuted (i.e., in the task sequence), they will be added to the
list. To gradually build a task sequence Sk , Greedy-Ant uses
RouletteWheel Selection (RWS)method to select a task from
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the list and adds it to the sequence. The roulette wheel is built
based on the normalized transition probabilities PRWS .
The basic idea behind our machine allocating phase

(Lines 19-20) is to let the kth ant greedily look for suitable
machines for tasks. For vi in Sk , a greedy minimum strategy
is adopted to select a machine. Exactly, the Earliest Finish
Time EFT (vi,mt ) is computed and mt corresponding to the
minimum (EFT kmin) is allocated to execute vi.

Note that the differences between Greedy-Ant and the
existing ACO-based workflow scheduling techniques lie in
two aspects. a) Greedy-Ant provides a new idea that an ant
colony is employed to search task sequences and simulta-
neously allocate machines by a greedy policy, while other
ACO-based methods fix the task sequence initialized ran-
domly and use ACO to search the machine allocating
schemes. b) Greedy-Ant defines a new heuristic based on
FD/BD to facilitate searching, while other ACO-based meth-
ods compute the inverse computation and communication
costs as the heuristic.

E. COMPLEXITY OF GREEDY-ANT
Greedy-Ant mainly operates in two phases: task prioritizing
and machine allocating (see Algorithm 1). In each iteration,
each ant searches for a feasible task sequence. This process
has an O(n + e) time complexity for n nodes and e edges.
For a dense graph, the number of edges is proportional to
O(n2), so that the time complexity in the worst case becomes
O(n2). Upon obtaining a task sequence, a greedy strategy
searching for the minimum EFT (EFT kmin) is performed to
allocate machines to the tasks in order. The time complexity
of this process isO(nm), wherem is the number of machines.
The total time complexity of one iteration is O(K (nm + e))
and O(K (nm+ n2)) in the worst case.

IV. EXPERIMENTAL RESULTS AND DISCUSSION
In this section, the performance of Greedy-Ant is com-
pared with state-of-the-art scheduling methods including
PEFT [11], HEFT [10], SA [5] and a typical ACO-based
scheduling strategy [2]. Despite different means of apply-
ing ACO, the adopted strategies in the literatures are sim-
ilar. Besides, the algorithm proposed in [2] is aimed to
merely minimize makespan, which is consistent with the
goal of Greedy-Ant, while [3] and [4] focus on solving the
constrained scheduling problems. Therefore, the schedul-
ing method [2] is chosen to be compared with Greedy-Ant.
Greedy-Ant is implemented using Matlab R2013a platform
and tested on two sets of task graphs: randomly generated
application graphs and real-world application graphs. Before
analyzing the experimental results, the parameter settings for
Greedy-Ant and themetrics used for performance comparison
are listed below.

A. PARAMETERS FOR GREEDY-ANT
Greedy-Ant adopts the following parameters.
• The maximum iteration in ACS is itermax = 5000;
• There are K = 50 ants in the ant colony;
• The global pheromone decay parameter is ρ = 0.1;

• The local pheromone decay parameter is ξ = 0.1;
• The importance of heuristic information is α = 1;
• r0 in Equation (10) meets r0 = 0.9;

B. COMPARISON METRICS
The comparisons are performed based on the metrics of
schedule length ratio (SLR), speedup and frequency of better
results.

1) SCHEDULE LENGTH RATIO (SLR)
A key measurement of a scheduling algorithm is the
makespan of the schedule obtained. Due to the distinct graph
topology,makespan needs to be normalized to a lower bound.
The schedule length ratio (SLR) [10] is defined as:

SLR =
makespan∑

vi∈CPmin minmt∈M{wi,t }
. (14)

The denominator is the summation of the minimum com-
putation costs of tasks on the critical path CPmin. For any
scheduling algorithms, the SLR value of a graph is larger than
one, since the denominator is the lower bound. Therefore, the
lower SLR value is, the better performance the algorithm will
have.

2) SPEEDUP
The speedup value is defined as the ratio of the sequential
execution time to the parallel execution time (i.e.,makespan):

Speedup =
minmt∈M{

∑
vi∈V wi,t }

makespan
, (15)

where minmt∈M{
∑

vi∈V wi,t } is the sequential execution time
computed by assigning all tasks to a single machine that
minimizes the total computation cost.

3) FREQUENCY OF BETTER RESULTS
The percentage of better, worse, and equal quality solutions
produced byGreedy-Ant is compared with that of the remain-
ing algorithms.

C. DAG SETTINGS AND COMPUTING INFRASTRUCTURE
Greedy-Ant and the other algorithms are tested on the follow-
ing DAGs and computing infrastructure. The popular DAG
generating program DAGGEN available at [14] is modi-
fied to obtain the random and synthetic DAGs used in the
experiments. The graph shape is determined by the following
parameters.
• n: the number of task nodes in a DAG.
• fat: the parallelism degree of a DAG, given n. A large
value results in a shorter DAG with high parallelism,
while a small value leads to a longer DAG with low
parallelism. Exactly, the maximum number of tasks in
each level of a DAG is randomly determined according
to a uniform distribution with the mean fat ·

√
n. The

depth of a DAG is a random value decided by a uniform
distribution with the mean

√
n/fat .
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• density: the dependency degree of the nodes in a graph.
The larger density value is, the stronger the depen-
dency is.

• regularity: the similarity of the task numbers between
levels. A large value indicates the high similarity.

• jump: the number of levels spanned by communications
(i.e., an edge can jump over jump levels).

In order to describe the communication and computation
costs of a task graph, we adopt the following parameters:

• Communication-to-computation ratio (CCR): the ratio
of the average communication cost to the average com-
putation cost.

• β (Range of computation costs on machines): the het-
erogeneity factor for the performance of machines on
speed. A high β value indicates higher heterogeneity
andmore complex computation costs among processors,
and a low value implies that the computation costs for
a given task are nearly the same among machines [10].
The communication cost wi of the task vi in a DAG
is randomly set according to a uniform distribution in
[0, 2 × wDAG], where wDAG is the average computation
cost of a given random graph. The computation cost of
each task vi on themachinemt is randomly selected from
[wi(1− β/2),wi(1+ β/2)].

The computing infrastructure is constructed by connect-
ing a certain number of machines with different computing
capabilities in a general network. The number of machines is
denoted by m. CCR and β can indicate the communication
and computation heterogeneity of different machines.

D. RANDOM TASK GRAPHS
Firstly, experiments are run on random task graphs. In each
comparison, to randomly generate DAGs, we choose the
values of the parameters from the corresponding sets
below.

• n = {10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 200,
300, 400, 500};

• CCR = {0.1, 0.2, 0.5, 0.8, 1, 2, 5, 8, 10};
• β = {0.1, 0.2, 0.5, 1, 2};
• jump = {1, 2, 4};
• regularity = {0.2, 0.5, 0.8};
• fat = {0.1, 0.4, 0.8};
• density = {0.2, 0.5, 0.8};
• m = {2, 4, 8, 16, 32};

The combinations of parameter settings above generate
255150 different sorts of DAGs. For the DAGs with the same
parameter setting, 20 random graphs with distinct communi-
cation and computation costs are generated so that actually
5103000 different DAGs are used in our experiments.

At first, based on the random task graphs, an experiment
shown in Figure 4 compares Greedy-Ant and its counterpart
without the proposed heuristic information. It is obvious that
the new heuristic information contributes quite a lot to the
improvement of the algorithm.

FIGURE 4. Comparison between Greedy-Ant and its counterpart without
the proposed heuristic information.

Figure 5 shows the performance on speedup and SLR ver-
sus the number of tasks, CCR, β and the number of machines
for all the algorithms.

1) SPEEDUP AND SLR-NUMBER OF TASKS
In Figure 5(a), Greedy-Ant performs better than any other
algorithms. Compared with ACO, Greedy-Ant improves
speedup by about 15 percent when DAGs include 10 tasks.
As the task number increases,Greedy-Ant gradually shows its
advantage. When there are 40 tasks in DAGs, our algorithm
can significantly outperforms [2] by 59 percent. It is apparent
that the performance of Greedy-Ant tends to converge when
task number exceeds 50, whereas ACO still witnesses an
increase after 100. The performances of PEFT and HEFT
are about the same level. Although SA performs better than
PEFT and HEFT when n < 90, its performance decreases
afterwards. When n = 50, Greedy-Ant improves speedup
by about 11 percent, compared with HEFT. For the metric
SLR, Figure 5(b) shows the details of the comparisons. It is
obvious thatGreedy-Ant performs best especially in the cases
of a large number of tasks.

2) SPEEDUP-β
Figure 5(c) implies that a high degree of heterogeneity will
benefit the advantage of Greed-Ant. When facing high het-
erogeneity (β = 2), Greedy-Ant has the significant improve-
ment over SA by 61 percent, ACO by 56 percent, PEFT by
44 percent and HEFT by 13 percent. This demonstrates the
effectiveness of Greedy-Ant in heterogeneous environments.
As heterogeneity decreases to β = 0.5, this improvement
decreases largely. Although this improvement over HEFT,
PEFT and SA suffers from a dramatic decrease due to the low
heterogeneity of machines, whereas they are still obviously
better than ACO.

3) SPEEDUP AND SLR-CCR
We can see from Figure 5(d) that speedup decreases
as CCR increases for all the algorithms, implying that
small communication-to-computation ratio is beneficial to
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FIGURE 5. Comparison on random task graphs.

task scheduling. As a whole, Greedy-Ant outperform the
rest of the algorithms. It is interesting to see that when
5 < CCR < 10 the performance of Greedy-Ant almost
remains the same on speedup. When CCR is equal to 2,
Greedy-Ant is better than HEFT by 7 percent, PEFT
by 10 percent, SA by 19 percent and ACO by 69 percent.

The SLR computed for Greedy-Ant, PEFT, HEFT, SA
and ACO as a function of CCR is shown in Figure 5(e).
To show the statistical details of the results, we draw boxplots
where the minimum, first quartile, median, third quartile and
maximum of the SLRs are presented. We can conclude that
Greedy-Ant always has the lower average SLR and a relative
small dispersion. HEFT also performs well.

4) SPEEDUP-NUMBER OF MACHINES
Figure 5(f) demonstrates that the increase of the processor
number is beneficial to raise the speedup. At the same time,
Greedy-Ant always performs better than the other algorithms.

5) FREQUENCY OF BETTER RESULTS
Table 1 is the statistical results of all the comparison experi-
ments on the 5103000 different task DAGs, and illustrates the
performance of Greedy-Ant with respect to the percentage of
DAGs inwhich it performs better, equally or worse, compared
with the remaining algorithms. The cells in Table 1 show the
comparison results of the algorithms on the left with those on
the top. It is clear to see from the first row that Greedy-Ant
achieves better scheduling results than the other algorithms

TABLE 1. Pairwise comparison of the scheduling algorithms.

in most cases. The results shown in Table 1 and Figure 5 are
consistent.

E. REAL-WORLD APPLICATION GRAPHS
Apart from randomly generated task graphs, we compare the
performance of Greedy-Ant with state-of-the-art algorithms
on the task graphs of some typical scientific real-world appli-
cations, including CyberShake workflow [15] and SIPHT
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FIGURE 6. Comparison on CyberShake workflow.

FIGURE 7. Comparison on SIPHT workflow.

workflow [16]. Since the structures of these applications are
known, we only consider the performance with respect to
CCR, heterogeneity β and the machine number m. CCR
in our experiment varies in {0.1, 0.2, 0.5, 0.8, 1, 2, 5, 8, 10}.
β varies in {0.1, 0.2, 0.5, 1, 2} and m in {2, 4, 8, 16, 32}.
It is worth noting that CCR and β indicate the properties
of machines in the sense that CCR represents the focus
(i.e., communication, computation) of a network. β implies
the extent of heterogeneity of a machine system.

1) CyberShake WORKFLOW
The CyberShake workflow is known as the tool exploited
by the Southern California Earthquake Center to characterize
earthquake hazards. We respectively test all the algorithms
on the CyberShake workflowwith 30 and 50 task nodes. Note
that the graph structure for a application when given the fixed
number of the tasks. Thus we here compare the algorithms in
terms of CCR, β and the number of machines.
Figure 6 shows the average speedup and schedule length

ratio as functions of CCR, β and the number of machines.
In Figure 6(a) Greedy-Ant obviously outperforms PEFT,
HEFT and SA when CCR 6 0.2. Even if this improvement
decreases when CCR > 0.2, Greedy-Ant still performs better
than the other algorithms. In Figure 6(b), when β is relatively
large (i.e., high-heterogeneity network), the improvement
of Greedy-Ant is significant. Concerning the number of
machines, Figure 6(c) shows that Greedy-Ant can achieve the
less schedule length ratio.

2) SIPHT WORKFLOW
The SIPHT workflow in a bioinformatics project at Harvard
can automatically search for untranslated RNAs for bacterial
replicon in the National Center for Biotechnology Informa-
tion (NCBI) database.We consider the cases of 30 and 60 task
nodes in the SIPHT workflow graph.

Figure 7 shows the performances of all the algorithms
on the average speedup and SLR in terms of CCR, β and
the number of machines. In Figure 7(a), when CCR > 5,
SA outperforms Greedy-Ant. When CCR < 5, the average
performances can be roughly sorted from the best and to the
worst as Greedy-Ant, SA, HEFT, PEFT, ACO. Figure 7(b)
shows generally the same trend as Figure 6(b). In Figure 7(c),
when m 6 8, Greedy-Ant clearly outperforms the remaining
algorithms. However, when m = 16, 32, due to the upper
boundary of speedup has been reached, all the algorithms are
roughly equal.

F. DISCUSSION
Figure 5, 6, 7, and Table 1 demonstrate that Greedy-Ant
outperforms HEFT, PEFT, SA, and ACO with respect to
the metrics including speedup, SLR, and frequency of better
results. HEFT and PEFT are list-based heuristic methods.
HEFT defines an indicator ranku to represent the longest
path length from a task node to the exit node. A fixed task
sequence is generated by sorting ranku in descending order.
Similarly, PEFT defines rankoct according to an optimistic
cost table (OCT) to generate the task sequence. Since the
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scheduling problem is NP-complete and the practical com-
bination number of the feasible task sequences is very large,
both HEFT and PEFT try to find a local optimum sequence
according to a local heuristic indicator. Their performances
heavily rely on the effectiveness of the heuristic indicators.
As the complexity of the task graph grows, it becomes harder
for them to produce consistent results on a variety of graphs.
For machine allocating, HEFT uses an insertion-based policy
to insert a task in an earliest idle time between two already
scheduled tasks on a processor, while PEFT completes it by
minimizing a value combining EFT and OCT. Besides, they
have the same time complexity O(n2m).
Greedy-Ant, a metaheuristic method, introduces heuristic

searching into task prioritizing and a simple greedy strategy
into machine allocating. Moreover, a global heuristic infor-
mation ηij considering forward and backward dependencies
is defined to control the convergence of Greedy-Ant. There-
fore, Greedy-Ant generates the better scheduling results than
the list-based heuristic methods HEFT and PEFT. However,
the time complexity of Greedy-Ant is higher than HEFT
and PEFT.

The ACO and SA methods compared in the experiments
fix an initial task sequence generated randomly. The solution
space of machine allocating is limited and the performances
rely on the quality of the initial task sequence.

V. CONCLUSION
This paper reconsiders ant colony system and presents a new
scheme for ACS-based workflow scheduling. A new heuristic
information based on forward and backward dependency is
proposed to build transition probability for ants to generate
task priorities. Simultaneously, a greedy minimum strategy
for machine allocation is incorporated to complete schedul-
ing. Experiments on both synthetic graphs and real appli-
cation graphs demonstrate the effectiveness of Greedy-Ant.
In the future, based on Greedy-Ant, we intend to consider
some resources restricted cases under specific cloud environ-
ments, and formulate the problemwith more QoS constraints.
Further, we intend to improve Greedy-Ant in a hybrid heuris-
tic manner.
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