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ABSTRACT Visualization of cerebral blood vessels is vital for stroke diagnosis and surgical planning.
A suitable modality for the visualization of blood vessels is very important for the analysis of abnormalities
of the cerebrovascular system, as it is the most complex blood circulation system in the human body and
vulnerable to bleeding, infection, blood clot, stenosis, and many other forms of damage. Images produced
by current imaging modalities are not promising because of noise, artifacts, and the complex structure of
cerebral blood vessels. Therefore, there is a requirement for the accurate reconstruction of blood vessels to
assist the clinician in making an accurate diagnosis and surgical planning. This paper presents an overall
review of modeling techniques that can be classified into the three categories, i.e., image-based modeling,
mathematical modeling, and hybridmodeling. Image-basedmodeling deals directly withmedical images and
which involves preprocessing, segmentation, feature extraction, and classification. Mathematical modeling
exploits existing mathematical laws and equations, an example being an arterial bifurcation, which is
assumed to follow a fractal and cube law, and a system of ordinary differential equations are solved to
obtain pressure and velocity estimates in a branching network. Whereas, Hybrid modeling incorporates both
image-based andmathematical modeling to attempt to produce amore detailed and realistic arterial structure.
From the literature review and the analysis of the results, it can be summarized that hybrid models provide
a faster and more robust technique, which can significantly help in diagnosis and surgical planning, such as
for finding the shortest path for a stenting procedure.

INDEX TERMS Cerebrovascular imaging, cerebral vessel modeling, image-based modeling, mathematical
modeling, hybrid modeling, segmentation.

I. INTRODUCTION
Visualization of the vascular structure of the human brain is
very important for the diagnosis of abnormalities and surgical
planning. Currently, it is a vital part of the early detection,
diagnosis, and treatment of diseases such as cancer and vas-
cular disease [1]. According to the Institute of Health Metrics
and Evaluation (IHME) [2], cerebrovascular disease is the
third leading cause of death in Malaysia.

Analysis of blood vessels is very challenging due to
size, amount, and overlapping blood vessels, the inten-
sity between background and blood vessels, tortuosity and
complexity of blood vessels. There exist several imag-

ing modalities available for stroke research including
computed tomography (CT), magnetic resonance imag-
ing (MRI), conventional X-ray, and positron emission
tomography (PET) [3]. These modalities are capable to visu-
alize either lesions in brain tissue or blood vessel abnormal-
ities. For example, there are many different MRI sequences
for the visualization of different types of tissues, includ-
ing angiography, which uses contrast agents to visualize
blood vessels in any human organ. X-ray angiography (XA),
CT angiography (CTA), and MR angiography (MRA) are
capable of visualizing blood flow in real time. The qual-
ity of images produced by these current modalities is often
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FIGURE 1. Cerebrovascular disease treatments. A. Invasive procedures
include clipping and carotid endarterectomy [10]. Non-invasive
procedures include B. thrombectomy [11], C. coiling (for an
aneurysm) [12], and D. intracranial angioplasty and stenting (for
thrombosis and embolism) [13].

unsatisfactory because of noise, artifacts, and low inten-
sity. This leads to a need for reconstruction techniques to
overcome the limitations. Reconstruction techniques may be
classified into the three groups of image-based modeling,
mathematical modeling, and hybrid modeling. Image-based
modeling consists of several steps, including image acqui-
sition, preprocessing, segmentation, and feature extraction.
Current reviews on image-basedmodeling techniques include
Suri et al. [4] and Kirbas and Quek [5] who cover the segmen-
tation part and Lesage et al. [6] who provide a further review
on vessel segmentation models together with feature extrac-
tion techniques using CTA and MRA images. Mathematical
models for generating arterial structure without the use of
medical images have also been described [7]. Even though
mathematical modeling does not provide better accuracy than
previous techniques, it can provide important features such as
the geometrical structure of blood vessels. By implementing a
hybrid model, which is the combination of both image-based
and mathematical modeling, the reconstruction of blood ves-
sels can be modeled with the inclusion of much case-specific
information.

This study deals with the most common type of mod-
eling technique which is image-based modeling. Although
most of the points discuss in this paper related to image-
based modeling, we break the modeling technique to another
two parts, mathematical modeling and hybrid modeling.
A thorough review on all three modeling techniques is pro-
vided and should help readers in choosing suitable tech-
niques for the reconstruction of cerebral blood vessels.
Sections II.A, II.B, and II.C discuss the different techniques
further. The reconstruction of blood vessels in a model can
be used for surgical planning for operations such as stenting
procedures.

FIGURE 2. Modeling techniques.

Although there are many treatments available for stroke
as shown in Fig. 1, intracranial angioplasty and stent-
ing (IAS), which have been used for several decades,
still represent an effective and safe treatment method for
acute ischemic stroke and aneurysms. They have been
shown to be successful for treating acute stroke (>
70% level of stenosis) with a success rate of more
than 90%, with clinical implications of around 0–20%
[8], [9]. However, there are some conditions where
IAS cannot be performed, including in those patients with
the abnormal cerebral vasculature.

Therefore, the aid of a system employing the information
from an appropriate imagingmodality is required for accurate
diagnosis and surgical planning. Because of the complex
structure of cerebral vessels, the virtual reconstruction of
them may assist in diagnosis and may help find the short-
est path for IAS treatment when the standard approach is
not possible. This review covers several techniques that can
potentially be used to acquire useful information for construc-
tion of a cerebral vasculature model, including CTA, MRA,
and XA.

II. CLASSIFICATION OF MODELING TECHNIQUES
Modeling techniques for blood vessels may be classified
into three types, namely image-based modeling, mathemat-
ical modeling, and hybrid modeling, as illustrated in Fig. 2.
These three modeling techniques are discussed in detail in
Sections II.A, II.B, and II.C respectively.

A. IMAGE-BASED MODELING
Image-based modeling requires a data set from an imag-
ing modality that can be used to reconstruct the blood
vessel network. The basic steps of image-based model-
ing begin with image acquisition, followed by prepro-
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TABLE 1. Comparison of CTA and 4D-CTA.

cessing and segmentation, and finally, feature extraction.
Sections II.A.1, II.A.2, II.A.3, and II.A.4, discuss the tech-
niques involved in constructing a blood vessel model.

1) IMAGE ACQUISITION
Although many imaging modalities are available, angiog-
raphy is the most suitable method for the visualization of
abnormalities in blood vessels, whether it is performed using
X-ray, CT, or MRI. The images are captured after a contrast
agent has been injected into the blood vessels. Each modality
has its own characteristics, as described in Table 1. It is
important to choose a suitable modality, as otherwise the
reconstruction or modeling process may be problematical
owing to a lack of information.

X-ray angiography (XA) or catheter angiography is capa-
ble of combining diagnosis and treatment in a single proce-
dure, as it can produce very detailed and accurate images of
blood vessels. It is typically used to evaluate and diagnose
the abnormalities of blood vessels in various part of the
body, including the heart, brain, kidney, and lungs. Narrowed,
enlarged, and blocked arteries can be clearly seen with this
technique. A catheter, which is a thin plastic tube, is inserted
through a small incision in the skin to the body area of interest
to highlight blood vessels. A contrast agent is then injected to
render the blood vessels visible on X-ray. The advantage of
XA is that it produces a detailed, clear, and accurate image
of blood vessels. The images produced are very helpful for
deciding on a surgical procedure or percutaneous interven-
tion. An advantage of XA is that the use of the catheter makes

FIGURE 3. CT scanner diagram.

it possible to perform diagnosis and treatment in a single
procedure. For example, a surgeon can find the location of
an arterial narrowing and then perform an IAS procedure in a
single intervention. The limitations of XA include an allergic
reaction to the contrast agents, which may lead to a skin
reaction, blood pressure drop, breathing difficulties, and loss
of consciousness. There is also a risk of a blood clot forming
at the tip of the catheter.

Computed tomography (CT) is a medical imaging tech-
nique that uses X-rays to acquire images from various type
of organ. As with other modalities, angiography techniques
are also possible with CT and allow the acquisition of blood
vessel images. CTA imaging uses a thin X-ray beam to pro-
vide images of organs in the human body. Fig. 3 provides
an illustration of a CT scanner, with the dotted arrows indi-
cating the X-ray beams that capture the image. CT can be
used to visualize abnormalities, such as a blood clot inside
a blood vessel. The use of contrast agent enables CTA to
be used for distinguishing between bone, soft tissues, and
blood vessels, within the same images. CTA can be performed
quickly and may be very beneficial in emergency situations.
It can show any abnormalities in brain structure, including
brain swelling or bleeding caused by ruptured aneurysms,
hemorrhagic stroke, and head injury. However, one drawback
of using CT is that patients are exposed to radiation from the
X-ray beam.

There exist a new protocol that employs non-invasive
CTA with a dynamic acquisition of digital subtraction
angiography (DSA) or XA, called Dynamic CTA some-
times also referred as four-dimensional-CTA (4D-CTA
Kortman, et al. [35] also conducted a study using 4D-CTA.
It is capable of visualizing the location of aneurysms, and
the technique was shown to be likely to have a high pre-
dictive value for hematoma (a collection of blood outside of
the blood vessels) expansion [36]. In ischemic stroke cases,
4D-CTA provided a better evaluation of the extent and
dynamics of collateral flow when flow to certain regions
was occluded [37]. 4D-CTA also provides better visualiza-
tion of collateral circulation than CTA, thereby providing a
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TABLE 2. The advantages and disadvantages of non-contrast-enhanced MRA.

better evaluation of thrombus burden in an anterior circulation
occlusion [38].

Magnetic resonance angiography (MRA)
There are two categories of MRA: contrast-enhanced

(CE-MRA) and non-contrast-enhanced (NCE-MRA) meth-
ods. NCE-MRA methods, such as phase contrast (PC) and
time-of-flight (TOF) are the most commonly used techniques
to visualize blood vessels. TOF-MRA is more common and
is widely used to produce 2D and 3D angiographic images
without the injection of contrast agent [41]. The approach is
better than PC-MRA for studying large intracranial arteries,
as image slices can be thinner and the echo times mini-
mize phase shift that contributes to signal loss. PC-MRA is
generally insensitive to slow flow, but it can capture slow
flow near the occlusion site [42]. Furthermore, PC-MRA is
suitable for visualizing collateral blood flow and can identify
the direction and velocity of flow.

Hartung et al. [39] discussed the development of advanced
techniques using both CE-MRA and NCE-MRA methods.
They found that NCE-MRA methods require longer acqui-
sition times than CE-MRA methods. However, they still
offer several advantages over CE-MRA, including reduced
risks of patients and lower costs. Phase-contrast NCE-MRA
methods offer the potential to provide additional hemody-
namic information to that currently obtained using invasive
methods. However, these imaging techniques are limited
to single-frame static images or in the spatial
resolution [43]. Therefore, NCE time-resolved 4D-MRA
has been developed to visualize the vascular morphology
and blood flow dynamic simultaneously in 3D [43]. It is
suitable for the study of vascular blood flow but results in
larger datasets (> 2000 2D images) than conventional
MRI scans [44]. The use of a contrast agent is avoided
by performing alternating magnetization preparation
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TABLE 3. The comparisons between modalities.

FIGURE 4. The overall picture of the modeling techniques.

schemes in two consecutive acquisitions of each
measurement.

Every imaging modalities have their advantages and disad-
vantages according to what we want to see and solve. There
is type of modalities that are not suitable for a certain disease.

Therefore, Table 3 provides a comparison of three types
of modalities that commonly used for stroke problem.
It includes the comparison of spatial resolution amongmodal-
ities as well as the contrast, acquisition time, cost, application
and also the projection of the modality.

2) PREPROCESSING
The quality of the images produced by imaging modalities
is affected by local intensity abnormalities and background
noise. Therefore, preprocessing steps like noise reduction
and vessel enhancement are necessary on medical images.

The results from preprocessing steps help to provide mean-
ingful information about the geometry, position, and topolog-
ical structure of vessels.
Noise reduction is a process of removing noise in the image

which involves several filtering techniques. There are two
types of filtering techniques namely conventional (fixed) and
unconventional (multiscale or mix).

The conventional filtering techniques such as mean,
median,Weiner, Gaussian [45], [46], and low-pass filters [47]
have long been used to reduce noise in images. In linear
spatial filtering, the content of a pixel is given the average
brightness value of its immediate neighbors. The spatial aver-
aging technique referred to as low-pass filtering reduces the
level of noise, but results in poor feature preservation because
it degrades important information such as lines or edges.
The filtering neglects region boundaries and small vessel

15226 VOLUME 5, 2017



A. Ajam et al.: Review on Segmentation and Modeling of Cerebral Vasculature for Surgical Planning

FIGURE 5. Preprocessing steps for an XA image as a) is an original image,
b) stretched image, c) median filtered image, d) low-pass filtered image,
and e) anisotropic diffusion filtered image.

structures, with the result that images produced from this
filtering technique appear blurred and diffused. These unde-
sirable effects can be reduced or avoided by modifying the
nonlinear filters. The most common technique is median
filtering, which results in the edges being preserved, although
the filtering causes a loss of resolution by suppressing fine
details. Fig. 5 and 6 show the examples of fixed scale tech-
niques as well as a non-linear filtering technique. As we can
see, the fixed scale technique is not capable of enhancing but
blurring the images. However, in Fig. 6, the Frangi’s filter can
enhance the vesselness structure but needmore preprocessing
steps to deal with the gap between vessels.

Although previous filtering techniques may have been
somewhat lacking, several authors have introduced an adap-
tive filter, which can address the problems of blurred edges,
disconnected vessels, and undesirable removal of important
information. The diameters of cerebral vessels vary according
to the depth level of each vessel; this is called multiscale

FIGURE 6. Preprocessing steps for an MRA image. a) original image,
b) stretched image, c) median filtered image, d) anisotropic diffusion
filtered image by Perona and Malik [47], and e) Frangi filtered image by
Frangi et al. [59].

structure. A multiscale filtering technique can deal with any
vessel size, as required.

Fixed scale techniques, such as median filtering, have
a problem in detecting small vessels. Many studies have
used unconventional techniques such as nonlinear anisotropic
filtering, Hessian-based filter [48], [49], morpho-Hessian fil-
ter [20], and directional bank filter [18], [50] to overcome this
problem.

Nonlinear anisotropic filtering was introduced by
Perona and Malik [47], where they developed a multiscale
smoothing and edge detection scheme that was a powerful
new concept for image processing. Canero and Radeva [51]
introduced an improved anisotropic diffusion filter to
enhance multiscale vessel structure. The proposed filter was
inspired by crease enhancement diffusion (CED), [52] but
the diffusion strength employed in the study was based on
a vesselness measure and named as vesselness enhancement
diffusion (VED). Since the VED is a multiscale approach,
the results can deal with multiple vessel sizes. Moreover,
the VED filter can smooth the background better than CED,
and suppress the blob structure (a region that has similar
properties to the surrounding regions and represents an arti-
fact or unwanted region). The disadvantage of this technique
is that it does not preserve the vessel edges.

Du et al. [53] developed a nonlinear anisotropic filter-
ing method capable of significantly reducing noise while
preserving the edge structures of blood vessels. This tech-
nique introduced a parameter called the exponential diffusion
function that could control the smoothing process and was
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demonstrated to be much more efficient than previous
techniques. It was able to improve the contrast-to-noise
ratio (CNR) by 50 to 100 percent. Although this technique
is capable of suppressing image noise in most cases, it does
have the potential to create streak artifacts and enhance noise
spikes. The suppression of streak artifact use the interleaved
projection angles, but the presence of noise spike enhance-
ment may reduce the CNR in the image.

In later work, bilateral filters were introduced by sev-
eral authors [45], [54]–[56]. These adapt the idea behind
anisotropic diffusion filters, of smoothing the image while
preserving the edges of vessel structures. Bhonsle et al. [57]
demonstrated that bilateral filtering effectively removes addi-
tive white Gaussian noise but shows a poor performance in
reducing salt and pepper noise. Salt and pepper noise can
be caused by disturbances in the image signal. However,
the formulation and performance of this technique depended
upon the choice of parameter, which was not automated.
Vessel enhancement is widely used in computer graph-

ics where the principle is to enhance an image to facilitate
accurate segmentation and reconstruction of vessels for many
medical imaging applications [18]–[20], [48]–[50], [58].

The Hessian-based filter was introduced [59]–[63] for
vessel enhancement. One advantage of this filter is that it
can capture a range of diameters owing to the multiscale
analysis. Furthermore, it is not only capable of detecting
tubular structures, but also blob-like and sheet-like structures
within the image. The Hessian-based filter used a Hessian
matrix obtained from the Gaussian second derivative of the
3D image [20] to analyze second-order variation in image
intensity to determine the type of local structure (tubular-like)
present in the image [20].

Hessian-based filters have been applied in several vessel-
enhancement approaches [20], [49], [50]. This technique
has been shown to be applicable to various imaging
modalities, such as DSA [24], [59], [61], CTA [64], and
MRA [25], [26], [41], [49], [65]. It has also been applied to
several types of vessels, for example cerebral [27], [66]–[68],
peripheral [59], hepatic [60], pulmonary [60], and
cardiac [48], [69] vasculature.

Olabarriaga et al. [48] presented a method that applied a
Hessian-based filter to multi-detector CT images acquired
with contrast injection. The study compared three filters for
central vessel axis (CVA) enhancement: the Lorenz filter [61],
Sato filter [60], and Frangi filter [59]. It found that the Frangi
filter provided better enhancement, as it was able to filter a
larger area than the other filters.

One of the drawbacks of theHessian-based approach is that
it is very sensitive to noise, and sometimes the vessels appear
discontinued because of junction suppression. To address this
problem Truc et al. [18], [50] proposed a method of adapting
the Hessian-based filter to directional images, which they
termed the directional bank filter. In comparison with the
Frangi filter and Shikata filter, this method can provide supe-
rior enhancement of small vessels and distinguish all vessels
at bifurcation and crossing points. However, the directional

bank filter only currently works with 2D images, while the
Frangi filter has been established for 3D images. In gen-
eral, the proposed filter only generates better performance
in 2D images in comparison with the two Hessian-based
approaches.

Dufour et al. [20] then proposed a morpho-Hessian
approach, which involved the combination of two filtering
methods, namely mathematical morphology, and Hessian-
based approaches. It shows that the proposed method could
reconnect vessel-like structures, as one of the basic opera-
tions of mathematical morphology is closing (joining dis-
connect vessel structure parts by filling the gaps between
them and smoothing their outer edges). This method was
compared with the Frangi filter, and the results were in favor
of the morpho-Hessian approach for both low and high noise,
although with images showing the highest level of noise,
the Frangi filter provided more accurate results. One advan-
tage of the morpho-Hessian approach is that the combined
technique led to time-savings.

The Hessian-based filter has been demonstrated to be a
powerful technique for vessel enhancement [49]. The tech-
nique results in suppression of non-vascular tissues and
enhancement of small vessels. However, another challenge of
vessel extraction is the problem of background disturbance.
To address this problem, Sun et al. [19] introduced top hat
enhancement to normalize the background, as vessel images
may have a non-uniform background. By normalizing the
background image the filtering of the vessel structure is
improved, as well as the segmentation process.

From the literature survey, it can be analyzed that the
Hessian-based filter is found to be a powerful technique for
the enhancement of blood vessels. It is very useful for detect-
ing small blood vessels and the line structures (centerlines)
within blood vessels.

The next section will discuss the segmentation methods
available for brain vessels.

3) SEGMENTATION
Cerebrovascular segmentation is one of the most challenging
tasks in vessel segmentation and plays an important role in
medical diagnosis. It separates an input image into several
non-overlapping regions [74]. The technique is necessary to
perform a three-dimensional (3D) visualization of cerebral
vessels to facilitate diagnosis, quantification, and grading of
vascular abnormalities, such as stenosis and aneurysm [75].

Over the decades, various techniques have been proposed
for the segmentation of blood vessels from MRA. System-
atic analyses given by Sur et al. [4], Kirbas and Quek [5],
Luo and Zhao [68], and Lesage et al. [6] present recent
progress in cerebrovascular segmentation. Vessel segmenta-
tion in MRA is challenging because of (1) the low contrast of
anMRA image, (2) theweak contrast between the arteries and
background, (3) an unknown and easily deformable vessel-
tree shape, (4) overlapping and strong bone shadows [76],
(5) the small size of the vessels [66], and (6) noise and gaps
in vessels and hemodynamic changes [65]. Moreover, blood
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TABLE 4. Image filtering techniques.

vessels may contain low or complex flow that can lead to low
signal-to-noise ratio (SNR) [77].

Image segmentation techniques may be classified into four
main categories: a) region-based, b) active contour-based
model, c) statistical-based, and d) hybrid techniques as shown
in Fig. 4.

Region-based approaches: Region-based approaches
segment the image into regions of voxels with a certain
similarity. The region based can be further characterized into
two categories, mainly thresholding based and region grow-
ing based segmentations.

• Thresholding-based vessel segmentation: Threshold-
ing is used to divide an image into several regions such
as background, soft tissues, vessels, and bone struc-
ture. The capability of this technique depends on the
selection of an appropriate threshold value, since non-
uniform illumination may complicate the process. Many
authors [20], [64], [70], [71] have used thresholding
techniques to extract blood vessels. The thresholding
methods are applied before application of any segmen-
tation technique, so that unwanted background and soft
tissues are separated from the vessels areas. For exam-
ple, Suran et al. [70] performed a skeletonization tech-
nique (as was introduced in [4]) after thresholding to
obtain a centerline of the vessels for graph generation.
However, Wang et al. [71] demonstrated that their pro-
posed method was able to efficiently obtain accurate
cerebral vessels from MRA images, whereas Otsu’s
method divided the image into two parts named as fore-
ground and background regions, and thresholding was
then performed to obtain a more accurate segmentation
than achieved with manually segmented vessels.

• Region growing: Region growing segmentation bene-
fits from fast algorithms and is the most common tech-
nique for segmentation [78]. The technique results in
vessel segmentations having good connectivity and pre-
serves the topological structure, which is very important
for cerebral vessel analysis [79]. This technique requires
a seed point from which to initiate the extraction of
similar pixels. It builds the arterial and venous trees by
iteratively checking neighboring voxels that are selected
according to their grayscale value [80].

Active contour-based model: This approach applies an
energy minimization connectivity-preserving relaxation pro-
cess to an image to obtain the boundary of an object. There
are two types of active contour models; parametric mod-
els (snakes) and geometric models (level sets).
• Geodesic active contour: Yang et al. [81] proposed a
method that adaptively configures the parameters for
a geodesic active contour. Active contours are a very
popular technique that evolves a closed curve or surface
through a combination of several forces, namely external
and internal forces, where the objective is to deform the
initial geometry until a total energy is minimized [82].
Even though active contours have widespread interest in
geometric analyses, the approach has several drawbacks.
First, the results obtained might not be significantly
associated with the desired boundary. Second, the topol-
ogy of a vessel’s structure might be different from the
original image. Therefore, the geodesic active contour
can solve the drawbacks, with improvements to the local
shape analysis and preservation of topology.

• Geometric active contour:This model is largely imple-
mented using level sets and has been extensively applied
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in medical image computing. An MRA segmenta-
tion using the level sets technique was proposed by
Farag et al. [75]. The level sets segmentation approach
solves a set of partial differential equations (PDEs) to
minimize an energy value, and can preserve the topology
and recovering shape. The disadvantage of the proposed
method is that no detail was provided on how many
initial points were used and how many branches were
extracted using this technique.

Statistical-based Compared with conventional cluster-
ing algorithms such as k-Nearest Neighbors and fuzzy
C-Means, the statistical model can naturally describe both the
homogeneity and heterogeneity of materials. A segmenta-
tion algorithm based on a statistical model was first intro-
duced by Wilson and Noble [83], [84] when they applied
an expectation-maximization (EM) algorithm to statistically
classify voxels into vessels or other brain tissue classes.
The algorithm could segment the structure of the cir-
cle of Willis (CoW) but had difficulties extracting ves-
sels with a small diameter. Based on this statistical model.
Hassouna et al. [85] divided voxels into vascular and non-
vascular classes. They used one normal distribution to
model the blood vessels, while the low-level process of the
background was modeled using one Rayleigh and two nor-
mal distributions. The parameters were estimated using an
EM algorithm, as this algorithm is sensitive to the initial
estimation. This model can accurately fit the overall inten-
sity histogram distribution of medical images; however, in
cerebrovascular segmentation, it can only overcome short
gaps and fill holes. Recently, Wen et al. [79] presented
an automatic statistical intensity-based approach to extract
cerebrovascular structure. They found that the proposed
algorithm, called the particle swarm optimization (PSO)
algorithm, was faster and more robust than traditional algo-
rithms such as EM and stochastic models. It was also capable
of accurate segmentation of small-sized blood vessels.

A whole brain blood vessel model was reconstructed from
a 3T MRA image by Nowinski et al. [86], but the utility
of the model for predicting diseases such as stroke was
not evidenced. Furthermore, the model was inaccurate and
imprecise, because the length and angles did not match when
compared with the real distances of each artery in the brain.
Such a blood vessel model can be improved by retrieving
the image from PC-MRA to validate the accuracy, as intro-
duced by El-Baz et al. [66], thus allowing representation of
a more accurate 3D blood vessel system. Their study used
a statistical-based approach to obtain an accurate extraction
of a 3D cerebrovascular system obtained from TOF-MRA or
PC-MRA. El-Baz et al. [66] claimed that the approaches used
in the study were more accurate than those of Gao et al. [67].
Hybrid vessel segmentation Hybrid approaches com-

bine two or more techniques to achieve segmentation.
Jian and Amini [87] combined the three techniques of multi-
scale filtering, level set methods, and deformable geometric
modeling, to achieve automatic and accurate quantification
of vessel structures from 3D MRA images. Bullitt et al. [24]

segmented vessels by defining seed points for automatic
extraction of image intensity ridges representing a vessel’s
central skeleton. The advantage of this technique is that it can
link disconnected vessels from low-intensity images. A dis-
advantage of the method is it use many seed points, which
will be picked manually at the beginning of the process.

Flasque et al. [25] proposed a method for detection, rep-
resentation, and visualization of the cerebral vascular tree
on MRA images. The vessel centerlines were modeled by
second-order B-splines to obtain the complete description
of the vascular networks. The vascular tree was built by
iteratively tracking the centerlines of vessel on candidate
voxels. The candidate voxels were selected by combining
intensity correction, diffusion filtering, and region growing.
The method could only provide topological information, not
morphological, as it was unable to measure parameters such
as diameter and cross section. The method was also only able
to extract the main vessels. Moreover, a fixed thresholding
selection in the process may restrict its application.

4) FEATURE EXTRACTION
Understanding the features for blood vessels analysis is
very crucial steps. An accurate measurement of the fea-
tures will meaningfully represent the information that we
want to gather for further analysis. Several attributes or
parameters [88], [89] used by physicians to diagnose vascular
diseases are:
• Blood vessel morphology: The shape of blood vessels
and the interrelationships between them are the basic
information used to detect eventual anomalies. Blood
vessels provide evidence of cerebrovascular disease
regarding changes in diameter, branching angles, or tor-
tuosity. Previously described preprocessing and segmen-
tation techniques are used to increase the quality of
the images to facilitate the accurate extraction of blood
vessel structure.

• Diameter: The diameters of vessels’ cross sections are
used to detect malformations that may form constraints
to stent-path planning. There are limitations on how
wide a diameter to consider for the stent’s path, as there
are various sizes of the stent device.

• Velocity: Blood velocity varies in different regions
because of the multiscale structure of vessels. More-
over, the differences are measured to identify regions
with stagnancy, which can indicate abnormal vascular
regions. The blood flow near occluded areas tends to
change from laminar to turbulent flow. This is because
the direction of blood flow is changed by obstructions
ahead. Therefore, there is a possibility that velocity
changes in the blood vessels are caused by an abnormal-
ity inside the vessels.

• Blood Pressure: Cerebrovascular disease is caused by
many factors, which include hypertension. The pressure
of the blood, which is related to its velocity, enables the
detection of hypertension in zones with an obstruction.
Higher blood pressure may affect the stent’s path, as it
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can affect the stability of the device. This may be taken
into consideration to reduce the risk of the device collid-
ing with the wall of the vessels.

• Tortuosity: Tortuosity is defined as twists and turns to
vessels, where the abnormality in the vessels may affect
the level of tortuosity. There are three types of tortu-
osity metric that can be measured: the distance metric,
infection count metric, and sum of angles metric [90].
Tortuosity is measured to specify the level of disease
severity related to the vasculature. More twisted vessels
indicate that disease is more severe.

The above attributes are important for diagnosis purpose.
These can be measured either using image-based, mathemat-
ical, or hybrid modeling method. Mathematical and hybrid
modeling are discussed in detail in Section II.B and II.C,
respectively.

Quantitative analysis of the above attributes can be
obtained after blood vessel reconstruction. Diameter and
velocity are obtained by averaging results of multiple adja-
cent extracted blood vessel velocity profiles [91]. Another
relevant parameter such as blood flow, wall shear stress can
be calculated based on the quantified diameter and veloc-
ity. Besides, there are many approaches in measuring the
diameter of vessel and majority of them are using skeleton
method. The method by Sukanya et al. [92] skeletonize the
vascular structure then map the vessel boundary to obtain
the branching point, the end point of the vessel, and ves-
sel width or diameter. The proposed method is better when
compared with manual measurement, and the errors are
less than 0.1%. Sankowski and Materka [93] use a similar
method in Zhou et al. [94] with a slightly different approach
but based on binary ball structuring element. The ball is
located at the center line in vessel image with an initial
smallest radius ball. It will grow until the ball contains a
background voxels. Vessel diameter then will be computed
based on some iteration and percent of voxels in the last iter-
ation. Tortuosity of vessels can be evaluated using tortuosity
metrics.

The most common method is using the distance
metrics [96] which provides a ratio of the actual path length
to the linear distance between curve endpoints. Bullitt and
Guido [90] provide the abnormal type of tortuosity consist
of type I until type III. Type I occur when vessels elongate
so that a normally straight vessel started to curve. Type II
occur in the presence of highly vascular tumors and
type III appear in malignant brain tumors when imaged by
high-resolution MR.

The other attributes or parameters like velocity, blood
pressure, and blood flow may be extracted during seg-
mentation process by mathematical modeling techniques in
Section II.B.

B. MATHEMATICAL MODELING
Mathematical models are used to analyze the structure
of blood vessels in human organs computationally. The
mathematical model is usually based on assumptions made

for certain conditions, such as blood is assumed to be
a time-dependent viscous incompressible fluid [21], homoge-
neous Newtonian fluid [16] as the density of blood remains
nearly constant. There are also several types of boundary
conditions, such as pressure boundary conditions, which may
affect the flow distribution in bifurcations.

The basic theory of arterial trees follows the concept of
graph theory. A graph, G = (V ,E) consists of nodes,
V which represent the branching points of the vascular map,
while the edgesE that connect each branching point are called
segments. The branching systems of vascular structures are
characterized by their fractal nature, which results in a self-
similarity and bifurcation pattern [97]. This fractal nature
employs Horton-Strahler’s order to describe the structure
of human arterial trees [15], [98]. The Strahler order was
originally devised to classify river networks, although it can
be applied to vascular trees with the arterial bifurcations
corresponding to river tributaries, although it does require
some modifications, such as blood flow is in the opposite
direction to water flow.

Zamir [99] used an L-System Branching Model (LSBM)
to generate tree structures incorporating a branching law.
The results show that the branching structure patterns of
arteries can be mimicked by LBSM if appropriate branching
parameters are chosen. However, LBSM could not reproduce
all the branching characteristics of arterial trees because of
the chosen value of the asymmetry ratio. Conservation of flow
rate at the bifurcation follows a cube law, where flow rate
in the parent vessel equals the sum of flow rate in the two
branches (refer to equation 1).

d30 = d31 + d
3
2 (1)

Where the variables d0, d1, and d2 indicate a measurement of
diameter as in Fig. 7. The diameter ratios can be defined in
term of α in equation 2

λ1 =
d1
d0
=

1

(1+ α3)
1
3

, λ2 =
d2
d0
=

α

(1+ α3)
1
3

. (2)

The ratio of branch length to the length of the parent vessels
at the bifurcation is another important parameter to consider.
There is no standard way of determining the ratio, but biologi-
cally, the length of a vessel segment has a relationship with its
diameter. Smaller diameter indicates shorter length and vice
versa. The ratio of branch length, γ for the two branches, can
be defined as

γ1 =
l1
l0
=
d1
d0
= λ1, γ2 =

l2
l0
=
d2
d0
= λ2. (3)

Finally, the defined angles, θ1 and θ2, complete the
arterial bifurcation structure. The angles can be defined
as

cos θ1 =
(1+ α3)

4
3 + 1− α4

2(1+ α3)
2
3

, cos θ2 =
(1+ α3)

4
3 + α4 − 1

2α2(1+ α3)
2
3

(4)
Later, a technique called constraint constructive optimiza-
tion (CCO) [14], [15], [32], [33], [100]–[104] was adapted
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FIGURE 7. The theory of mathematical modeling approaches for arterial tree bifurcation area.

to the fractal scaling concept [99], [105] to produce fractal
tree structures. This method involves geometric and structural
optimization, which minimizes the total volume of blood
vessels and ensures uniform blood perfusion in the designated
domain. The arterial tree is generated without the input of
anatomical data, for example, from the images from MRA,
CTA, or another imaging modality, where it starts from the
main artery that supplies blood to the smaller arteries. The
advantage of CCO is that the method allows the generation
of arterial tree models with many vessel segments (about
104 in number), although accuracy remains a challenge. Fur-
thermore, CCO trees display realistic vessels and reproduce
the properties of real arterial trees, such as branching angle
statistics, diameter ratios of parent and daughter segments,
and the volumes of large arteries quite satisfactorily [103].
CCO also follows the bifurcation law in equation 1, and the
vessels are generated in a circular area with a radius rperf that
is assumed to represent the tissue or perfusion area. The total
perfusion flow, Qperf is assumed to enter the root segment at
a constant pressure, pperf and it requires to deliver equal flow
for all terminal segments, Nterm.

Qterm = Qperf /Nterm, (5)

where Qperf = pperf − pterm is the total perfusion flow across
overall pressure drop.

Flow models using fractal techniques may consider the
distribution of pressure and velocity in a vascular branching
network and the hydrodynamic resistance, Rj of each seg-
ment, j is given by Poiseuille’s law

Rj =
(
8η
π

)
lj
r4j
, (6)

These can be obtained by solving a system of ordinary dif-
ferential equations (ODEs) describing the flow conservation
at bifurcation points [33]. Cebral et al. [21] also generated
cerebral arterial trees using an image-based CCO method
as in Karch et al. [17], [103], with the trees exhibiting
geometrical properties such as bifurcation angles, area and
symmetry ratios, and branch diameters. The results showed
good agreement with the real vascular system.

Arteries can be modeled as tree-like structures with blood
flowing from the largest to the smallest artery. Hence,
Schreiner [100] and Neumann et al. [106] developed a 2D
arterial tree model. Their studies found that the segment
diameters and branching angles were in good agreement
with the real structure of the human heart. A 2D model is
not fully reliable in medical applications. Therefore, with
consideration of this limitation, Karch et al. [16] constructed
a 3D model of the arterial tree structure of hemodynamic
simulation studies. Recently, Blanco et al. [104] also used a
computational approach to generate the arterial network in
each separately partitioned vascular territory to avoid over-
lapping. For example, the brain is divided into four lobes
(frontal, parietal, occipital and temporal lobe), and there are
three arterial networks that supply each lobe; these are specif-
ically named as the anterior cerebral artery (ACA), middle
cerebral artery (MCA), and posterior cerebral artery (PCA).

Alastruey et al. [28] utilized a 1D equation of pressure
and flow wave propagation to investigate the behavior of
blood flow when a part of a blood vessel was missing. This
study found that the anterior communicating artery (ACoA)
is a more important path than the posterior communicating
artery (PCoA) when the ICA is occluded. The equation also
provided physiological data such as the length, radius, and
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TABLE 5. Summary of segmentation methods.

thickness of arterial segments from the aortic arch to the
intracranial arteries. The method used was able to predict the
hemodynamic effect of clinical interventions such as carotid
endarterectomy, angioplasty, and stenting. It would have been
beneficial if this study had included sufficient experimental
confirmation of their findings for validation and accuracy
purposes.

In 2013, Galarreta-Valverde et al. [7] used the stochastic
L-system (SLS) to generate arterial structure by incorporating
stochastic and parametric rules that can be used to simulate
CTA and MRA datasets. The authors attempted to produce a
realistic-looking synthetic arterial tree in 3D by taking into
account the arbitrary surface as a physical constraint. The

results were visually very convincing, with them resembling
images from CTA orMRA. However, it would be improved if
there was an additional constraint added like tortuosity level,
which might be very important for diseased arteries.

Hamarneh and Jassi [107] introduced VascuSynth with an
algorithm similar to the CCO method. VascuSynth produces
a simulation of a realistic vascular tree structure but does not
provide the specific human organ. However, it does give an
insight into how an algorithm capable of producing a cerebral
blood vessel model could be implemented.

The reconstruction of artificial vessels using a mathe-
matical model offers advantages such as lower acquisition
time, lower cost, and the flexibility to create vessels with
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TABLE 6. The summary of mathematical modeling techniques.

different growth configurations and the possibility to incor-
porate anomalies [7]. Besides which, the synthetic vessels
could also contribute to the simulation of surgical techniques.
Downsides of the method include inaccuracies and that it
lacks information from real data, although it can preserve the
geometrical structure of blood vessels. The source of the vari-
ables used for the parameters is also unknown. Table 6 sum-
marizes the mathematical modeling techniques.

C. HYBRID MODELING
The distinction between mathematical and hybrid model is
a mathematical model using several mathematical laws and
assumptions to reconstruct vessel tree. Meanwhile, the hybrid
modeling combines two or more methods such as image-
based and mathematical model such as computational fluid
dynamics (CFD) [3], [11], [109], [111], [112] and multiscale
modeling of cerebral blood flow [32], [33] to reconstruct
blood vessel structures. The information from the recon-
structed vessel will be used as a perfusion site or bound-
ary conditions for CFD simulation. It can provide detailed
predictions of hemodynamics using input parameters derived
from medical imaging, blood sampling, and other patient
information. Computational fluid dynamics has become a
practical and reliable tool for the study of time-varying
3D blood flow behavior in complex arterial geometries.
CFD has been used by many groups to investigate possible
correlations between hemodynamics and the risk of rup-
ture or growth of intracranial arteries.

Bui et al. [34] conducted a study that facilitates a frac-
tal approach to reconstruct brain blood vessels including

small blood vessels. The study employs a concept of CCO
(refer II.B) to develop the optimized structure by combining
with a generated surface of brain tissue using a level sets
method from CT or MRI as a staged growth perfusion site.
The vascular simulation will only occur inside the brain
tissues area.

The computational modeling of blood flow in complex
vascular models can help researchers to quantify the relation-
ships between hemodynamic changes and the path used to
insert a stent. It is essential to understand the hemodynamic
changes occurring in aneurysms and arterial stenoses, for
both their diagnosis and their treatment. Blood flow direction
within arteries can be considered as a constraint to the stent-
path, as the blood flow will alter its direction if there is a
blood clot obstructing the arteries. Changes in the topology
and geometry of the vascular tree may also directly impact
the risk of later severe clinical events such as ischemic and
hemorrhagic stroke. The stability of the hemodynamic pattern
post-stenting is linked to the success of the stenting proce-
dures [22], [23] because the stent inserted into a blood vessel
will divert the flow from entering the aneurysm. It can reduce
the pressure inside an aneurysm and minimize the likelihood
of post-treatment rupture [113].

Cassot et al. [114] conducted a study to investigate how
changes in the diameter of arteries may affect the circulation
inside the brain. They found that small changes in diameter
may induce a dramatic pressure drop in cerebral vascular ter-
ritories. In their study, they focused more on the CoW, as it is
the main source of collateral flow to the brain. The advantage
of using a linear mathematical model was that its computation
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TABLE 7. The summary of hybrid modeling techniques.

time was very low and that it might be an accurate assess-
ment tool for cerebral hemodynamics in carotid disease. The
dynamics of blood flow in the human brain are determined
by a complex network of vessels, especially in the CoW area,
because in many cases the CoW is incomplete or missing an
arterial segment. Therefore, studies [31], [115]–[117] have
been conducted to examine patient-specific blood flow.

In recent years, there have been many attempts to investi-
gate the blood flow in the CoW, because this circle connects
the internal carotid arteries with other cerebral arteries, and
the CoW is a common location for aneurysms. The impor-
tance of the CoW has been demonstrated by many stud-
ies [21], [28]–[30], [114], and the blood pressure and velocity
are determined by the completeness or incompleteness of
the circle [28], [29]. Cebral et al. [21] investigated blood
flow models of the CoW from MRA surface reconstruction.
This work combines an image-based method such as tubular
deformable model, and the flow velocity was computed using
CFD simulation. The final surface triangulation is used as a
support surface to define the computational domain whereby
a hybrid method is used to develop patient-specific mod-
els of the cerebral circulation. The hybrid method included
anatomical and physiological imaging techniques with com-
puter simulation technology. However, the remaining chal-
lenge for this physiologic technique was that the material

properties of the arterial wall and physiologic pressure wave-
forms that drive the wall motion were difficult to measure
non-invasively. Therefore, the use of a hybrid method to
describe the blood flow appeared promising.

Blood vessels are modeled mathematically to identify their
direction. In engineering fields, CFD is also used to simulate
blood flow in arteries, stented vessels, and vascular disease,
but this is limited to only one or two arteries [118], [119].
Therefore, the work by Grinberg et al. [30] enhances the
technique to investigate features for different levels of vessel
networks, although it requires high amounts of computer
processing power to reduce the time required for generation
of the results. They provide a review of some issue to recon-
struct a 3D image from MRA and CTA using CFD model.
Anor et al. [115] also provide a review of models for blood
flow and effective numerical methods for performing large-
scale simulations. They focused on simulations in large arte-
rial networks, such as the intracranial tree.

Grinberg et al. [29] studied blood vessel simulation in large
arteries. The flow simulation may replace the dye injection
procedures currently used for visualizing blood flow, as injec-
tion of dye is an invasive procedure. The work is divided
into two stages, with the first stage concerned with recon-
structing vascular networks from a combination of medical
images obtained from CT, DSA, and MRA. The purpose of
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TABLE 8. Advantages and disadvantages of the different reviewed modeling techniques.

processing the medical data was to obtain information such
as boundary conditions, velocity, and the resistance of blood
flow for use in CFD simulations. The second stage was to
incorporate all the information gathered in stage one into
several numerical models designed to visualize the blood
flow. The results show the development of strong secondary
flows in the communicating arteries and internal carotid
artery (ICA), for both complete and incomplete CoWs. This
provides a new direction in the diagnosis of vasculature disor-
ders by patient-specific information, especially for a patient
with an incomplete CoW. Table 7 summarizes the hybrid
modeling techniques.

III. COMPARISON OF THE MODELING TECHNIQUES
This paper has discussed modeling techniques and classified
them into three groups based on the different algorithms
employed in the techniques. Therefore, this section will pro-
vide an overall comparison of the three modeling classes,
namely image-based modeling, mathematical modeling, and
hybrid modeling, as depicted in Table 7.

Reconstructing blood vessels from medical images is dif-
ficult due to the complex nature of cerebral vessels. It can be
more tedious for low-resolution images. Therefore, in image-
based modeling, many techniques have been developed to
deal with many types of noise and artifact within the images.
As these approaches deal directly with the images from
XA, CTA, or MRA, the results are more accurate than

mathematical modeling approaches. Thus, the hybrid model
can result in better accuracy, as it employs features from
both modeling techniques to reconstruct models of cerebral
vessels. For example, tortuosity may complicate the image
processing part, but this feature is difficult to reproduce using
a mathematical approach. Therefore, the vessel structure may
be completed by combining both types of information.

Image-based modeling can be applied to assist clinicians in
diagnosing disease by providing accurate reconstructions of
vessels, while mathematical modeling can generate synthetic
arterial structures that can be used for surgical simulations.
By incorporating both modeling techniques, hybrid modeling
may produce a reliable diagnosis and surgical planning tool
for clinicians.

IV. OPEN ISSUES
The challenges of reconstructing cerebral vessel models have
given rise to a tremendous amount of research on modeling
techniques, such as providing the fastest and most robust
algorithm. Mathematical modeling may be inaccurate at first,
but by incorporating information obtained from medical
images, it may become the most accurate model for cerebral
blood vessels. Construction of a blood vessel model is impor-
tant to enable the clear visualization of abnormal structures in
cerebral vessels, in either 2D or 3D projections, especially
for surgical planning. The future direction of this research
will be towards developing faster, more accurate, and more
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automated techniques for reconstruction of the vasculature so
that the shortest path for a stenting procedure can be more
reliably found.

To the best of our knowledge, little work has been per-
formed on finding the shortest path for stenting procedures.
Schafer et al [120] proposed a graph representation tech-
nique to calculate the shortest pathways for a guidewire in
a phantom of the carotid artery. The simulation results show
that their proposed algorithm yielded a good agreement with
the actual guidewire path. However, this work was limited to
only the carotid artery, while this study will accommodate the
whole structure of the cerebral vasculature. Suran et al. [70]
performed a study on finding the shortest path in the cerebral
vascular system, but it lacked information regarding the blood
vessels. Supposedly, there are several parameters that should
be taken into consideration, such as the vessel centerline, the
diameter of the corresponding vessel, and tortuosity [120].
Non-inclusion of these parameters will affect the accuracy of
the planning of the shortest path for stent placement.

Therefore, more research work should be performed to
combine cerebral vasculature information with the parame-
ters mentioned previously. It includes accurate and realistic
3D reconstruction of cerebral blood vessels to offer accurate
and reliable diagnosis and indicate the shortest path for stent-
ing procedures. It would then become a great tool for assisting
clinicians.

V. CONCLUSIONS
This paper has outlined three techniques, namely image-
based, mathematical, and hybrid modeling. The image-based
techniques were shown to be more accurate than mathemat-
ical modeling techniques, but we believe that incorporating
both techniques allows more satisfying results to be achieved.
Hybrid models provide a faster and more robust technique,
which can significantly help in diagnosis and surgical plan-
ning, such as finding the shortest path for a stenting proce-
dure. Faster analysis of medical images can be achieved by
developing a robust filtering and segmentation algorithm.

Faster segmentation can be achieved by employing
multiscale processing to cover the different sizes of blood
vessels [5]. Another way to achieve fast processing is
to implement a processing technique in high-resolution
images.

Accuracy in themodeling of cerebral vessels and definition
of the shortest path is vital for accurate diagnosis and surgical
planning. Implementation of hybrid modeling can help to
achieve both with increased accuracy. By taking advantage
of image-based and mathematical modeling, it is possible to
introduce new constraints, which can later be used for stent-
path planning.
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