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ABSTRACT NAND flash memory is a popular memory device that has many advantages such as high-
density, lightweight, shock-resistance, non-volatile, and low-power features. Although NANDflash memory
has many attractive features, it still has several limitations due to its architectural characteristics, such as
out-of-place update, erase-before-write feature, and limit of erase count. Therefore, various flash translation
layers (FTLs) have been proposed to handle the characteristics. An FTL consists of three main functions,
such as address translation, garbage collection, and wear-leveling effect. In order to facilitate developers to
realize and design the main functions of FTLs, we propose a component-based view to rethink the design
of FTLs. With the component-based view, developers can replace inappropriate components to form a new
FTL and dynamically replace the present FTL. Therefore, we also propose the transformation of FTLs to
adaptively transform a present FTL to a suitable one. In the experiments, we can demonstrate that the revised
FTL (by replacing some components) can improve its original performance and the transformed FTL can
also improve the performance under the current workload.

INDEX TERMS Component-based design, NAND flash memory, flash translation layers, non-volatile
storage systems.

I. INTRODUCTION
Recently, NAND flash memory has become one of the
most popular storage devices due to its non-volatility, shock-
resistance, small-size, and low-power advantages. The advan-
tages also cause NAND flash memory to be widely used
in various embedded systems, general computing systems,
and consumer devices such as digital cameras, smart phones,
laptops, and servers. According to the datasheet [1] of NAND
flash memory, a NAND flash memory package consists
of dies, planes, blocks, and pages. One die contains two
planes, each plane contains 2,048 blocks, and each block
contains 128 pages and 4,314 byte page register. The multi-
die architecture allows the package to perform simultaneous
page programs and block erases in each die. For example,
two-plane page programs (or block erases) can be executed
simultaneously for Plane 0 and Plane 1 in Die 1. Although
NAND flash memory has a lot of advantages, NAND flash
memory has its architectural restrictions. For example, one
page in NAND flash memory cannot be overwritten until
its residing block is erased first. The update data should be
written to other free pages (i.e., out-of-place update), and the

old pages would become invalid. The address mapping from
logical addresses to physical addresses of the valid pages is
required to record the up-to-date data. After a certain number
of page writes, free pages in flash memory would become
insufficient. Then, the activities of garbage collection (that
consists of a series of read, write, and erase operations) will
be performed to recycle the invalid pages. After a certain
number of block erases, some blocks may wear out and can
be considered as bad blocks due to the disruption of the oxide
layer of transistors. To reduce bad blocks, erase operations
should be evenly distributed over the entire flash memory to
improve the lifetime of NAND flash memory. This is also
known as the wear-leveling effect. Unlike conventional hard-
disk drives, NANDflashmemory needs specificmanagement
for the architectural restrictions. Therefore, a flash translation
layer (FTL) is proposed to emulate as a block-device emula-
tion to manage the characteristics of NAND flash memory.

FTLs can be divided into a page-mapping FTL, a block-
mapping FTL, and a hybrid-mapping FTL. A page-mapping
FTL provides direct and flexible storage management. It has
less garbage collection overhead and high space utilization,

VOLUME 5, 2017
2169-3536 
 2017 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

12895



C.-H. Wu et al.: Rethink the Design of FTLs in a Component-Based View

but it requires large main memory to record its page-mapping
information. A block-mapping FTL has smaller main mem-
ory requirements than the page-mapping FTL because it only
records the block-mapping information. However, a block-
mapping FTL may cause large garbage collection overhead
and long address translation time. In order to utilize the
advantages of the page-mapping FTL and the block-mapping
FTL, a hybrid-mapping FTL is proposed to store data to the
most appropriatemapping scheme by switching data and their
mapping information between the page-mapping scheme and
the block-mapping mechanism. In recent decades, a lot of
well-organized flash translation layers have been proposed
to improve the performance and reliability of NAND flash
memory. However, in the paper, we want to rethink the
design of the current mainstream flash translation layers in
a component-based view. We define five types of compo-
nents to cover the design of the current mainstream flash
translation layers such as address translation, garbage col-
lection, and wear-leveling effect. Each type of components
denotes a specific function in the development of flash trans-
lation layers and could be triggered by some specific events.
The five components contains data organization, data map-
ping, data clustering, data recycling, and data space man-
agement. With the component-based view, developers can
replace inappropriate components and redesign a proper flash
translation layer to dynamically replace the present flash
translation layer. Therefore, we also propose the transfor-
mation of flash translation layers to adaptively transform a
present flash translation layer to a suitable one. In the experi-
ments, we can demonstrate that the revised FTL (by replacing
some components) can improve its original performance and
the transformed FTL can also improve the performance under
the current workload.

The remainder of the paper is organized as follows:
Section II provides background knowledge on address
translation, garbage collection, and wear-leveling effect.
In Section III, we explain the motivation for our approach.
In Section IV, we propose a component-based view to rethink
the design of flash translation layers. In Section V, we explain
the experimental setup and present the results. Section VI
contains our concluding remarks.

II. BACKGROUND KNOWLEDGE
An FTL contains three main functions: address translation,
garbage collection, and wear-leveling effect. Address trans-
lation handles the address mapping from logical addresses
to physical addresses. In garbage collection, it will select
the suitable victim block to erase for releasing a free block.
Wear-leveling effect is to improve the lifetime of each block
by reducing each block’s erase count as much as possible.
We briefly introduce the address translation, garbage collec-
tion, and wear-leveling effect [2], [3] in the following:

A. ADDRESS TRANSLATION
Because of the out-of-place update, address translation
should maintain a mapping table to manage the address

FIGURE 1. Address translation.

mapping from logical addresses to physical addresses of the
up-to-date data. The main purpose of the mapping table can
map a logical address of a logical region to a physical address
of a physical set, as shown in Fig. 1. Because the mapping
table could be updated frequently, it can be maintained in the
main memory space for efficiency. Currently, there are three
mapping methods: a page-mapping FTL, a block-mapping
FTL, and a hybrid-mapping FTL.

In the page-mapping FTL, each page in a block can map to
a logical address. When the logical address is overwritten,
the content of the logical address will be written to a free
physical page, and the original page will become invalid.
Then, the mapping table should be updated to reflect the
new address mapping. Because the page-mapping FTL can
fully utilize any pages in a block, it can provide good space
utilization and reduce the garbage collection overhead. How-
ever, the page-mapping FTL could require large mapping
information and occupy large main memory space. In order
to reduce the main memory space, a demand-based page-
mapping FTL (DFTL) is proposed. DFTL maintains two
kinds of physical space in flash memory that are data blocks
and translation blocks. Data blocks store the general content
of read/write requests. Translation blocks store the complete
information of the page-mapping table. DFTL can maintain a
small page-mapping cache in the main memory space for the
address mapping of the frequently used read/write requests.
When the information of the address mapping cannot be
found in the page-mapping cache (i.e., cache miss), DFTL
needs to synchronize the translation blocks and the page-
mapping table/cache, and the related translation pages should
be read from the translation blocks in flash memory. If the
page-mapping cache frequently misses, DFTL will cause
higher response time to execute the read/write requests.

In the block-mapping FTL, each logical address in the
mapping table can map to a physical block for reducing the
size of the mapping table. When the block-mapping FTL
receives a request from the file system, the request’s logical
address can be divided by the number of pages in a block
to get a logical block address (i.e., the quotient) and a page
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FIGURE 2. Merge operation. (a) Switch merge. (b) Partial merge.
(c) Full merge.

offset (i.e., the reminder). With the logical block address and
the page offset, the address of its corresponding physical
block can be maintained by a block-mapping table. Although
the block-mapping FTL can reduce the size of the mapping
table, it could cause poor space utilization, high garbage col-
lection overhead, and long address translation time. NFTL [4]
represents the typical block-mapping FTL and DAC [5] rep-
resents the on-demand block-mapping FTL.

In the hybrid-mapping FTLs, the physical blocks in the
flash memory are partitioned into data blocks and log blocks.
Data blocks store the initial data by the block-mapping
method. Log blocks store the update data by the page-
mapping method.When all log blocks are exhausted, garbage
collection will be triggered for recycling the invalid pages
of data or log blocks. Because the up-to-date data could be
stored in data blocks and log blocks, three kinds of merge
operations [6] (i.e. switch merges, partial merges, and full
merges) are proposed in the hybrid-mapping FTLs, as shown
in Fig. 2. A switch merge is executed when a data block
can exchange with a log block. A switch merge is the most
economical merge operation, because it only needs one block
erase to generate a free block. A partial merge is executed
when a log block can become a new data block by copying
the valid pages from the corresponding old data block. A full
merge is executed when a data block and its corresponding
log block(s) are merged to a new data block by copying the
valid pages. A full merge is the most heavy merge operation,
because it needs two block erases to generate a free block.
Therefore, the association between the data blocks and the log
blocks is an important design issue for the hybrid-mapping
FTLs.

B. GARBAGE COLLECTION
When the free space of flash memory is not enough, the activ-
ities of garbage collection will be performed to erase blocks.
To find a suitable victim block, the best policy is to find
a block without any valid pages. However, if there are no
such blocks, the victim block may contain some valid pages.
If we want to recycle a block with some valid pages, the valid
pages should be copied out to a free block. Hence, the typical
activities of garbage collection contain the following steps:

• Step 1: First, if garbage collection is triggered. it will
select a block (i.e., a victim block) for recycling.

• Step 2: Then, if the victim block has some valid pages,
the valid pages should be copied out to a free block.

• Step 3: Erase the victim block and update the mapping
information of the mapping table.

• Step 4: The selected victim block now becomes a free
block after recycling. If the free space is still not enough.
Go to Step 1.

To make sufficient free space, the activities of garbage
collection could perform many times and cause a lot of read,
write, and erase operations. Furthermore, if the victim block
contains many valid pages, the recycling cost would be very
high and degrade the flash memory performance. Therefore,
how to intelligently select an appropriate victim block is very
important. In fact, many algorithms have been proposed to
handle the activities of garbage collection, as shown in the
following:

1) THE GREEDY ALGORITHM
The greedy (Greedy) algorithm [7] selects a victim blockwith
the minimum valid pages. The greedy algorithm can mini-
mize the overhead of valid pages copied during the garbage
collection. However, the greedy algorithm does not consider
the wear-leveling effect of flashmemory and could over-erase
a block with the minimum valid pages. This could damage
the lifetime of flash memory and cause unreliable issues.
In fact, the greedy algorithm can perform well for the random
accesses, because the random accesses could cause the invalid
pages evenly over the whole flash memory..

2) THE COST-BENEFIT ALGORITHM
The cost-benefit (CB) [8] algorithm evaluates the weighting
value of each block with its cost and benefit, and selects the
block with the largest weighting value as a victim block. The
weighting value is defined by a formula about age ∗ 1−u

2u ,
where agemeans the time since the most recent modification
per block and u means the utilization of valid pages in the
block. Therefore, CB could reduce the overhead of valid
pages copied by selecting a victim block with a small per-
centage of valid pages. On the other hand, if a block haven’t
been recycled for a long time, CB could choose this block by
the age feature and force it to erase. This could eventually
improve the wear-leveling effect. However, CB doesn’t con-
sider the erase count of each block. Thus, a block with less
erase count may not be selected such that CB could cause the
unbalanced average erase count for all blocks.

3) THE COST-AGE-TIME ALGORITHM
The cost-age-time (CAT) algorithm [9] selects a victim block
with the smallest weighting value whose definition is a
formula ( u

(1−u) ∗
1
age ∗ CT ). CT denotes the erase count

of a block, and the definitions of u and age are similar
to CB. CAT focuses on reducing garbage collection overhead
by considering the percentage of valid pages in a block
and improves the wear-leveling effect by considering the
age feature and the erase count (e.q., CT ) of each block.
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Furthermore, CAT can perform data redistribution to classify
hot and cold data by writing them to different blocks for the
wear-leveling effect.

4) THE HOT-COLD SWAPPING ALGORITHM
The hot-cold swapping (HC) algorithm [10] selects a victim
block with the smallest weighting value whose definition is
a formula (1− λ)ui + λ(

εi
εmax+1

). ui denotes the utilization of
valid pages of block i, εi denotes the erase count of block i,
εmax denotes the maximum erase count of block max, and
λ is the wear-leveling weighting ratio that is between zero and
one. Thus, HC considers both the cleaning cost and the erase
count of each block when selecting a victim block. Moreover,
HC writes hot data to blocks with the low erase count and
writes cold data to blocks with the high erase count for the
wear-leveling effect. For example, if the difference between
a block (with the minimum erase count) and a block (with the
maximum erase count) is larger than a threshold, HC would
swap two blocks’ data for the wear-leveling effect.

C. WEAR-LEVELING EFFECT
Because the maximum erase count of each block of flash
memory is limited, a wear-leveling algorithm is proposed to
evenly distribute erase operations over flash-memory devices
and avoid wearing out cells more quickly than others. There
are two kinds of wear-leveling algorithms: a dynamic wear-
leveling algorithm and a static wear-leveling algorithm. The
dynamic wear-leveling algorithm only distributes the written
data to the blocks that have less erase count, but doesn’t
actively move data (that have not been accessed) to other
blocks. In fact, there could exist a lot of blocks that have
not been accessed because most I/O accesses could focus
on some specific and small regions. Therefore, the dynamic
wear-leveling algorithm could result in some blocks that will
not be erased for a long time and cause uneven erase count
for all blocks. On the other hand, the static wear-leveling
algorithm is proposed to actively move data (that have not
been accessed) to those blocks that could have high erase
count for the wear-leveling effect. As a result, the static
wear-leveling algorithm can provide better reliability than
the dynamic wear-leveling algorithm but could cause more
overhead in data movement. In particular, the cost-age-time
algorithm and the hot-cold swapping algorithm are static
wear-leveling algorithms. Some works [11]–[13] focus on
the self-healing NAND flash memory from the wear-leveling
aspect by providing an early heating strategy to enhance the
reliability of flash memory and evenly distributing healing
cycles of flash-memory blocks.

III. MOTIVATION
The development of current flash translation layers has dif-
ferent research topics in terms of main memory requirements,
address mapping methods, garbage collection overhead, and
wear-leveling effect. For example, some papers have been
proposed to survey and introduce the related flash trans-
lation layers, such as Chung et al. [14], Ma et al. [15],

FIGURE 3. A huge-capacity solid-state drive should provide different
configurations of flash translation layers to maintain different partitions
with different workloads.

Subramani et al. [16], and Yang et al. [17] etc. They list
the characteristics of flash memory and clearly introduce the
design of the flash translation layers. However, in the paper,
we want to rethink the design of flash translation layers in
a component-based view by answering what are the possible
components, what are the advantages of the component-based
view, and what is the application of the component-based
view. After the possible components are extracted from the
kernel design of flash translation layers, we can use the com-
ponents to synthesize flash translation layers and furthermore
replace some components from a flash translation layer to
become a new flash translation layer. With advantages of
the component-based view, developers can provide different
configurations of flash translation layers inside an SSD and
adaptively transform a present flash translation layer to a
suitable one for different workloads.

As shown in Fig. 3, when the capacity of a solid-state
drive (SSD) grows rapidly, different file systems with dif-
ferent workloads could be built on different partitions of a
solid-state drive. Assume that three logical partitions (e.g.,
C:, D:, and E:) adopt FAT, NTFS, and Ext4 file systems
on a solid-state drive, and we propose that each partition
in the solid-state drive should use its own flash translation
layer. Different logical partitions with different workloads
could require different flash translation layers. For exam-
ple, if a logical partition is mainly responsible for a lot of
sequential writes and reads, the logical partition can adopt
a block-mapping flash translation layer with small write
buffer. If a logical partition is mainly responsible for a lot
of random writes and reads, the logical partition can adopt a
page-mapping flash translation layer with large write buffer.
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TABLE 1. Four software-defined flash translation layers.

In fact, the component-based view can provide different
configurations of flash translation layers to handle different
partitions with different workloads. In order to achieve the
goal, the future design of a flash translation layer inside an
SSD can build the related components of data organization,
data mapping, data clustering, data recycling, and data space
management in advance. When a logical partition is created
inside the SSD, users can ask some specific components to
form a specific flash translation layer for a specific workload
on the logical partition.

For example, we can build four software-defined flash
translation layers (i.e., FTL-a, FTL-b, FTL-c, and FTL-d)
inside a solid-state drive to handle different workloads,
as shown in Table 1. FTL-a can be used to handle a partition
with random writes, because the page-mapping method with
large access buffer can reduce the management and write
cost. FTL-b can be used to handle a partition with sequen-
tial writes, because the block-mapping method with small
access buffer could be sufficient to cope with the sequential
writes. FTL-c or FTL-d can be used to handle a partition with
random or sequential reads, respectively. The difference is
that FTL-d can adopt large access buffer to handle sequen-
tial reads because the pre-fetching mechanism can be used
to locate more data in the access buffer and improve the
performance.

IV. RETHINK THE DESIGN OF FLASH TRANSLATION
LAYERS IN A COMPONENT-BASED VIEW
In the paper, we propose a component-based view to rethink
the design of flash translation layers. We define five types of
components for the development of flash translation layers.
Each type of components denotes a specific function in the
development of flash translation layers and could be triggered
by some specific events. The five components can cover the
current mainstream development of flash translation layers,
as shown in the following:
• A component for data organization
• A component for data mapping
• A component for data clustering
• A component for data recycling
• A component for data space management
We also define three properties for each component such

as specificity, composability, and analyzability, as shown in
the following:
• Specificity: Each component has its specific function,
and we call it ‘‘specificity’’. For example, a component
for data mapping can handle the address mapping from
logical addresses to physical addresses, a component for

data clustering can handle the trigger condition and the
selection of victim blocks, and a component for data
space management can handle the management of free
blocks.

• Composability: Some components can cooperate with
each other to form a specific flash translation layer, and
we call it ‘‘composability’’. However, some features in
the components may cause conflicts with each other, and
they should be detected in advance during the develop-
ment of flash translation layers. Developers can do any
refinements to any components and customize any flash
translation layers according to their requirements.

• Analyzability: Each component should be able to be
analyzed, and we call it ‘‘analyzability’’. Developers
can define specific factors (such as the number of page
reads, page writes, and block erase) to analyze specific
components.

We need to emphasize that the objective of the paper is to
take the design of FTLs apart by a component-based view and
use the components with attributes to reconstruct new FTLs.
The component for data organization defines how flash mem-
ory are partitioned and organized. The component for data
mapping denotes the address mapping from a logical region
to a physical set. The component for data clustering denotes
how thewritten data from a logical region are clustered on dif-
ferent subsets in a physical set. In addition, the components of
data recycling and data space management are used to handle
the garbage collection and wear-leveling effect. Note that we
list the 5 components and 3 attributes, because they are main
parts by analyzingmost of the previous research papers. How-
ever, when technology makes further progress, computing
environment changes, or developers have different demands,
some components or attributes could be added or deleted
in a component-based view. Therefore, with the component-
based view, developers can provide different configurations
of flash translation layers inside an SSD to handle different
partitions with different workloads. When a suitable flash
translation layer is created by replacing some components,
we can adaptively transform a present flash translation layer
to a suitable one.

A. A COMPONENT FOR DATA ORGANIZATION
The component for data organization denotes howflashmem-
ory are partitioned and organized. Flash memory can contain
two areas for the storage of metadata and data. A metadata
area is used to store the house-keeping information for the
management of flash memory or to provide over-provision
space for the performance consideration. A data area is for
the storage of general information from the host system. The
main purpose of flash translation layers is in charge of the
metadata area and the data area. In the data organization of
the data area, a logical region can correspond to a physical
set, as shown in Fig. 4. A physical set could be a page or some
specific blocks of flash memory. For example, we can define
a logical region whose size is 2KB, and each logical region
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FIGURE 4. Data organization.

can correspond to a 2KB page. We can also define a logical
region whose size is 256KB, and each logical region can
correspond to 512KB physical space (i.e., 2 blocks, where
each block contains 128 pages and its size is 256KB). The
logical region and the physical set can flexibly represent
any combinations of software configurations and hardware
architectures, respectively. In fact, there is no the best data
organization for any access patterns. For random accesses,
a logical region that corresponds to a small physical set could
be suitable because we can collect the invalid pages (due to
random accesses) in the same block as much as possible. For
sequential accesses, a logical region that corresponds to a
large physical set could be suitable because the management
cost between a logical region and a physical set could be
reduced.We list the three properties of the component for data
organization in the following:

TABLE 2. Three properties of the component for data organization.

B. A COMPONENT FOR DATA MAPPING
The component for data mapping denotes the address map-
ping from a logical region to a physical set. For example,
the current mainstream mapping methods contain a page-
mapping method, a block-mapping method, and a hybrid-
mapping method. Assume that a logical region (lr) can be
mapped to a physical set (ps), and a physical set could
contain k subsets (ps1sub, ps

2
sub, ..., ps

k
sub), where each subset

denotes some physical space in flash memory, as shown
in Fig. 5. The address mapping from a logical region to
any physical subsets can adopt a page-mapping method,
a block-mapping method, or a hybrid-mapping method.
Regardless of any mapping methods, a key-value mapping
table is used to maintain the information of address map-
ping. In the key-value mapping table, key is used to index
a logical region and its corresponding value can denote all
possible physical addresses of a physical set. The key-value

mapping table can be maintained in the main memory space
for efficiency because a lot of updates to the mapping table
could occur.When themapping table is too large and themain
memory space is not enough, a part of the mapping table is
buffered in themainmemory space and the rest is stored in the
flash memory. A replacement algorithm should be proposed
for the purpose.We call the feature ‘‘partial buffering’’ for the
mapping table. For example, we can define three components
for data mapping in the following:

- Data Mapping
• dm1: A page-mapping method: It is the most flexible
mapping method, but could consume more main mem-
ory space for the large mapping table [18], [19].

• dm2: A block-mapping method: It can reduce the size of
the mapping table, but could cause significant overhead
of garbage collection [4], [5].

• dm3: A hybrid-mapping method: It combines the advan-
tages of a page-mapping method and a block-mapping
method, but also inherit the disadvantages of both map-
ping methods [20]–[24].

In fact, there is no the best data mapping for any access
patterns. For random accesses, a page-mapping method could
be suitable because we can flexibly keep track of any page’s
mapping information. For sequential accesses, a block-
mapping method could be suitable because the required
main memory space of the key-value mapping table could
be reduced. For a mixed random and sequential accesses,
a hybrid-mapping method can be used to take the advantages
of both page-mapping and block-mapping methods. We list
the three properties of the component for data mapping in the
following:

TABLE 3. Three properties of the component for data mapping.

C. A COMPONENT FOR DATA CLUSTERING
The component for data clustering denotes how the written
data from a logical region are clustered on different physi-
cal subsets in a physical set. For example, if the clustering
rule is to distinguish between the sequential accesses and
the random accesses, the sequential accesses and the ran-
dom accesses could be handled on different subsets, respec-
tively. If the clustering rule (e.g., [25], [26]) is to distinguish
between the hot data and the cold data, the hot data and the
cold data could be also placed on different subsets, respec-
tively. In fact, the clustering rules (e.g., [27]) have specific
purposes to improve the performance by placing specific
data on different space, as shown in Fig. 6. For example,
we can define four components for data clustering in the
following:
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FIGURE 5. Data mapping.

FIGURE 6. Data clustering.

- Data Clustering
• dc1: Distinguish data into the first written data and the
update data. The first written data and the update data
could be written to different space (e.g., data blocks and
log blocks), respectively [20]–[24].

• dc2: Distinguish data into the sequential accesses and
the random accesses according to the request size.
For increasing the chances of switch merges and par-
tial merges, the sequential accesses will be handled
by a block-mapping method. In addition, the random
accesses are handled by a page-mapping method to
improve the performance [21]–[23].

• dc3: Distinguish data into the hot data and the cold
data according to the access frequency (e.g., write fre-
quency). Because the hot data could cause more invalid
pages in a block than the cold data, we should collect
hot data in the same block for reducing the overhead of
garbage collection [5], [19], [22].

• dc4: Distinguish the mapping table into the frequently
used part and the infrequently used part according to
the feature ‘‘partial buffering’’ for the mapping table.
Some specific space (i.e., the metadata area) in flash

memory should be reserved to store the infrequently
used part of a mapping table [5], [18], [19]. The fre-
quently used part will be buffered in main memory space
for efficiency.

In fact, there is no the best data clustering for any access
patterns. Developers can design any suitable components for
data clustering to meet their requirements by maintaining
additional data structures and performing specific functions.
Therefore, the components for data clustering could cause
extra timing and space overhead on flash translation layers.
We list the three properties of the component for data cluster-
ing in the following:

TABLE 4. Three properties of the component for data clustering.

D. A COMPONENT FOR DATA RECYCLING
When the free space is not enough or some triggering con-
ditions are satisfied, the component for data recycling is
triggered. The triggering conditions usually contain two situ-
ations: a static triggering condition and a dynamic triggering
condition [28]. A static triggering condition means that the
garbage collection is triggered by checking the ratio of free
pages of flash memory. When the ratio of free pages is lower
than a fixed threshold, the garbage collection is triggered
and a victim block may be selected for recycling. However,
it is hard to choose a suitable threshold for a static triggering
condition. For example, the larger the threshold, the more the
erase operations are performed. The smaller the threshold,
the garbage collection is not triggered in time. Therefore,
a dynamic triggering condition is proposed to enhance the
flexibility and efficiency of garbage collection. A dynamic
triggering condition means that the garbage collection can
be triggered by dynamic thresholds, which are determined
by the running workloads. After the garbage collection is
triggered, a weighting function is used to select appropri-
ate victim blocks for erasing until the trigger condition is
unsatisfied. For example, a greedy policy is to select a victim
block with the minimum number of valid pages to reduce
the recycling cost but doesn’t consider the wear-leveling
effect. Therefore, how to smartly select a suitable victim
block is very important. As shown in Fig. 7 as an example,
we can define two components for the triggering condition
and four components for the selection of victim blocks in the
following:

- Triggering Condition
• drt1: A static trigger condition [28].
• drt2: A dynamic trigger condition [28].
- Selection of Victim Blocks
• drv1: A greedy policy [7] (in Section II-B.1).
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FIGURE 7. Data recycling.

• drv2: A cost-benefit policy [8] (in Section II-B.2).
• drv3: A cost-age-time policy [9] (in Section II-B.3).
• drv4: A hot-cold swapping policy [10] (in
Section II-B.4).

• drv5: A self-healing policy [11]–[13] (in Section II-C).
Regardless of any garbage collection algorithms, a key-

value recycling table is used to maintain the information of
garbage collection. In the key-value recycling table, key is
used to index a physical block and its corresponding value
can denote the related information for erasing the physical
block. The key-value recycling table ismaintained in themain
memory space for efficiency because a lot of updates to the
recycling table could occur. When the recycling table is too
large and the main memory space is not enough, a part of
the recycling table is buffered in the main memory space
and the rest is stored in the flash memory. A replacement
algorithm should be proposed for the purpose. We call the
feature ‘‘partial buffering’’ for the recycling table. In fact,
there is no the best data recycling for any access patterns.
Although a simple greedy policy can reduce a lot of the recy-
cling cost, it lacks the consideration of wear-leveling effect1

in the selection of victim blocks. Although a a cost-benefit
policy, a cost-age-time policy, or a hot-cold swapping policy
can consider the wear-leveling effect, they require additional
weighting calculation for each possible victim block and the
more main memory space for the recycling table. We list
the three properties of the component for data clustering in
the following:

TABLE 5. Three properties of the component for data recycling.

E. A COMPONENT FOR DATA SPACE MANAGEMENT
After the victim blocks are erased and become free blocks,
a component for data space management is required. The
component for data space management maintains a free block
list of flash memory to handle all free blocks. When a free

1Note that developers can implement a separate wear leveler somewhere,
even if the adopted algorithm does not consider the wear-leveling effect.

FIGURE 8. Data space management.

block is required to store data, the component will select a
suitable free block from the free block list. As shown in Fig. 8
as an example, we can define three components for data space
management in the following:

- Data Space Management
• dsm1: Select a free block from a free block list based on
an FIFO order [7], [8].

• dsm2: Select the youngest free block with the minimum
erase count [9].

• dsm3: Select a young or an old free block based on
hot or cold data, respectively [29].

In particular, dsm2 can consider the wear-leveling effect by
writing data to the free block with the minimum erase count.
dsm3 can not only consider the wear-leveling effect but also
reduce the garbage collection overhead by placing hot and
cold data on different blocks. However, dsm3 requires extra
data structures and functions to perform the identification
of hot and cold data. In fact, developers can design any
suitable components for data space management to meet their
requirements by maintaining additional data structures and
performing specific functions. Therefore, the components for
data space management could cause extra timing and space
overhead on flash translation layers. We list the three proper-
ties of the component for data clustering in the following:

TABLE 6. Three properties of the component for data space management.

F. COMPONENT-BASED ANALYSIS
Based on the component-based view, a flash translation layer
can consist of the components of data organization, data
mapping, data clustering, data recycling, and data space man-
agement. Therefore, the advantage of the component-based
view can help developers to replace inappropriate compo-
nents to improve the performance of the flash translation
layer. To demonstrate the advantage of the component-based
view, Table 7 shows the related components of data organiza-
tion, data mapping, data clustering, data recycling, and data
space management. In the components of data organization,
a logical region can correspond to a physical set that could
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TABLE 7. The related components of data organization, data mapping, data clustering, data recycling, and data space management.

TABLE 8. Component-based analysis of KAST.

contain some physical subsets such as pages or blocks. In the
components of data mapping, three components (such as
dm1, dm2, and dm3) are used to analyze the address mapping
from a logical region to a physical set. In the components
of data clustering, four components (such as dc1, dc2, dc3,
and dc4) are used to analyze the data clustering from a logical
region to a physical set. In the components of data recycling,
two components (such as drt1 and drt2) of the triggering
conditions and four components (such as drv1, drv2, adrv3,
and drv4) of the selection of victim blocks are used to analyze
the data recycling. In the components of data space manage-
ment, three components (such as dsm1, dsm2, and dsm3)
are used to analyze the free space management. Based on
the related components in Table 7, we use three well-known
flash translation layers (such as KAST, LAST, DAC, and
DFTL) as the analysis objective in terms of data organization,
data mapping, data clustering, data recycling, and data space
management, as shown in Table 8 9 11, respectively.

Table 8 shows the component-based analysis for KAST.
Because KAST divides the write requests into ini-
tial or update data, and further divides the update data
into sequential and random data, two components (i.e.,
dc1 and dc2) of data clustering are used in KAST. In data
organization, a logical region whose size is 128KB could
correspond to a physical set that contains a 128KB ps1sub
(i.e., a data block), or a 128KB ps2sub (i.e., a sequential log
block), or a 128KB ps3sub (i.e., a random log block). In data
mapping, ps1sub stores the initial data with a block-mapping
method (i.e., dm2), ps2sub stores the sequential update data
with a block-mapping method (i.e., dm2), and ps3sub stores
the random update data with a page-mapping method (i.e.,
dm1). In data recycling, KAST uses a static triggering condi-
tion (i.e., drt1) and a greedy policy (i.e., drv1) to select victim
blocks. In data space management, KAST uses a ‘‘‘FIFO’’
mechanism (i.e., dsm1) to maintain the free blocks.

Table 9 shows the component-based analysis for LAST.
LAST divides data into initial data, sequential update data,
and random update data. Moreover, LAST identifies the
data hotness in the random log block. Therefore, three

TABLE 9. Component-based analysis of LAST.

TABLE 10. Component-based analysis of DAC.

components (i.e., dc1, dc2 and dc3) of data clustering are
used in LAST. In data organization, a logical region whose
size is 128KB could correspond to a physical set that con-
tains a 128KB ps1sub (i.e., a data block), or a 128KB ps2sub
(i.e., a sequential log block), or a 128KB ps3sub (i.e., a hot
random log block), or a 128KB ps4sub (i.e., a cold random
log block). In data mapping, ps1sub stores the initial data
with a block-mapping method (i.e., dm2), ps2sub stores the
sequential update data with a block-mapping method (i.e.,
dm2), ps3sub stores the hot random update data with a page-
mapping method (i.e., dm1), and ps4sub stores the cold random
update data with a page-mapping method (i.e., dm1). In data
recycling, LAST uses a static triggering condition (i.e., drt1)
and a greedy policy (i.e., drv1) to select victim blocks. In data
spacemanagement, LAST selects a young or an old free block
based on hot or cold data (i.e., dsm3) to maintain free blocks.

Table 10 shows the component-based analysis for DAC.
DAC divides data into initial data and update data, and main-
tains their reference locality and the access frequency. In data
organization, a logical region whose size is 128KB could
correspond to a physical set that contains a 128KB ps1sub (i.e.,
a data block) or a 128KB ps2sub (i.e., a log block). In data
mapping, ps1sub stores the initial data with a block-mapping
method (i.e., dm2) and ps2sub stores the update data with a
block-mapping method (i.e., dm2), because DAC is a on-
demand block-mapping method. For reducing the mapping
information in main memory, a component (i.e., dc4) of data
clustering is used in DAC for the feature of partial buffer-
ing. Because of the partial buffering, DAC stores the map-
ping information in the translation blocks in flash memory
and could read the required mapping information from the
corresponding translation blocks if necessary. Furthermore,
DAC buffers the translation pages in main memory by the
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TABLE 11. Component-based analysis of DFTL.

reference locality and the access frequency to decrease the
number of translation page reads from the corresponding
translation blocks in flash memory. In data recycling, DAC
uses a static triggering condition (i.e., drt1) and a greedy
policy (i.e., drv1) to select victim blocks.

Table 11 shows the component-based analysis for DFTL.
In data organization, a logical region whose size is 2KB
could correspond to a physical set that contains a 2KB ps1sub
(i.e., a page). In data mapping, ps1sub stores all data with a
page-mapping method (i.e., dm1), because DFTL is a pure
page-mapping method. For reducing the mapping informa-
tion in main memory, a component (i.e., dc4) of data clus-
tering is used in DFTL for the feature of partial buffering.
Because of the partial buffering, DFTL stores the mapping
information in the translation blocks in flash memory and
could read the required mapping information from the cor-
responding translation blocks if necessary. In data recycling,
DFTL uses a static triggering condition (i.e., drt1) and a cost-
benefit policy (i.e., drv2) to select victim blocks. In data space
management, DFTL uses a ‘‘FIFO’’ mechanism (i.e., dsm1)
to maintain the free blocks.

We can demonstrate that a new and different flash transla-
tion layer can be created based on the related components of
data organization, data mapping, data clustering, data recy-
cling, and data space management. For example, we add
the hotness identification (i.e., dc3) in data clustering for
DFTL such that the data blocks can divide into hot data
blocks (ps1sub) and cold data blocks (ps2sub). With the hotness
identification, we can generate more data blocks with more
invalid pages and reduce the overhead of garbage collection.
In data mapping, both of ps1sub and (ps2sub) still use a page-
mapping method (i.e., dm1). In data organization, a logical
region whose size is 2KB maps to a 2KB physical set in
(ps1sub) or (ps

2
sub). In addition, we can revise DFTL with a

different garbage collection method. In data recycling, DFTL
uses a static triggering condition (i.e., drt1) and a cost-benefit
policy (i.e., drv2) to select victim blocks. In data space
management, DFTL uses a ‘‘FIFO’’ mechanism (i.e., dsm1)
to maintain the free blocks. However, we change the cost-
benefit policy to the cost-age-time (CAT) policy (i.e., drv3).
We also change the FIFO mechanism to select the youngest
free block with the minimum erase count. We call the revised
DFTL as the component-based DFTL in the paper. Note
that Table 12 shows the components of the component-based
DFTL and Fig. 9 shows the design flow of the component-
based DFTL.

G. TRANSFORMATION OF FLASH TRANSLATION LAYERS
Different configurations of flash translation layers inside an
SSD to handle different partitions with different workloads

TABLE 12. A component-based DFTL.

FIGURE 9. Design flow of a component-based DFTL.

can be prepared by the component-based view. However,
it is possible that a present flash translation layer for a parti-
tion becomes inappropriate because the characteristics of the
workload in the partition change. For example, the charac-
teristics of a lot of sequential writes and reads to a logical
partition could become the characteristics of a lot of random
writes and reads due to different user behaviors. The present
block-mapping flash translation layer with small write buffer
should translate to a page-mapping flash translation layer
with large write buffer. Therefore, users can use other proper
components (i.e., data organization, data mapping, data clus-
tering, data recycling, and data space management) to form a
specific flash translation layer for the changed characteristics
of the workload. It is also possible that a new firmware
includes a better flash translation layer for the SSD and
can be installed to replace its present flash translation layer.
For example, developers could refine some components and
redesign a new component-based flash translation layer to
replace the present flash translation layer. When the above
situation occurs, we need the transformation of flash trans-
lation layers. The transformation of flash translation layers
contains two types: (1) a fine-grained FTL to a coarse-grained
FTL, and (2) a coarse-grained FTL to a fine-grained FTL.
For example, when three mapping methods (such as a page-
mapping FTL, a block-mapping FTL, and a hybrid-mapping
FTL) are considered, the combinations of transformation of
flash translation layers can be shown in the following:
• Transformation from a Fine-grained FTL to a Coarse-
grained FTL
1) A Page-mapping FTL to a Block-mapping FTL
2) A Page-mapping FTL to a Hybrid-mapping FTL
3) A Hybrid-mapping FTL to a Block-mapping FTL

• Transformation from a Coarse-grained FTL to a Fine-
grained FTL
1) A Block-mapping FTL to a Hybrid-mapping FTL
2) A Block-mapping FTL to a Page-mapping FTL
3) A Hybrid-mapping FTL to a Page-mapping FTL
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FIGURE 10. Transformation from FTL1 to FTL2. (a) Write Requests during
Transformation from FTL1 to FTL2. (b) Read Requests during
Transformation from FTL1 to FTL2.

When transformation of flash translation layers is trig-
gered, the present FTL can be gradually transformed into a
prospective FTL. Thus, we should resolve the transformation
process caused by address mapping or garbage collection
during the transformation of flash translation layers. Assume
that a present flash translation layer (i.e., FTL1) handles a
partition and will be transformed to another prospective flash
translation layer (i.e., FTL2). When a write request from
a host is issued, FTL2 should use its mapping method to
handle the write request, and the original mapping informa-
tion for the write request in FTL1 should become invalid,
as shown in Fig. 10.(a). When a read request from a host is
issued, if FTL1 can provide more fine-grained mapping than
FTL2, there are two cases that need to consider, as shown

in Fig. 10.(b). The first case is that if FTL1 can search the
valid mapping information, then FTL1 should handle the read
request first; otherwise the second case is that FTL2 will
handle the read request. Note that if FTL2 can provide more
fine-grained mapping than FTL1, the process is similar. This
is because a fine-grained FTL can provide faster address
mapping than a coarse-grained FTL. When the free space
in the partition is not enough and FTL1 still has invalid
space, FTL1 should perform garbage collection to release the
free space for FTL2 to use. During the activities of garbage
collection in FTL1, FTL1 can reclaim a victim block and any
valid pages of the victim block (that can be treated as new
write requests from FTL1’s garbage collection) should be
written by FTL2’s mapping method, as shown in Fig. 10.(a).
After FTL1 has released its invalid space, FTL2 can also
perform garbage collection if the free space is still not
enough. Finally, FTL1 can be completely transformed to
FTL2 for the partition. The idea behind the transformation
is that if FTL2 is a more suitable flash translation layer than
FTL1 for the partition with the current workload, the trans-
formation from FTL1 to FTL2 could cause a little overhead
but the performance improvement could be worthy. Note that
Algorithm 1 is the pseudo code of transformation from
FTL1 to FTL2.

Algorithm 1 Transformation From FTL1 to FTL2
1: When a write request from a host is issued, FTL2 handles

the write request and its original mapping information in
FTL1 becomes invalid.

2: When a read request from a host is issued, the more find-
grained FTL (that can search the valid mapping infor-
mation) should handle the read request first; otherwise
another FTL will handle it.

3: When the free space is not enough and FTL1 still has
invalid space, FTL1 should perform garbage collection
to release the free space by reclaiming a victim block.
Any valid pages of the victim block (that can be treated
as write requests from FTL1’s garbage collection) should
be written by FTL2’s mapping method.

A question about the mapping information overhead dur-
ing the transformation of flash translation layers should be
discussed. For example, when a block-mapping FTL is trans-
formed to a page-mapping FTL, the mapping information
for the page-mapping FTL could consume more RAM space
than the block-mapping FTL. In fact, we have published a
paper [30] to discuss and analyze the requirements of RAM
space for the page-mapping FTL, the block-mapping FTL,
and the hybrid-mapping FTL in terms of system performance
and garbage collection overhead. That is, we define a for-
mula to calculate enough RAM space for the page-mapping
FTL, the block-mapping FTL, or the hybrid-mapping FTL in
advance to keep enough RAM space. Therefore, the required
RAM space during any possible transformation can be cal-
culated and kept in advance. Another question about the
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TABLE 13. Characteristics of a Mxic MX30LF1208AA flash memory chip.

TABLE 14. Characteristics of the four traces.

triggering time point during the transformation of flash trans-
lation layers should be also discussed. We can take the simple
rule to set the triggering time point based on our previous
work [30]. For example, we can determine the maximum
number of random log blocks for random workloads. When
the random log blocks are consumed quickly, we can assume
that the current workload becomes random and the trans-
formation of FTLs could be triggered. On the other hand,
when the sequential log blocks for sequential workloads are
often used, we can assume that the current workload becomes
sequential. Although it is a simple rule to detect the current
workload according to the use situation of sequential and ran-
dom log blocks, we must emphasize that the best time point
to trigger the transformation of FTLs can be investigated as
the future work.

V. PERFORMANCE EVALUATION
A. CASE STUDY: THE REVISED COMPONENT-BASED DFTL
We have conducted experiments under realistic work-
loads and benchmarks to evaluate the performance of the
revised component-based DFTL in terms of number of
page reads/writes, garbage collection overhead, and wear-
leveling effect. In the experiments, an 80GB NAND flash
memory storage was simulated, and the related parameters
were obtained form a Mxic MX30LF1208AA flash memory
chip [1], as shown in Table 13. The initial capacity utilization
of the simulated SSD is zero.

As shown in Table 14, four traces with different access
patterns were adopted for performance evaluation. The trace
of MSNSFS [31] was obtained from Storage Networking
Industry Association (SNIA) and it was collected from MSN
storage metadata server for a duration of six hours. The
PCMark7 [32] benchmark is the popular PC benchmark tool
and is designed to test the performance of all types of PCs.
The trace of PCMark7 in the experiments was obtained from
system storage suite and includes several workloads, such as
windows defender, importing pictures, adding music files,
video editing, starting applications, gaming, and windows
media center. The AsSSD [33] is a benchmark tool for mea-
suring the performance of SSDs (i.e., Solid-State Drives). The
trace of AsSSDwas obtained by copying three large files (i.e.,
ISO, program, and game). The trace of AsSSD2 was obtained

by producing a large number of 4KB random requests. Note
that the trace files of PCMark7, AsSSD, and AsSSD2 were
collected by Disk Monitor [34].

In Table 14, it shows the characteristics of the four traces.
The different LBAs show that how much different data are
written to different LBAs (i.e., spatial locality). Total requests
denote the sum of read and write requests. Read ratio and
write ratio are the ratio of the number of read requests and
write requests to the total requests, respectively. Random ratio
is the ratio of the number of random requests to the total
requests, where a (read/write) request is a random request if
its request size is smaller than a threshold [22] that is 16KB
in the experiments. Average write request size is the total
request size of all write requests divided by the number of
write requests. Because AsSSD2 and MSNSFS contain a lot
of random requests, they can be used to test the influence of
main memory requirements and garbage collection overhead
due to the random log blocks. In addition, because PCMark7
andAsSSD have the large averagewrite request size, they tend
to have a lot of sequential requests to test the influence of the
sequential log blocks. ForMSNSFS, it has high read ratio and
can be used to measure the influence of read performance.
Note that Table 15 shows the analysis of flash translation
layers for KAST, LAST, DFTL and the component-based
DFTL.

B. NUMBER OF PAGE READS AND WRITES
We measured the number of page reads and writes dur-
ing the address translation and the garbage collection for
LAST, KAST, DFTL, and the component-based DFTL.
The number of page reads and writes includes the origi-
nal reads/writes, the additional reads/writes, and the partial
buffering reads/writes. The original reads/writes are from
the original workloads, the additional read/writes are from
the page copy operations during the activities of garbage
collection, and the partial buffering reads/writes only occur
for DFTL and the component-based DFTL.

Fig. 11 shows the number of page reads and writes for
PCmark7. Although KAST and LAST both are the hybrid-
mapping FTLs, KAST has less page copy cost in garbage
collection because KAST considers the association relation-
ship between data blocks and log blocks. DFTL and the
component-based DFTL show the characteristics of the page-
mapping FTLs which have good space utilization and reduce
the page copy cost. In addition, because the component-based
DFTL adds the hotness identification, the dirty blocks could
tend to be generated and reduce the garbage collection over-
head. However, PCmark7 has large size of sequential writes
that could cause extra partial buffering reads/writes to update
the mapping table in main memory. Fig. 12 shows the number
of page reads and writes for AsSSD. Because AsSSD has
low random ratio, the performance of hybrid-mapping FTLs
and the page-mapping FTLs could be benefited. However,
the component-based DFTL could need more page reads and
writes than DFTL, because the hotness identification will
allocate the data to hot or cold data blocks and could break the
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TABLE 15. Analysis of flash translation layers.

FIGURE 11. Number of page reads and writes for PCMark7. (a) The
number of writes. (b) The number of reads.

continuity of sequential writes. Then, the component-based
DFTL could cause less dirty blocks thanDFTL. Fig. 13 shows
the number of page reads and writes for AsSSD2. Because
AsSSD2 contains a large number of random requests, the par-
tial buffering reads/writes could cause more overhead for
DFTL and the component-basedDFTL. Especially for LAST,
it could cause more page copy cost in garbage collection
because LAST doesn’t the association relationship between
data blocks and log blocks. Fig. 14 shows the number of page
reads and writes for MSN , its experimental results has the
similar reason with Fig. 13.

C. GARBAGE COLLECTION OVERHEAD
The purpose of garbage collection is to recycle the invalid
pages by copying the valid pages of a victim block to other
free pages and then recycling the victim block. Although we
simulated an 80GB NAND flash memory storage, the point
is when to trigger the activities of garbage collection.
Because KAST and LAST are hybrid-mapping methods,
we set a threshold ratio of the used log blocks to the
total log blocks for triggering the activities of garbage
collection. Because DFTL and the component-based DFTL

FIGURE 12. Number of page reads and writes for AsSSD. (a) The number
of writes. (b) The number of reads.

are page-mapping methods, we also set a threshold ratio of
the used data blocks to the total data blocks for triggering the
activities of garbage collection. In order to quickly observe
the activities of garbage collection, we set a small threshold
ratio (such as 4%) in the experiments.

As shown in Fig. 15 and Fig. 16, the experiment results
shows the number of block erases and the number of valid
page copies for LAST, KAST, DFTL and the component-
based DFTL during the garbage collection. In particular,
valid page copies for DFTL and the component-based DFTL
contain two parts: (1) translation page copies and (2) valid
page copies during the garbage collection. Because DFTL
maintains partial page-mapping information in the mapping
cache (i.e., main memory), the complete page-mapping infor-
mation are stored in the flash memory. When the mapping
information cannot be found in the mapping cache (i.e., cache
miss), the related translation pages should be read from flash
memory.When themapping cache is full, some dirtymapping
information should be written to the translation pages in the
flash memory.

Because PCmark7 and AsSSD will produce a lot of
sequential writes, it will cause more cache miss in DFTL
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FIGURE 13. Number of page reads and writes for AsSSD2. (a) The number
of writes. (b) The number of reads.

FIGURE 14. Number of page reads and writes for MSN . (a) The number of
writes. (b) The number of reads.

and the component-based DFTL. Thus DFTL and the
component-based DFTL should read the related translation
pages from flash memory and cause a lot of (translation)
valid page copies. Due to the large size of write requests
for PCmark7 and AsSSD, they could cause a lot of invalid
pages and lower the number of valid page copies during
garbage collection. For AsSSD2 and MSN , because they
contain a large number of random requests, DFTL and the
component-basedDFTL can have less number of block erases
and valid page copies than LAST and KAST. Furthermore,

FIGURE 15. Number of block erases. (a) The number of block erases in
PCMark7. (b) The number of block erases in MSNSFS. (c) The number of
block erases in AsSSD. (d) The number of block erases in AsSSD2.

because we change the cost-benefit policy to the cost-age
time (CAT) policy for the component-based DFTL, the exper-
iment results show that the component-based DFTL can
improve the garbage collection overhead and had less number
of block erases than LAST, KASY, and DFTL.

D. WEAR-LEVELING EFFECT
The purpose of wear-leveling effect is to extend the lifetime
of flash memory. Because each flash memory block has a
limitation on the erase count, the wear-leveling policy should
try to erase all blocks over flash memory evenly and decrease
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FIGURE 16. Number of page copies. (a) Number of page copies in
PCMark7. (b) Number of page copies in MSNSFS. (c) Number of page
copies in AsSSD. (d) Number of page copies in AsSSD2.

the total number of block erases as the wear-leveling effect.
For the component-based DFTL, we change the selection
policy of victim blocks from the cost-benefit policy to the
cost-age-time policy and change the data space management
to select a young or an old free block based on hot or cold data.
Fig. 17 and Fig. 18 show the standard deviation and the aver-
age number of block erases to reveal the wear-leveling effect.
The high standard deviation indicates that the erase count
of each block is far from the average. When the standard
deviation is small, the block erases are distributed evenly over
flash memory. The small average number of block erases also

FIGURE 17. Standard deviation. (a) Standard deviation in PCMark7.
(b) Standard Deviation in MSNSFS. (c) Standard Deviation in AsSSD.
(d) Standard Deviation in AsSSD2.

indicates that the total erase count is small. We can see that
the component-basedDFTL had better standard deviation and
less number of block erases than LAST, KAST, and DFTL.
Overall, the case study (i.e., the component-based DFTL) can
show the usefulness and practicality of the component-based
view.

E. CASE STUDY: TRANSFORMATION OF FLASH
TRANSLATION LAYERS
We have conducted experiments to evaluate the transforma-
tion of flash translation layers in terms of number of page
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FIGURE 18. Average number of block erases. (a) Average number of block
erases in PCMark7. (b) Average number of block erases in MSNSFS.
(c) Average number of block erases in AsSSD. (d) Average number of
block erases in AsSSD2.

reads/writes, block erases, and main memory size. As shown
in Table 16, we generated two synthetic traces (such as
Trace 1 and Trace 2) by running Iometer on Win 7.
Trace 1 has 70% sequential write requests and 30% random
write requests. Trace 2 has 30% sequential write requests and
70% random write requests. If the size of a write request is
larger than 16 KB, it is considered as a random write request;
otherwise it is a sequential write request. Because write
requests could cause significant impact on a flash translation
layer, we consider different ratios of sequential and random
write requests by Trace 1 and Trace 2.

TABLE 16. Trace 1 and Trace 2.

FIGURE 19. Transformation of flash translation layers. (a) Trace 1.
(b) Trace 2.

An FTL for a partition cannot always retain high perfor-
mance for all workloads. If the present FTL is not good
at the current workload, we could transform the present
FTL to a prospective FTL to meet the performance or user
demands. In the experiments, we implemented three differ-
ent FTLs with different mapping methods such as page-
mapping, block-mapping, and hybrid-mapping methods.
Different mapping methods could handle different work-
loads. In particular, page-mapping->block-mapping means
that the running trace is under the transformation of a page-
mapping FTL to a block-mapping FTL. Note that hybrid-
mapping->page-mapping has the similar definition.

The experimental results were shown in Fig. 19.
In Fig. 19.(a), Trace 1 was executed three times by three
different mapping methods such as a page-mapping FTL,
page-mapping->block-mapping, and a block-mapping FTL.
Because Trace 1 has high sequential write ratio, the page-
mapping FTL with limited main memory space can’t cache
all page-mapping information in the main memory and
could cause more page reads, page writes, and block erases
than other methods. However, the block-mapping FTL with
limited main memory space was suitable for Trace 1 and
outperformed other methods. In particular, page-mapping-
>block-mapping means that the transformation from a page-
mapping FTL to a block-mapping FTL was triggered at
the second execution of Trace 1. We can show that the
performance of transformation from a page-mapping FTL to
a block-mapping FTL (i.e., page-mapping->block-mapping)
was better than the page-mapping FTL and can lie between
the page-mapping FTL and the block-mapping FTL.

In Fig. 19.(b), Trace 2 was executed three times by three
different mapping methods such as a hybrid-mapping FTL,
hybrid-mapping->page-mapping, and a page-mapping FTL.
Because Trace 2 has high random write ratio and could con-
sume a lot of log blocks, the hybrid-mapping FTL could cause
more page reads, page writes, and block erases than other
methods due to full merges of log blocks. However, the page-
mapping FTL with limited main memory space was suitable
for Trace 2 and outperformed other methods. In particular,
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FIGURE 20. Contributions of the paper.

hybrid-mapping->page-mapping means that the transforma-
tion from a hybrid-mapping FTL to a page-mapping FTL was
triggered at the second execution of Trace 2.We can show that
the performance of transformation from a hybrid-mapping
FTL to a page-mapping FTL (i.e., hybrid-mapping->page-
mapping) was better than the hybrid-mapping FTL and can
lie between the hybrid-mapping FTL and the page-mapping
FTL.

VI. CONCLUSION
In the paper, we propose a component-based view to rethink
the design of flash translation layers. We use Fig. 20 to list
the contributions of the paper in the following:

• We propose the concept of the component-based
view for the development of flash translation lay-
ers. We define 5 components (data organization, data
mapping, data clustering, data recycling, and data
space management) with three properties (such as
specificity, composability, and analyzability) to cover
three main functions of flash translation layers (such
as address translation, garbage collection, and wear-
leveling effect).

• We propose to use the possible components to prepare
different configurations of flash translation layers (such
as FTL1, FTL2, and FTL3) for different workloads
inside an SSD in advance.

• Wepropose to adaptively transform a present flash trans-
lation layer to a suitable one when the current workload
changes or developers redesign a new flash translation
layer.

• We have implemented two case studies to demonstrate
that the revised DFTL (by replacing some components)
can improve its original performance and the trans-
formed FTL can also improve the performance under the
current workload.

For future work, we believe that a framework or a tool to
automatically generate a suitable FTL or analyze the pros
and cons of FTLs is a very important topic because the
design of FTLs is very complicated and can be affected by
many factors such as access patterns, read/write ratios, archi-
tecture limitations, or developersâĂŹ requirements. Even
5 components (i.e., data organization, data mapping, data
clustering, data recycling, and data space management) and

3 attributes (i.e., specificity, composability, and analyzability)
are proposed to describe the core parts of flash translation
layers, we also mention that some components or attributes
could be added or deleted in a component-based view when
technology makes further progress, computing environment
changes, or developers have different demands.
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