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ABSTRACT Epilepsy is a brain disorder that may strike at different stages of life. Patients’ lives are
extremely disturbed by the occurrence of sudden unpredictable epileptic seizures. A possible approach
to diagnose epileptic patients is to analyze magnetoencephalography (MEG) signals to extract useful
information about subject’s brain activities. MEG signals are less distorted than electroencephalogram
signals by the intervening tissues between the neural source and the sensor (e.g., skull, scalp, and so on),
which results in a better spatial accuracy of the MEG. This paper aims to develop a method to detect
epileptic spikes from multi-channel MEG signals in a patient-independent setting. Amplitude thresholding
is first employed to localize abnormalities and identify the channels where they exist. Then, dynamic time
warping is applied to the identified abnormalities to detect the actual epileptic spikes. The sensitivity and
specificity of proposed detection algorithm are 92.45% and 95.81%, respectively. These results indicate
that the proposed algorithm can help neurologists to analyze MEG data in an automated manner instead of
spending considerable time to detect MEG spikes by visual inspection.

INDEX TERMS Epileptic spikes detection, MEG, dynamic time warping, amplitude thresholding.

I. INTRODUCTION
A. BACKGROUND
Brain disorders are one of the most serious health problems
faced by society. Brain related research has gained increas-
ing attention during recent years [1], [2]. A new source of
information about brain activities, which can be investigated
solely or with the aid of EEG signals, has been created due
to the recent advances in MEG technology. The presence of
abnormality in the brain signals triggered the interest in the
field of MEG when, in 1972, the first MEG measurement of
brain signals was conducted with the help of superconducting
quantum interference devices (SQUIDs) [3]. The recording
of these tiny magnetic fields generated by the brain in a
magnetically shielded environment was made possible due to
the Josephson’s effect which occurs at very low temperatures.
Earlier, in 1960, experiments were conducted to record mag-
netic fields produced by the brain using copper coils wound
around ferromagnetic cores [4].

Until 1990, the use of MEG technology was limited
because of the small number of sensors used to cover only

part of the head. Now, MEG instrumentation with more than
300 channels covering the whole head are available [5]. The
advancement inMEG scanners and associated ease of record-
ings facilitated many new applications and studies [6]–[13].
The MEG technology can acquire information about brain
function and epileptic discharges with higher spatial resolu-
tion than EEG can do [14], [15]. However, MEG technology
has constraints on recording duration and vulnerability to arti-
facts caused by the subject’s movement during seizure [16].
Therefore, it should be emphasized that bothmodalities (EEG
and MEG) are complementing each other.

One of the main differences between MEG and EEG
thought to be that MEG is mainly sensitive to tangentially
oriented sources and is insensitive to radial sources, whereas
EEG can detect sources of all orientations. A radially ori-
ented current source produces no magnetic field outside a
spherically symmetric volume conductor. However, since the
human head is not exactly spherically symmetric, the radial
orientation is not well defined, and an approximately radial
source in the brain is not necessarily silent in MEG.
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In general, any finite source in the brain will have a range
of orientations and it would therefore generate a magnetic
field that will be detectable byMEG.Moreover, only very few
(<5%) cortical sources are expected to have the orientation
of the lowest sensitivity (close to radial) in MEG [17].

B. EEG AND MEG SPIKES
Morphology of spike and sharp waves in EEG signals was
analyzed by Gotman [18]. These waves can be used to facili-
tate diagnosis of epilepsy. For MEG spikes, there is not yet a
formal definition [19]. The direct application of criteria devel-
oped to define EEG spikes may not always be valid for MEG
spikes [20]. However, as compared to EEG spikes, MEG
spikes are more clearly distinguishable from the background
activity and appear to be sharper [21]. Recent studies reveal
that the characteristics of EEG and MEG epileptiform spikes
are different. The coincident events of EEG andMEG are sta-
tistically different with respect to several morphological fea-
tures such as duration, sharpness, and shape. One explanation
for these differences comes from the fact that the propaga-
tion of MEG signals is less distorted by the skull and
scalp [22]–[24]. Furthermore, muscle or eye movement arte-
facts can perplex EEG, particularly at higher frequencies [25],
while MEG is less susceptible to these issues [26].

C. MOTIVATION FOR SPIKES DETECTION
Due to recent advances in MEG technology, this utility has
now become a clinically significant diagnostic tool in pre-
surgical assessment for both the localization of epileptogenic
zone and the forecast of surgical outcomes [27]–[29]. A good
representation of themagnetic field distribution over the scalp
can be obtained due to the high density of MEG sensors.
Because MEG machines are limitedly available around the
world, few works have been performed on MEG signals for
brain activity analysis. Themost common approach for spikes
detection from MEG signals is the visual scanning of record-
ings. This is very laborious and time consuming [30]–[32]. In
addition, it is difficult to display and evaluate high number of
MEG sensors (more than 300) simultaneously. Furthermore,
visual inspection is mainly a subjective method, which can
lead to disagreement among different neurologists analyz-
ing the same data [33]. Therefore, automatic detection of
epileptic spikes, based on objective criteria, can reduce the
drawbacks caused by manual inspection and it would be
beneficial for quantitative analysis and clinical diagnosis.

D. PAPER’S CONTRIBUTION
This paper is concerned with the detection problem of interic-
tal epileptic spikes in MEG signals. Several algorithms have
been developed in the past for automatic spikes detection;
e.g., amplitude thresholding [30], [31], [34], [35], template
matching [35]–[38], and signal transformation [39]–[42].
These methods are mainly devoted to EEG signals, possibly
due to the lack of public MEG databases enabling testing and
evaluation of developed algorithms. Therefore, MEG spikes
detection is still an open area for research.

Few MEG spikes detection methods are considered in the
literature and, to the best of our knowledge, only twomethods
are available. The first is developed in [43], where the authors
presented a multi-channel MEG spikes localization method.
This method uses independent component analysis (ICA) to
decompose spike-like and background components into sep-
arate spatial topographies and associated time series. Then,
a simple thresholding technique is applied to the most spiky
independent components for detection purposes. Recently,
a patient-independent MEG spikes detection technique based
on common spatial patterns (CSP) and linear discriminant
analysis (LDA) has also been reported in [44]. Note that both
detection algorithms make use of subspace decomposition
based techniques for features extraction but they differ in the
classification stage. The use of LDA classification in [44]
provides a significant performance improvement compared
to the simple thresholding used in [43].

In this study, we develop a novel MEG epileptic spikes
detection algorithm, which considers the detection of MEG
spikes using amplitude thresholding followed by DTW.
Amplitude thresholding is used to extract any significant
activity of spiky nature in theMEG data. DTW is then applied
to all spiky segments of MEG data that passed pre-defined
thresholds.

DTW is a distance measure, often employed under the
assumption that pre-defined templates are available for sim-
ilarity computations and matching. In this work, we show
how to select the appropriate amplitude thresholds and how
to use DTW to detect MEG spikes without a prior knowledge
of standard pre-defined MEG spike templates. Note that,
unlike EEG spikes, MEG spikes do not have well-defined
morphological characteristics.

Performance of the proposed algorithm is evaluated using
real data. The results show that it has better performance
compared with the previously published work [43], [44].
The MEG data considered here is captured from 30 epilep-
tic patients at the National Neuroscience Institute (NNI),
King Fahad Medical City (KFMC), Riyadh, Saudi Arabia.
Written informed consent was signed by each participant
or responsible adult before they participated in the study.
The study was conducted in accordance with the approval of
the Institutional Review Board at KFMC (IRB log number:
15-086, 2015). The proposed algorithm is of a potential value
for neurologists dealing with MEG data for proper clinical
diagnosis.

II. MEG DATA RECORDING AND ANNOTATION
In this work, MEG data was recorded with Elekta Neuromag
system (ElektaNeuromagOy,Helsinki, Finland) in a shielded
room due to the nature of the MEG signals, as they are
much weaker than normal environmental magnetic noise.
MEG sensors were separated into eight non-overlapping sets
roughly covering the Left Temporal (LT), Right Tempo-
ral (RT), Left Frontal (LF), Right Frontal (RF), Left Pari-
etal (LP), Right Parietal (RP), Left Occipital (LO), and Right
Occipital (RO) areas of the head.
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FIGURE 1. Multi-channel 100 ms segment of: (a) Epileptic spikes with positive peaks taken from left temporal brain region channels (b) Epileptic
spikes with negative peaks taken from right frontal brain region channels (c) Spike-free signals taken from left temporal brain region channels.

The MEG signals were pre-processed offline using the
temporally-extended signal space separation (tSSS) and
movement correction algorithms, implemented in Maxfilter
software of Elekta Neuromag system to suppress external
and internal interferences, and compensate for subjects head
movement during the recording [45], [46]. The MEG data
were collected from patients in resting-state supine posi-
tion at a sampling frequency of 1000 Hz and band-pass
of 0.03 to 330 Hz using a 306-channel (102 magnetome-
ters and 204 planar gradiometers) whole-head MEG system
(Vectorview; Elekta Neuromag Oy, Helsinki, Finland) at the
KFMC MEG Unit. In synchrony with the MEG, 21-channel
electroencephalogram (EEG, international 10-20 system),
electrooculogram (EOG) and electrocardiogram (ECG) were
also recorded.

The MEG signals were then band-pass filtered between
1 and 50 Hz for visual inspection, and examined together
with the concurrent 21-channel EEG data by at least one
MEG/EEG technician and one neurology consultant, fol-
lowing the standard principles established for clinical EEG.
The epileptic spikes were identified in 10 s consecu-
tive windows, based on their morphological and temporal
characteristics [19]. The spatial distribution of MEG signals
over the sensors was used only to exclude the artifactual
events (e.g., when only a single sensor exhibits the spike,
etc.). The well-defined epileptic spikes and their durations
were then marked from the artifact-free data segments based
on the clinical practice guidelines published by the American
Clinical Magnetoencephalography Society [47].

Thirty patients with focal epilepsy were selected from the
KFMC epilepsy MEG database for this study; see Table 1.
The selection of patients was based on the reliability of
the spikes found in MEG data and concordant diagnosis:
only patients with multiple (>6) clear spikes in MEG data
that were concordant with the independent clinical diagnoses
were selected. A total of 224 15-minute 26-channel noise-
free MEG data records taken from the epileptic patients have
been analyzed in the current study. The total number of

TABLE 1. Sex, Nationality, Ages, and Number of patients whose data
belongs to a particular brain region in the MEG database.

epileptic spikes marked by the experts in these recordings
was 630.

III. MEG SPIKES DETECTION ALGORITHM
The proposed MEG spikes detector makes use of two meth-
ods: Amplitude thresholding and DTW. Below, we give brief
description for these two methods.

A. AMPLITUDE THRESHOLDING
Amplitude thresholding is a method in which a spike is
detected when the signal amplitude exceeds a user defined
threshold. A possible approach to determine the thresholds
is by analyzing the probability density functions (PDFs) of
background and MEG spikes. Note that MEG channels of an
epileptic patient may carry spikes with peaks of positive or
negative values as shown in Fig. 1(a) and (b). Epileptic spikes
of Fig. 1 are taken from channels of left temporal and right
frontal brain regions of one epileptic patient. Fig. 1(c) shows
spike-free signals taken from the channels of left temporal
region of same epileptic patient.

In our analysis, we divide the MEG data into segments
of fixed lengths of 100 ms that reasonably approximate the
duration of a MEG spike. The lenght is selected based on the
analysis of spikes durations, provided byKFMCneurologists.
Fig. 2 shows the histogram of spikes durations of all epileptic
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FIGURE 2. Distribution of spikes durations of epileptic patients.

patients used in this study, from which we can observe that
most of the spikes have duration less than 100 ms with
the most frequent being between 50-100 ms. Therefore, this
justifies our choice of 100 ms data segments.

Let β = [b1, b2] be the amplitude thresholds. These
thresholds are calculated from points of intersections of the
two PDFs belonging to the spikes with positive and negative
peaks and that of spike-free signals, as shown in Fig. 3. Note
that spike-free signals do not refer to signals from normal
subjects, but rather to spike-free segments of signals recorded
from patients with epilepsy.

Each PDF displayed in Fig. 3 is obtained by fitting the PDF
of a normal distribution to the corresponding histogram of
MEG data of 10 randomly selected patients. Therefore, if a
segment has samples of values greater than b1 or less than b2,
then it will be considered a MEG spike candidate.

Amplitude thresholding alone does not serve the purpose
because it has high false alarms. That is, spikes with dif-
ferent morphological characteristcs and similar amplitudes
are indistinguishable. Therefore, DTW is introduced next to
identify the actual MEG spikes from the extracted spiky seg-
ments that passed the amplitude thresholding. The proposed
DTW algorithm is novel in that it does not need standard pre-
defined templates to work.

B. DYNAMIC TIME WARPING
DTW has been used in biomedical applications to classify
signals into different categories by comparing the signals with
standard templates [48], [49]. Often, templates are extracted
from the biomedical signals of interest, like EEG and ECG
signals. Because MEG spikes have no definite spike mor-
phology like EEG signals, here, we use DTW in a differ-
ent manner; it measures the similarities among the channels
which already passed amplitude thresholding. If the similar-
ities among the channels are high, then the segment under
consideration is declared spike; otherwiswe, it is declared
background. In our development, we provide quantitative
approach to tell when similarities among channels are con-
sidered high.

FIGURE 3. PDFs of peaks with positive and negative values and that of
background segments.

DTW allows a non-linear mapping of one signal to another
by minimizing the distance between two signals. The basis
behind DTW is to stretch or compress two given time series
so as to make one resembles the other as much as could
reasonably be expected [50].

FIGURE 4. Time series X and Y .

Consider two time series sequences X and Y of
lengths e and f , respectively, where

X =
[
x1, x2, x3, . . . , xg, . . . , xe

]
(1)

Y =
[
y1, y2, y3, . . . , yh, . . . , yf

]
(2)

For illustration purposes, we set X and Y as shown in Fig. 4.
Table II(a) gives a distance matrix whose entries are defined
as d

(
xg, yh

)
=

∣∣xg − yh∣∣2 , where xg and yh are the gth

and hth elements of X and Y sequences, respectively. For
computations of DTW, we need to determine the elements
α (g, h) of accumulated distance matrix given in Table II(b).
Entries of this matrix are computed progressively starting
from the upper left corner according to the following relation.

α(g, h) = d(xg, yh)+ min
{

α(g− 1, h− 1),
α(g− 1, h), α(g, h− 1)

}
(3)

α (g, h) is the sum of d
(
xg, yh

)
and the minimum value of the

three adjacent cells belonging to α (g, h).
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FIGURE 5. (a-d) Sensitivity and Specificity of threshold-based spikes detector for MEG data of 2, 6, 8, 10 patients as a function
of parameter M.

TABLE 2. (a) Distance matrix of X and Y . (b) Accumulated distance
matrix of X and Y .

A warping cost function DTW (X,Y ) is defined as [51]

DTW (X,Y ) = min

{
L∑
l=1

ml

}
(4)

whereml is the l th element of a warping path. A warping path
is a contiguous set of matrix elements that represent a map-
ping between X and Y . The warping path that minimizes the
warping cost functionDTW (X,Y ) is retrieved. In Table II(b),
this path is highlighted in green color.

The selection of an optimum warping path follows some
restrictions. Let (gl, hl) be the index of l th element of a
warping path. Therefore, [51]

a) The warping path should be monotonically spaced in
time. That is,

gl−1 ≤ gl
hl−1 ≤ hl

b) The elements of the warping path should be adjacent to
each other. That is,

gl − gl−1 ≤ 1

hl − hl−1 ≤ 1

c) For equal length sequences, the warping path should
be as close as possible to the diagonal of accumulated
distance matrix, with

m1 = α (1, 1)

mL = α (e, f )

The length of the warping path is minimum if it lies along
the diagonal of accumulated distancematrix. Closeness of the
path to the matrix diagonal corresponds to greater similarity
between the two time series.

C. PARAMETERS ESTIMATION
The proposed spike detection algorithm requires estimation
of certain parameters from given data sets captured from dif-
ferent patients. For parameters estimation, MEG data sets are
divided into d (d = 1, 2, 3, . . .) segments. Each segment, Sd ,
is of size q×p, where q = 26 (corresponding to the number of
gradiometers of one region of the brain) and p = 100 (approx-
imating the number of samples of a MEG spike). For the LO
and RO regions, the number of gradiometer sensors is 24.
Therefore, we add two zero-value channels to each region in
order to facilitate systematic processing of algorithms steps.
The processing is performed segment by segment, as follows.
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FIGURE 6. MEG spike detection algorithm.

I) We determine the amplitude thresholds β = [b1, b2],
as described in Fig. 3, by computing the PDFs from the
given data.We pass each segment of q channels through
the amplitude thresholding. Let K be the number of
channels whose data passed the thresholds. If K ≥ M ,
where M ≤ q, then we go to the next step of applying
the DTW. Otherwise, the current segment is consid-
ered as background. Fig. 5 shows the sensitivity and
specificity of spikes detector as a function ofM , if only
the amplitude thresholding is employed and K ≥ M .
The sensitivity is defined as the ratio of number of
times the classifier makes correct positive decisions
(i.e., detects spikes) to the total number of positive
decisions it made, and specificity is the ratio of number
of times the classifier makes correct negative decisions
(i.e., detects spike-free segments) to the total number
of negative decisions it made [52]. The results are
displayed when MEG data of 2,6,8 and 10 patients are
used in the computations of sensitivity and specificity.
It can be inferred from the figures that by increas-
ingM , the sensitivity increases whereas the specificity
decreases. The results are almost consistent in that
choosing the value of M = 9 strikes a good balance
between the sensitivity and specificity as far as the
amplitude thresholding is concerned. It can also be
concluded from Fig. 5 that utilizing more data from
different patients does not show significant change
with respect to the value of M at which the sensi-
tivity and specificity curves intersect. Therefore, from
now on, M = 9 or equivalently K ≥ 9 will be
employed. A data set of 10 different patients, each with

TABLE 3. Estimated parameters for all trials of the spike detection
algorithm.

15-min recordings, should be sufficient for the estima-
tion phase.

II) We apply DTW to a particular segment if the number
of channels, which passed the thresholds, is greater
than or equal to 9 (i.e. K ≥ 9). DTW is used to
measure the similarity between the channels of MEG
segment under consideration. DTW gives the similarity
measure, called warping path, between two channels.
By comparing each channel with the remaining K − 1
channels, a total of N = CK

2 warping paths are calcu-
lated. That is,

N = CK
2 =

K !
(K − 2)!2!

, K ≥ 9 (5)
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TABLE 4. Performance of the MEG spikes detection algorithm.

LetW be the warping path length vector whose entries
are wi, i = 1, 2, . . . ,N . That is, wi is the length of
the ith warping path. The value of wi varies between
100 and 199 because the duration of a channel of a
given segment is 100 ms. The smaller is the value ofwi,
the higher is the similarity between two channels of a
given segment. Let Ii = 0 or 1 such that

Ii = 1, if wi ≤ T

Ii = 0, if wi > T

where T may take values between 100 and 199
inclusively. Also, let

D =
N∑
i=1

Ii (6)

D represents the number of entries ofW , whose values
are less than or equal to T . Therefore, a segment is
declared a spike if D ≥ P′% of N . That is,

Spike if : D ≥ dNPe

NonSpike if : D < dNPe

where P = P′/100. The two parameters T and P are
unknown and need to be estimated from a given data.
First, we compute the sensitivity (Se) and specificity
(Sp) of proposed detection algorithm by varying the
values of T and P such that

100 ≤ T ≤ 199

0.1 ≤ P ≤ 1

In our work, the parameter T is changed by step of 5
and parameter P by step of 0.05. The best pair (T ,P)
satisfying the following conditions are then chosen for
the evaluation phase.

a) Both Se(T ,P) and Sp(T ,P) ≥ 90%. This is to
ensure high performance.

b) Value of T is as small as possible. This is to ensure
high similarities among channels.

c) Value of P is as maximum as possible. This is
to ensure the presence of large number of similar
channels.

Fig. 6 shows the flow of proposed spikes detection
algorithm.

IV. PERFORMANCE EVALUATION
The performance of proposed detection algorithm is evalu-
ated using 30 epileptic patients for 10 trials. In each trial,
data of 10 randomly selected epileptic patients is used for
estimating the parameters β, T and P. The data of remain-
ing 20 patients is used for evaluation. Table III shows the
estimated parameters for all trials. Table IV shows the corre-
sponding sensitivities and specificities of the proposed algo-
rithm, CSP-LDA algorithm recently developed in [44], and
and ICA algorithm of [43]. Note that the value of threshold
in [43] is determined, from the training data, at the point
where the sensitivity and specificity curves versus threshold
intersect. We adopted this method for selecting the thresh-
old in order to conduct fair comparisons with our proposed
approach, which does the same in determining the parame-
ter M pertaining to the number of spiky channels.

In reference to Table III, we observe that the standard devi-
ations of estimated parameters are relatively small compared
to the average values. Further, the estimated parameters from
all trials led to high sensitivities and specificities with low
variablities among trials, as shown in Table IV. Therefore,
the estimated parameters of any trial (or possibly the average
values of all trials) can be used in the spike detection algo-
rithm, described in Fig. 6, in a patient-independent setting.
The aggregated sensitivity and specificity, obtained from
randomly selected data of 20 epileptic patients for 10 trials,
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are 92.45% and 95.81%, respectively. However, the aggre-
gated sensitivity and specificity of CSP-LDA algorithm [44],
obtained for the same randomly selected data of 20 epileptic
patients for 10 trials, are 86.14% and 90.38%, respectively.
That is, the DTW algorithm outperforms the CSP-LDA algo-
rithm in terms of both sensitivity and specificity when the
parameters were estimated from data of 10 patients. This
conclusion is also true when the DTW algorithm is compared
with ICA-based spikes detection algorithm presented in [43].
The aggregated sensitivity and specificity of ICA algorithm
obtained using the same data of 20 epileptic patients for
the 10 trials are 86.915% and 81.197%, respectively. Note
that the superior performance of DTW algorithm over the
CSP-LDA and ICA algorithms are intuitively not surprising
because the ICA algorithm is based on the assumption that
the spikes and coherent background components are statis-
tically independent, and the background noise is negligible.
In practice, the above conditions will not be perfectly met.
The CSP-LDA, on the other hand, uses all the 26 channels
of a particular region of brain for spikes detection. Because
spikes may appear only in some channels, inclusion of non-
spiky channels in the features extraction stage degrades the
algorithm performance. However, the proposed algorithm
performs detection by exploiting the temporal characteristics
of data to perform template matching in an adaptive (data-
dependent) manner. That is, it considers the data segment
under processing as the current template and exploits the
presence of epileptic spikes in multiple (not necessarily all)
channels to perform detection.

V. CONCLUSION
With the recent advances in MEG technology, MEG devices
started to gain popularity worldwide in analyzing brain
activities. This study proposes an amplitude thresholding and
DTW based MEG spikes detection algorithm for the purpose
of diagnosing epileptic subjects. We have demonstrated using
real data that the proposed detection algorithm can achieve
high sensitivity and specificity in a patient-independent data
setting. In particular, the work here shows that the proposed
spikes detection algorithm can achieve 92.45% sensitivity
and 95.81% specificity when applied to MEG data. The
developed MEG spikes detection algorithm has the potential
to help neurologists to analyze MEG data in a timely manner
instead of spending considerable time to detect MEG spikes
by visual inspection.
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