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ABSTRACT One of the essential pre-processing steps of semantic video analysis is the video shot boundary
detection (SBD). It is the primary step to segment the sequence of video frames into shots. Many SBD
systems using supervised learning have been proposed for years; however, the training process still remains
its principal limitation. In this paper, a multi-modal visual features-based SBD framework is employed
that aims to analyze the behaviors of visual representation in terms of the discontinuity signal. We adopt a
candidate segment selection that performs without the threshold calculation but uses the cumulative moving
average of the discontinuity signal to identify the position of shot boundaries and neglect the non-boundary
video frames. The transition detection is structurally performed to distinguish candidate segment into a
cut transition and a gradual transition, including fade in/out and logo occurrence. Experimental results are
evaluated using the golf video clips and the TREC2001 documentary video data set. Results show that the
proposed SBD framework can achieve good accuracy in both types of video data set compared with other
proposed SBD methods.

INDEX TERMS Cut transition detection, gradual transition detection, golf video analysis, logo transition
detection, transition pattern analysis, video shot boundary detection.

I. INTRODUCTION
With the advancement and the popularity of social media
technology, usage of digital video uploading has increased
at a phenomenal rate resulting in a significant number of
video databases. In general, it is difficult for users to man-
age this video data, especially to search for some specific
video events from a large video database. Manual searching
consumes more time and takes more effort from users to
retrieve the desired event; for example, a long play video
consists of multiple events that maybe of interest to only
a small number of activities. Alternatively, it has a great
benefit for users performing a semantic search that directly
accesses some desired specific content, instead of querying
the video from the massive video database, using the name of
each video clip. Therefore, the research into video indexing,
browsing and retrieving, known as Content Based Video
Retrieval (CBVR), has been widely studied to help users
achieve semantic searching [1], [2].

Semantic video analysis aims to relate language texts
to abstract the visual representation of the video content.

The challenging task here is to reduce the gap between
the humans and the automatic search engine, represented
as high-level semantic meanings and low-level information.
The bottom-up searching approach [3] is useful when the
user knows what to look for, thus increasing the demand
of an efficient semantic indexing. In general, the struc-
ture of video content can be arranged as scenes, shots and
frames [4]. Frames are the smallest unit of the video, whereas
many frames constitute shots. Consequently, video shots
(segmented video sequences) are considered to be the basic
units to illustrate the video content, and the first pathway,
to the high-level semantic indexing (annotation) and retrieval
tasks. Therefore, it is essential to analyse the structure of
video data from the shot level, to obtain an accurate video
indexing system (i.e. event detection), represented in the
higher semantic unit. The essential process here is the video
shot boundary detection (SBD), also called video tempo-
ral segmentation. SBD aims to segment video sequences
into many shots where these video shots are composed of
frames conducted by a single camera operation. The tool
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also locates the position of the shot boundary and separates
that shot boundary into various transition types (i.e. cut
and gradual transition). It has received significant attention,
which resulted in many approaches being proposed over the
years [1]–[4].

Considering the SBD framework that has been proposed,
it can be comprised of three modules, i.e.: the visual rep-
resentation (frame-level feature extraction), the dissimilar-
ity/similarity measures of visual content represented in the
form of discontinuity/continuity signals and the classification
(shot identification) of signals to transition types [1], [5].
Video frame features can be adopted by using various low-
level feature extraction methods (i.e. color histogram, edge,
and motion). The content signal showing the frame-pair
difference can also be measured by various distance meth-
ods (i.e. Euclidean, Cosine, and Pearson’s correlation). The
shot identification or shot classification can be achieved
by implementing the statistical machine learning methods
(supervised or unsupervised), or the procedure based identifi-
cation (PBI) method (rule-based classifiers). Most early SBD
works that adopted a supervised learning approach employed
a state-of-the-art discriminative classifier, such as K-Nearest
Neighbour (KNN) and support vector machines (SVMs) to
perform the transition detection process. The SBD result is
very promising when using this approach, however, the speed
and size of the training and testing data, and kernel selec-
tion, is one of the disadvantages. Moreover, the balance of
the transition type sample, in the real implementation, is a
significant limitation, especially when the special transition
effect (i.e. logo) is added into the video content. In [6],
the authors employ Singular Value Decomposition (SVD),
with Hue Saturation Value (HSV) histogram, to propose a
low computational complexity SBD scheme. The candidate
segment selection using adaptive threshold is implemented,
which can speed up the detection because it can eliminate the
non-boundary video sequences. This method provides a high-
speed transition detection. However, the result shows that it
still needs improvement in the detection accuracy.

The overall performance of SBD systems can also rely on
the effect of color variation, rapid changes of object move-
ment, brightness, and special effects such as logo, and camera
recording techniques in filmmaking. The SBD scheme using
Walsh-Hadamard Transformation (WHT) is proposed in [7]
to reduce these influences. This system has been focused on
feature extraction, and feature fusion, to obtain a significant
similarity of visual content. The transition detection is then
simply performed by the PBImethod using one global thresh-
old selection. The results show that the detection accuracy
can be improved by extracting more features from different
domains. However, the frame feature is extracted using block
calculation on every video frames. Therefore, it may increase
the overall computational time. Another feature that can rep-
resent the object movement effect, while still tolerating the
color variation, is the Speeded Up Robust Feature (SURF).
The matching score can also measure the similarity between
two video frames [8], [9]. The combination of the global

color histogram and SURF has resulted in excellent detection
performance as proposed in [9]–[11].

As an improvement on previous SBD systems, in this
paper, we propose an SBD framework that captivates both
cut and gradual transition. It is suggested in [6] that it is
not necessary to process the whole video sequence to locate
shot boundaries. However, shot boundaries usually present
in a non-structured pattern. Hence, segmenting video frames
using the method in [6] further requires frame adjustment
to determine the candidate location. Unlike the previous
method, we overcame this drawback by proposing the new
method to collect video frames, without using threshold units,
which results in potentially increasing the detection accuracy.
We separate the process into three main stages: candidate
segment selection, discontinuity signal representation, and
the transition type detection. The objective of the first step
is to find the group of consecutive frames, which represent
any changes of video content as much as possible. Therefore,
the discontinuity signal is calculated based on the SURF
matching score and RGB histogram cosine distance value.
By increasing the inter-frame distance, the signal can be
enhanced resulting in the collection of most of the potential
SBD segments. Cut and gradual (dissolve, fade in/out, logo)
transitions are finally detected by using two particular PBI
that directly analyse the inverse of similarity value of the
SURF features and color histogram. Experiments on sport
video data and TRECVID dataset show that the proposed
SBD framework can provide high accuracy for detecting shot
transitions.

The paper is constructed as follows. The recent developed
SBD schemes over the past years are reported in Section II.
An overview of the proposed SBD framework is described in
Section III. In Section IV, we introduce dataset and evaluation
criteria with our proposed method. Section V demonstrates
the experimental results using sports and documentary video
datasets. The discussion of the parameter selection and the
experimental results are described in VI. Finally, the conclu-
sion is presented in Section VII.

II. RELATED WORKS
Numerous SBD methods have been proposed with various
concepts. However, the overall framework usually starts by
extracting the visual feature, constructing the continuity sig-
nal or discontinuity signal, and classifying the variation of
content difference to the shot transition, regardless the type
of video dataset, to evaluate the superiority of the system.
In this section, some advanced approaches will be cate-
gorised, according to the formal structure of SBD, to analyse
the pros and cons of various techniques in each stage.

A. VISUAL FEATURE EXTRACTION OF VIDEO SEQUENCES
The use of visual feature extraction in an SBD scheme,
can be categorised into different groups such as: a pixel-
based [7], [12]–[14], histogram based, edge based, motion
vector, compressed domain feature [15], [16], descriptor
based, multiple features based [17], [18] and combined
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features based [9], [19]–[22]. One common approach to
representing the visual information of video frames is to
extract the low-level feature of each video frame. This feature
describes the image without shape information (spatial rela-
tionship) or distinct regions. It can be extracted in two main
types: global feature and local feature.

For an SBD system, the global feature difference extracted
from color histogram can be used. This method includes RGB
color histogram [6], [12], [18], [23]–[25], intensity histogram
[19], HSV histogram [6], [21], Illumination-invariant chro-
maticity histogram [26], and so on. color histograms are less
sensitive to a small camera or object movement, due to the
property that does not incorporate the spatial information of
color variation. However, their drawback is the inability to
distinguish two shots within the same scene, and they are
more sensitive in a large camera or object movement, due to
rapidly changed color information.

On the contrary, the local feature aims to measure specific
properties of the image, for instance: edge-based feat-
ures [19], [27], [28], texture energy [17], motion estima-
tion [17], [19], entropy [8], scale invariant feature trans-
form (SIFT) [18], [29]–[34], and SURF features [8], [9],
[35]. Some approaches use color coherence [36] and lumi-
nance [14] to obtain the spatial arrangement of colors in the
image. These local features are more tolerant of illumination
changes and small movements than global features, but they
also have higher computational complexity. The features,
as mentioned earlier, mainly rely on the properties of images
(frames).

The middle-level features can be constructed by the low-
level features such as dominant color and motion vector [37]
for use in a sports video. Linear image transformation using
WHT is proposed in [7] to extract a basis image for formulat-
ing a feature vector, which can represent the color and motion
change. Some dimensionality reduction techniques were also
proposed to map the raw feature onto the smaller dimen-
sional vector, while maintaining the temporal characteristic
of video content. These methods include QR-Decomposition
[23], SVD [6], [38], and Independent Component Analysis
(ICA) [26], [39], and Adaptive Locality Preserving Projec-
tions (ALPP) [20].

B. CONSTRUCTING THE VISUAL CONTENT FLOW
SIGNAL OF VIDEO SEQUENCES
The objective of SBD is to find the location of consecu-
tive frames that identify the transition between shots. From
this perspective, we can extract the temporal characteris-
tic of video contents regarding the similarity (continuity)
signal or dissimilarity (discontinuity) signal. These signals
can be constructed from the difference value between either
adjacent features or two features within l inter-frame dis-
tance [25]. To measure a dissimilarity value between frames,
some of the novel distance methods include pixel-wise dis-
tance [14], Euclidean distance [26], Chi-square distance [25],
City block distance [7], the Bhattacharya distance [9],
and histogram intersection [17]. In contrast, the similarity

measure between video frames includes Pearson’s correlation
coefficient [11], [18], mutual information [40], normalised
correlation [9], and Cosine similarity [6]. For local descrip-
tors, such as SIFT and SURF, the matching score can be used
to measure the similarity [8], [9], [33], [34].

Some of the SBD approaches show that the SBD frame-
work may not rely on only one feature to discriminate the
frame difference due to its trade-off of several features. There-
fore, feature weighting based on machine learning such as
Fuzzy logic [15], Adaboost [16] and Naive Bayes [7] are
proposed to find the weighted similarity/dissimilarity value.
However, these methods require a learning process, which
becomes one of their limitations. Another simple approach
to combine two features is also proposed in [9], which still
provides good SBD accuracy.

C. SHOT BOUNDARY IDENTIFICATION SCHEME
The 1-D signal representing similarity/dissimilarity between
frames can be used to detect the boundary (transition) in video
sequences. The objective of the SBD process is to classify all
similarity/dissimilarity values into each transition types (cut,
gradual, and others). Because SBD needs to treat all values to
find where the boundary occurs exactly between two video
shots, it can be considered time-consuming. To overcome
this problem, some researchers suggest pre-processing the
long video sequences, and then finding the smaller segment
of video frames that potentially contain shot boundaries.
In [6] and [14], the video sequence is partitioned into n frame
segments and then calculates the distance value between the
first and end frames. If the distance value is higher than
the predefined threshold, the segment is considered as the
candidate for the respective SBD. These methods show that
they can reduce the computational time necessary. However,
the accuracy of transition detection still needs improvement
for both cut and gradual transition detection.

According to several approaches during the past decades,
the shot identification scheme can be classified into the
statistical machine learning-based approach, rules-based
approach. The statistical machine learning-based classifi-
cation for the SBD scheme includes supervised learning
and unsupervised learning. SVMs is also one of the most
commonly used for SBD [15], [21], [22], [25], [32], [36],
[37], [41] due to its effectiveness in dealingwith a broad range
of features, and giving a good detection result. Classifiers
such as Multilayer Perceptron (MLP) network [19] and
another extension of Naive Bayes classification in [39] are
also used in SBD systems. The main advantage of the super-
vised approach is that it does not involve the threshold
selection to justify whether the value is a shot or non-shot.
Furthermore, the detection performance may be improved
by combining multiple features. However, it needs a train-
ing dataset that contains a good balance between posi-
tive and negative samples (shot or no shot). Unsupervised
learning approaches are also proposed, such as methods
in [26], [29], and [40] to avoid the training process. However,
it does not perform as well in SBD compared to the
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FIGURE 1. Overview of the proposed multi-modal visual features-based video shot boundary detection.

supervised learning with regard to recognising transition
patterns.

A rules-based approach is specifically developed to detect
video shot boundaries by incorporating the characteristics of
transition behaviours. This method can be designed using
decision rules [16], a fuzzy system [17], [24], or PBI [27].
It can be designed to use the threshold mechanism to
detect the occurrence of the shot transition. This thresh-
old mechanism includes global [7], [8], [12], [13], [23],
adaptive [26], [28], [31], or global and adaptive comb-
ined [6], [11], [14]. Global threshold-based systems select
the same value over the video sequences, to identify the
transition. However, one threshold value may not be suit-
able for various categories of video. Therefore, the adaptive
threshold is proposed to eliminate the drawback by finding
an appropriate threshold value, to conform to the temporal
characteristic of video content locally. It is suggested that
global threshold method may not perform well in the detec-
tion and the adaptive threshold mechanismmay be difficult to
determine [1], [5]. However, according to recent approaches
(i.e. the SBD methods in [6] and [7]), these methods have
shown that the overall performance may not rely on the
threshold mechanism selection, but rather the chosen features
and the shot identification process.

From the above reviewed SBD methods, great techniques
have been proposed with various concepts, resulting in good
detection accuracy, especially the cut transition. However,
it is still a challenging task to improve the detection accu-
racy of SBD systems in both transition types, due to some
disturbances caused by rapid movements, and advances in
video editing technologies. Since the visual features have
been developed for years, we found that various features
can lead to good detection performance for each transition
types.Moreover, the SBD system is considered as an essential

pre-processing step, but to obtain the transition, it needs to
process whole video sequences, and the detection result may
still not provide a high percentage of detection accuracy at the
same time. Hence, instead of looking for a transition from a
long video sequence, in this paper, we aim to develop an SBD
system that can improve the result, by methodically focusing
the transition behaviours. Similarity and dissimilarity signal
based system on both global and local feature extraction are
calculated to detect the shot transition by our multi-modal
visual features based approach. The proposed SBD frame-
work is also evaluated with other proposed SBD methods,
to illustrate the effectiveness of shot transition detection.

III. MULTI-MODAL VISUAL FEATURES BASED
VIDEO SHOT BOUNDARY DETECTION
In this section, we introduce the concept of our SBD system
using video frame features. Our proposed SBD framework
is illustrated in Fig.1. At the first stage, we can query the
potential video segment that contains the shot boundary to
overcome the miss detection problem. The second step is to
perform a quantitative feature extraction and construct the
dissimilarity signal. Finally, the shot transition detection is
conducted to detect a shot boundary and categorise it into a
cut transition or a gradual transition. The following subsec-
tions describe our SBD system framework which comprises
of three steps as aforementioned: candidate segment selec-
tion, multi-features combination dissimilarity signal and shot
transition detection.

A. CANDIDATE SEGMENT SELECTION
The primary purpose of candidate segment selection is
to reduce the processing time by eliminating many non-
boundary frames from the video sequences. This concept was
previously proposed in [6], [11], and [14] with an adaptive
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threshold mechanism to obtain a segment of video frames.
However, it requires a parameter to formulate the threshold
value and subsequent steps to find the group of video frames.

In our scheme, we aim to propose the candidate seg-
ment selection that requires less parameter. It is designed
with the simple concept of analysing the behaviour of the
temporal characteristic extracted from visual features, based
on SURF descriptors and RGB histogram. It can be sepa-
rated into two stages: feature extraction and local extrema
calculation. The first stage is to perform a feature extraction
to video frames. SURF with 128-dimensional feature vec-
tor (descriptor), is chosen to reduce the effects of rotation,
illumination, and color variation in N video frame sequences.
The RGB histogram is also extracted to obtain the histogram
difference value. We can describe the similarity value based
on the combined features between two frames fk and fk+l
by multiplying the matching SURF score [8], [9] and cosine
distance of RGB histogram as

ψ(fk , fk+l) =
(
(
αk + α

′
k

2
) · dcos(hk ,hk+l)

)
, (1)

where dcos(hk ,hk+l) = cos(hk ,hk+l) is the cosine similarity
between two RGB color histograms, hk and hk+l . αk =
Mk/|Qk | and α′k = Mk/|Qk+l | denote the matching score.
Mk is the number of matched keypoints (index pairs) between
two frames. |Qk | and |Qk+l | are the number of descriptors
(features) in the fk and fk+l frames, respectively. l denotes an
inter-frame distance.

Small changes usually occur during the gradual tran-
sition, so setting a small l may not provide a good
result. We can enhance the signal level by increasing l
to retrieve all potential difference values. In the candidate
segment selection, the inverse of ψ(fk , fk+l) value is used
instead of (1) to cope with our scheme, which is given
by λ(fk , fk+l) = 1− ψ(fk , fk+l). Let λ be the discontinuity
signal representing the temporal characteristic in the video.
In this work, we also apply the Savitzky-Golay (SG) poly-
nomial smoothing filter [42] with window length w = 5,
to generate the smoothed signal λ̃. SGfiltering can smooth the
noise from the signal, while preserving the original properties
of the signal, in contrast to a moving-average filter.

Calculating the mean value over time can detect any
changed content of the video. It is known as a running
average or a cumulative moving average (CMAn). The
smoothed discontinuity value between fk and fk+l frames
based on SURF descriptors are denoted by λ̃(k) where
k = 1, 2, . . . ,N − l. The running operation of the average
values is to compute the mean value of each sample in the
λ̃(k) concerning all the previous samples of λ̃(k), up until
the current time. Let λ(k) be the cumulative average of λ̃(k);
therefore, two cumulative average values are defined as

λ(k) =
λ̃(1)+ . . .+ λ̃(k)

k
, (2)

λ(k + 1) =
λ̃(k + 1)+ k · λ(k)

k + 1
, (3)

FIGURE 2. Example of qualified candidate frames using positive step
detection. (a) The dissimilarity value λ and smoothed signal λ̃ between fk
and fk+l frames with inter-frame l = 5. (b) Cumulative moving average
signal (λ) and the positive step points. .

where λ(k) is the current cumulative average and λ(k + 1)
is the updated cumulative value as the new λ̃(k + 1) value
arrives. λ is the cumulative moving average signal.
Finally, we can use the advantage of the output character-

istic to construct one signal that represents a changed video
frame pair as a time-series data, λ. The cumulative moving
average signal, λ is supplied to the positive step detection.
Let λ be a noisy time series data, and we can locate positive
transient steps by calculating the first derivative of λ, where
the step height is the difference between λ(k) and λ(k + 1)
values, over a specified number of a data points denoted
as k th frame pair. Each positive step point denotes a pair of
video frames within inter-frame distance l as pk .

A result of our proposed candidate segment selection
scheme can be illustrated in Fig.2. It shows that the positive
step positions Fig.2(b) correspond to the dissimilarity value
in Fig.2(a). Now, we can construct the start, and end frame
of each group of positive step points producing Pj,l where
j = 1, 2, . . . , ncad respectively. ncad represents the total num-
ber of candidate segments. By using the implementation as
above, the length of a candidate segment varies to the duration
of the shot boundary.We also add l frames before and after the
segment to ensure that the similarity/dissimilarity value does
not fall at the edge of the segment. The candidate segment Pj,l
is defined as

Pj,l =
{
pk−l, pk−l+1, . . . , pk+l+n̂−1

}
, (4)

where pk is the k th video frame pair and n̂ is a number of posi-
tive points in the segment. The segment, which has more than
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Algorithm 1 Candidate sub-segment selection.
Notation: P = {Pj,l,P(j+1),l, . . . ,Pncad }: candidate segment
of video frame pair, n̂: number of positive points, ψ i

j,l : raw

similarity signal, ψ̃ i
j,l : smoothed similarity signal, ψ i

j,l : mean
value of ψ i

j,l , Tcad : candidate threshold, w: filter window
size, l: candidate inter-frame distance, lc: adjacent inter-frame
distance, inp: number of video frame pairs, Ymax and Ymin:
matrix store local maxima and local minima to compute
fmaxL , fmaxR, fmin.
Require: Pj,l, ψ i

j,l,Tcad ,w, l, lc.
Ensure: Fj,l : sub-segment output.
1: for j = 1, 2, . . . , ncad do
2: i = [pk−l pk−l+1 . . . pk+l+n̂−1]T ;
3: ψ i

j,l = [ψ(i) ψ(i+ 1) . . . ψ(inp)]T ;
4: if minψ i

j,l ≤ Tcad then
5: Obtain ψ̃ i

j,l by performing SG-filter with window
size w to ψ i

j,l .
6: Find Ymax and Ymin matrix of size (cmax × 2) and

(cmin × 2) by local extrema calculation with Tcad
7: if cmin 6= 0 then
8: for jj = 1, 2, . . . , cmin do
9: f imin = ymin(jj, 1);

10: f imaxL(jj) = min
m<f imin,m∈i

|f imin − f
i
max(m)|;

11: f imaxR(jj) = min
m>f imin,m∈i

|f imin − f
i
max(m)|;

12: end for
13: fmaxL = [f imaxL(1) f

i
maxL(2) . . . f

i
maxL(cmin)]

T ;
14: fmaxR = [f imaxR(1) f

i
maxR(2) . . . f

i
maxR(cmin)]

T ;
15: Fj,l = {fmaxL , fmaxR + l};
16: end if
17: else if minψ i

j,l > Tcad && minψ i
j,lc < 2Tcad

18: && ψ i
j,lc > 4Tcad then

19: Fj,l = {pk−l, pk+l+n̂−1 + l};
20: end if
21: end for

w frame pair will be analysed. Otherwise, the segment will
be discarded and considered as the non-boundary segment.
Pj,l can be a long video frame segment that may contain more
than one shot boundary. Therefore, it is essential to find the
sub-segment, which includes accurate start frame and end
frames.

Let ψ i
j,l be the similarity signal of Pj,l segment where

i = (pk−l, pk−l+1, . . . , pk+l+n̂−1). Local extrema calculation
is performed to select two maxima points (fmaxL and fmaxR),
and at least oneminima point that are lower than the threshold
Tcad to ensure that a shot boundary presents in the current
segment. The summary of the candidate sub-segment selec-
tion process is described in Algorithm 1. From the proposed
candidate segment selection step, it should be denoted that
more than one shot is collected in the same segment, depend-
ing on the signal representation. Also, there is no constraint
on the length of transition because the local maxima and local

minima are corresponding to the transition occurrence itself.
Finally, the final candidate segment indexing the list of video
frame pair is defined by

F =


Fj,l
Fj+1,l
...

FNcad ,l

 ; Fj,l = [fmaxL (fmaxR + l)]. (5)

According to (5), we also add l frame length to the segment
to ensure that there are a sufficient number of video frames
over the transition period. Ncad denotes the total number of
video frame segment. By using the list of candidate seg-
ments F, the only potential segments of shot boundary frames
are collected for the subsequent SBD process, regardless of
the length of the transition. The next step is to construct the
signal for each video segment. At this stage, a different l value
is obtained for each transition detected.
The cut (abrupt) characteristic is a sudden change between

two adjacent frames, so the system requires a dominant sim-
ilarity/dissimilarity value that effectively identifies the cut
frames.Meanwhile, it has been found that SURF is a powerful
feature to discriminate between two images, by matching
their respective interest points. However, it can be insensitive
to a broad movement of camera or object when using high l
value results in themissmatched descriptors. In sports videos,
the disappearance/appearance of the small effects such as
logo, scoreboard, or texts, can affect the matching corre-
sponding points between two frames. Moreover, the SBD
framework has a parameter constraint when extracting fea-
tures from a large number of video databases. This limita-
tion may lead to a false matching score value. To conclude,
we need the quantitative analysis on the segment that may
contain these effects.

B. MULTI-FEATURES COMBINATION
DISSIMILARITY SIGNAL
Visual feature extraction is the primary process leading to
effective shot detection. In this paper, we propose a frame-
based approach. Therefore, the boundary will be identified
when its similarity value is below the predefined threshold
during the candidate segment selection process. From the
review of SBD methods in Section II, SURF and RGB color
histograms perform well in the shot detection.
For our proposed system, shot boundaries are detected by

using the discontinuity signal between two video frames,
λ(fk , fk+l). The similarity signal used in shot transition
detection is initially calculated based on SURF matching
score, and RGB histogram, based on Cosine similarity. How-
ever, the limitation is that when calculating the similarity
between two adjacent frames, it may produce an undefined
value, or an outlier value resulting in misleading shot classi-
fication. Hence, it is important to extract additional features,
which can discriminate two frames regardless of their having
very similar color information. Consequently, the dissimilar-
ity signal denoted as λ, can be effectively implemented in the
shot transition detection.
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The cut transition detection also obtains the sum of abso-
lute difference (SAD) value between two video frames,
to define the shot boundary. However, the normalised
SAD within the candidate segment is used instead of the
un-normalised value, because we need the value in the
range [0, 1]. The frame difference based SAD can be sensitive
to some disturbances caused by illumination or flashlight.
In this case, we make use of these weaknesses as the false
shot detection when performing the cut detection process.
Let dsad (fk , fk+l) be the normalised SAD between fk and fk+l
frames, which is calculated by

dsad (fk , fk+l) = 1
|M|

∑
u∈M
|fk (u)− fk+l(u)|. (6)

where fk (u) and fk+l(u) denote the pixel value at coordi-
nates u of fk and fk+l frames, respectively. M is the pix-
els of the overall video frame, and |M| represents the total
number of pixels in a video frame. From (6) it should be
denoted that we calculate the sum of difference for all R, G,
and B values.

C. SHOT TRANSITION DETECTION
In this step, it should be noted that the dissimilarity signal
λ of each segment in F obtained from (5) will be used
instead of similarity, to cope with our proposed SBD criteria.
In general, the cut (abrupt) transition is a significant change
in a triangle shape in a candidate, when choosing an inter-
frame distance as lc = 1. From the purpose of a multi-modal
features based approach, cut transition is the point where
a high value presents. Our assumption is that if there is a
significant change, λ(fk , fk+lc ) should be as high as possi-
ble, caused by the multiplication result. Now, let λj1lc be the

dissimilarity signal, d̂ j1sad be the normalised SAD signal for
each (j1)th segment where j1 = 1, 2, . . . ,Ncad , and Ncad is
the total number of video frame segment in F.

For each segment, the cut transition occurs when the
dissimilarity value is high. In contrast, values during other
transitions such as gradual, or no transition can be low.
Hence, we can use the peak detection to identify a seg-
ment of video frames that contains a cut transition when
its local maxima are above the cut transition thresh-
old, Tc. The cut transition will be modelled into a cri-
terion depending on the Eα; the total number of the
first derivative of SURF matching score that equals to
1 or ∞, and non-cut effect; Esad =

∑
(d̂ j1sad > Tc − 0.1).

We define that Esad is no more than 2 for each cut transi-
tion segment, which limits the number of an expected cut
boundary.

The conditions are made to prevent the false detection
caused by the failure of the SURF feature extraction and non-
cut effect. If any candidate segment does not meet the Eα
criteria, the segment will be discarded from the cut detection.
Consequently, the cut transition is declared when one of the

following conditions is satisfied:

CT



∣∣∣1d̂ j1sad,−∣∣∣ > βTc &&
∣∣∣1d̂ j1sad,+∣∣∣ > βTc∣∣∣1d̂ j1sad,−∣∣∣ < βTc &&
∣∣∣1d̂ j1sad,+∣∣∣ > Tc∣∣∣1d̂ j1sad,−∣∣∣ > Tc &&
∣∣∣1d̂ j1sad,+∣∣∣ < βTc

, (7)

where
∣∣∣1d̂ j1sad,−∣∣∣ = ∣∣∣d̂ j1sad (0λ(p))− d̂ j1sad (0λ(p)− 1)

∣∣∣ and∣∣∣1d̂ j1sad,+∣∣∣ = ∣∣∣d̂ j1sad (0λ(p))− d̂ j1sad (0λ(p)+ 1)
∣∣∣ are the differ-

ence of d̂sad value between each video frame pair with the

peaks of λj1lc signal. 0λ and 0sad are the peak vector of
λlc and d̂sad , respectively. Np is a total number of detected
peak where p = 1, 2, . . . ,Np. However, if Eα is greater
than 1, the cut transition will be declared using the similar
criteria in (7) but refer to0sad (p̂) instead of0λ(p). It should be
noted that the performance of cut transition of our proposed
system relies on parameters β and Tc. More discussion on the
parameter selection will be discussed in Section VI.

From the cut transition detection, any segment without a
cut transition will be listed as the gradual candidate segment.
According to Algorithm 1, the small segment, which belongs
to the gradual segment may be collected separately. These
overlapped segments will be merged before performing the
gradual detection. Moreover, our candidate segment selection
does not depend on the length of the transition; therefore
the segment may contain more than one shot. We apply the
peak detection to λ̃j1lc again. If a minimum value between
two detected peaks is less than 0.5, the candidate segment is
divided into smaller multiple segments. Finally, the segment
must contain more than 2w video frame pairs to proceed to
the gradual detection process.

Gradual transition detection is subsequently applied to
the rest of the candidate segments that do not meet the cut
transition condition. In this step, we define the SG-filter
input dissimilarity signal as λ̃j2lg . lg is the inter-frame distance
parameter that directly influences the performance of gradual
detection and overall shot detection. More discussion on
this parameter is described in Section VI. Peak detection is
applied to detect the maximum value of λ̃j2lg that is greater
than Tg. Let 0λ̃g be the peak location (video frame pair) and

φλ̃g
denotes the highest value of λ̃j2lg . Consequently, the grad-

ual transition is revealed when one of the following criteria is
satisfied:

GT



∣∣∣φλ̃g −min λ̃j2,LTlg

∣∣∣ > Tg

&&
∣∣∣φλ̃g −min λ̃j2,RTlg

∣∣∣ > Tg∣∣∣φλ̃g −min λ̃j2,LTlg

∣∣∣ < Tg

&&
∣∣∣φλ̃g −min λ̃j2,RTlg

∣∣∣ > 2Tg∣∣∣φλ̃g −min λ̃j2,LTlg

∣∣∣ > 2Tg

&&
∣∣∣φλ̃g −min λ̃j2,RTlg

∣∣∣ < Tg

, (8)

where min λ̃j2,LTlg and min λ̃j2,RTlg denote the minimum value
of the first and second part of the gradual segment
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at 0λ̃g,LT and 0λ̃g,RT video frame pair, respectively. To elimi-
nate the false detection, λLT and λRT are calculated to ensure
that a shot boundary exists in the current gradual segment.
The summary of our proposed shot boundary detection is
illustrated in Algorithm 2.

IV. DATASET AND EVALUATION CRITERIA
To evaluate the performance of the proposed SBD algorithm,
we have experimented with our algorithm, over the set of pro-
fessional golf video frame sequences. The video dataset con-
tains various transition effects including cut, gradual (fade-in,
fade-out), and logo transition.

A. VIDEO DATASET CHARACTERISTICS
Six video clips (140 minutes) of the golf video frame
sequences [43] were chosen as our sport video data, which
contain cut, gradual and other transition (e.g. logo and score-
board changes). However, the logo and scoreboard occur-
rence have been considered a part of the shot boundary in
our experiment. Therefore, we have assigned these effects as
our gradual transition ground-truth. The golf video sequences
contain 432 cut transitions and 316 gradual transitions in
total.

Our experiments also aim to ensure that the proposed
algorithm is evaluated in comparison to the recently-proposed
methods. Hence, we have selected four video sequences from
the video dataset provided by the US National Institute of
Standards (NIST) benchmark dataset [44] for benchmark-
ing the proposed SBD system. The results can be described
as both cut and gradual transition detections obtained
from the reported results. The dataset is TREC2001 which
includes: NASA 25th Anniversary, Airline Safety and Econ-
omy, Perseus Global Watcher. These video sources are pub-
licly available on the ‘‘Open-Video Project’’ website [45].
TRECVID collection website [45] provides the ground-truth
of the video dataset for all transition types. There are 414
shot transitions in total, 219 cut transitions, and 195 gradual
transitions that consist of fade-in, fade-out, wipe and dissolve
types. The detail of the video sequences can be illustrated
in Table 1.

B. PERFORMANCE EVALUATION CRITERIA
To illustrate the efficiency of the proposed SBD scheme,
we also adopt the similar measurement to other frameworks
using the following criteria:

Recall (R) =
Nc

Nc + Nm
× 100, (9)

Precision (P) =
Nc

Nc + Nf
× 100, (10)

F-measure (F1) =
2RP
R+ P

× 100, (11)

where Nc is the number of correctly detected transitions, Nm
is the number of missed detected transitions, and Nf is the
number of false transitions detection. Recall (R) is the rate of

Algorithm 2 Shot transition detection.
Notation: F : candidate segment, Ncad : number of candidate seg-
ments, w: filter window size, lc: cut inter-frame distance, λ: dissimi-
larity signal, d̂ j1sad : normalised dsad ,0λ: peak vector of λlc ,0sad : peak
vector of d̂sad ,φλ: detected peak value of λ,φsad : detected peak value
of d̂ j1sad , Tc: cut candidate threshold, β: threshold for normalised dsad
signal, Np,Nṕ: number of detected peaks, Eα : predefined parameter
for SURF matching score, Esad : predefined parameter for d̂ j1sad , CT :
cut transition condition, SBc: cut transition, G: gradual candidate
segment, Ng: number of gradual candidate segments, lg: gradual
inter-frame distance, λ̃j2lg : smoothed dissimilarity signal, 0λ̃g : peak

vector of λ̃g, φλ̃g : detected peak value of λ̃g, Tg: gradual transition
threshold, λLT , λRT : calculated value to ensure a gradual transition
exists, GT : gradual transition condition, SBg: gradual transition.
Require: F,w, λlc , λlg , dsad ,Tc, β, lc,Tg, lg
1: Initialization: c = g = 0.

Ensure: SBc and SBg
2: for j1 = 1, 2, . . . ,Ncad do
3: c1 = 0; fs = F(j1, 1); fe = F(j1, 2);
4: if |fs − fe| + 1 > 2w then
5: Perform cut transition detection.
6: Calculate d̂ j1sad .
7: Find 0λ(p) where φλ(p) > Tc, p = 1, 2, . . . ,Np
8: Find 0sad (ṕ) where φsad (ṕ) > βTc, ṕ = 1, 2, . . . ,Nṕ
9: Calculate Eα and Esad
10: if Eα = 0 && Esad ≤ 2 then
11: for p = 1, 2, . . . ,Np do
12: if one of CT condition in (7) is true then
13: c1 = c1+ 1; c = c+ 1;
14: SBc(c, :) = [0λ(p) 0λ(p)+ 1];
15: end if
16: end for
17: else if Eα 6= 0 && Esad ≤ 2 then
18: for ṕ = 1, 2, . . . ,Nṕ do
19: if λ(0sad (ṕ)) > Tc && one of CT is true then
20: c1 = c1+ 1; c = c+ 1;
21: SBc(c, :) = [0sad (ṕ) 0sad (ṕ)+ 1];
22: end if
23: end for
24: end if
25: if c1 = 0 then
26: Declare F(j1, :) as the gradual candidate segment.
27: end if
28: end if
29: end for
30: Combine the overlapped segment
31: Check if more than one gradual transition may exist in the

segment.
32: Generate the final gradual candidate segment G.
33: for j2 = 1, 2, . . . ,Ng do
34: fs = G(j2, 1); fe = G(j2, 2);
35: Compute λ̃j2lg
36: Find 0λ̃g where φλ̃g > Tg.
37: if 0λ̃g 6= 0 then
38: Compute Eα .
39: if one of GT condition in (8) is true && Eα = 0 then
40: Calculate λLT = λ(0λ̃g,LT , 0λ̃g ).
41: Calculate λRT = λ(0λ̃g , 0λ̃g,RT ).
42: if λLT > 0.9 ‖ λRT > 0.9 then
43: g = g+ 1;
44: SBg(g, :) = [0λ̃g,LT 0λ̃g 0λ̃g,RT ];
45: end if
46: end if
47: end if
48: end for
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TABLE 1. Video sequences used and their respective descriptions.

missed detections and is high whenmissed detections are low.
Precision (P), on the other hand, represents the false detec-
tion rate. The overall performance can be described by the
F-measure (F1), which is a measure considering both recall
and precision value. Our experimental results are performed
by Matlab R2015a on a Windows 7 Professional with Intel
Xeon 2.6GHz CPUs.

V. EXPERIMENTAL RESULTS
Our proposed SBD method is evaluated over the available
dataset under two conditions to show the performance regard-
ing the percentage of detection accuracy. Firstly, we per-
formed our approach and SBD system in [9] with sports
video dataset. The available online software was obtained
from [46] and we carried out the test based on the provided
default parameter. With the limitation on publicly available
experiments on golf video, in this work, we can compare
the detection performance with the method mentioned above.
Secondly, the evaluation was performed over TREC2001
dataset and compares our results with the results previously
reported in the literature.

A. SPORT VIDEO DATASET EVALUATION
The experiment evaluated over golf video is shown in Table 2.
The results indicate that our cut detection scheme provides
an excellent detection performance for both precision and
recall. Our proposed cut detection, therefore, can provide
very promising detection performance regardless of the type
of video dataset. For gradual detection, the results include all
dissolve transitions, logo transitions and scoreboard changes,
because sports videos has large camera/object movements,
and rapid background changes. The precision of gradual
detection is, therefore, lower than in cut detection. In this
paper, it should be noted that the flyball camera movement
effect is not identified as a shot transition, because the frames
before and after this effect should be recognised in the same
semantic event as ‘‘tee-off shot’’ or ‘‘fairway approaching
shot’’.

To compare the detection accuracy over the golf video
dataset, we compared the result of our proposed scheme,

and the global and local descriptors approach proposed
in [9]. Based on our empirical experiments, the recommended
Tg and lg are 0.35 and 1, respectively. The available software
from [46] does not provide the result by each transition type,
therefore in this paper, the comparison of detection accuracy
is listed by the performance of overall detection (detecting all
transitions as the shot boundary).

From the results in Table 3, it is revealed that the proposed
method performs better than the method in [9] on: precision,
recall and F1-measure. Our proposed SBD also yields a
better precision value, which concludes that the false shot
elimination performs well by calculating λ and Eα over the
gradual segment. The missed shot boundary, such as in G5,
failed to detect because the video sequences between two
shots are in the similar color histogram. We observe that
in the golf video, some of the gradual transitions occurs
before or after a large camera/object movement where the
characteristic of λ(fk , fk+lg) may not effectively distinguish
the dissolve change from these disturbances caused by the
camera/object movements.

B. TREC2001 DATASET EVALUATION
To show the superiority of the proposed SBD scheme, the pre-
cision, recall and F1 measures, of four videos from the
TREC2001 video collection, are compared with our proposed
framework and methods in [6] and [7], respectively. Table 4
shows that our cut detection outperforms other methods with
a similar parameter selection of golf video dataset. We also
test the proposed scheme with two more video datasets
from the TREC2001 collection [45]: anni005 and anni009,
to compare the cut detection results with the method in [19],
and [47], respectively. Our proposed SBD framework has
the highest F1 performance with an average cut detection
at 98.0%, while the method in [19] is 93.0% and 97.6%
in [47].

From the gradual detection results in Table 4, our scheme
does not perform well in the gradual transition as opposed to
the cut detection. We observe that most of the false detection
is caused by the effect of significant changes in background
and object movement. Video frame features cannot toler-
ate these disturbances. Missed gradual shot boundaries in
the video frame pair can occur on two occasions: missed
collected in the candidate segment selection step and failed
detection during the gradual transition detection. However,
from the result in Table 5, our SBDmethod can yield the high-
est accuracy considering the overall detection performance
when choosing the lg = 3 and Tg = 0.15, respectively.
The overall performance generated by the software

from [46] shows that the global and local descriptors do not
perform well for documentary type videos, in contrast to
the result evaluated using golf videos. The result supports
our observation that the length of gradual transition has a
high impact on the performance of overall gradual detection.
Furthermore, the false elimination process, which is proposed
in [9] and performed using [46], is calculated based on the
behaviours of similarity signals within a certain number of
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TABLE 2. Performance of the proposed method evaluated over golf video sequences (l = 5, Tcad = 0.1, lc = 1, Tc = 0.9, β = 0.6, lg = 1, Tg = 0.35).

TABLE 3. Comparison of overall transition detection of the proposed
method with the system proposed in [9] (Tc = 0.9, β = 0.6, lc = 1,
Tg = 0.35, lg = 1).

FIGURE 3. The average recall and precision graph of the cut transition
detection of two video sources by varying threshold β ∈ [0.01,1] .

video frames using SURF and global histogram. It may cause
missed shot boundaries where most are gradual transitions.
The comparison between the proposed SBD scheme and
method in [9] has shown that the similarity based on SURF
and global features between two adjacent frames do not per-
form well in gradual detection; especially longer transition
lengths experienced in the documentary video dataset.We can
conclude that the trade-off of using SURF matching score is
its disadvantage in representing the dissolve changes, but it
still provides a good representation of the cut change.

FIGURE 4. The recall and precision graph of the overall transition
detection of two video sources by varying threshold Tg ∈ [0.01,1] and
lg ∈ [1,5]. (a) TREC2001 video dataset. (b) Golf video sequences.

VI. DISCUSSION
In our proposed shot boundary detection scheme, inter-frame
distance l and threshold Tcad have a significant effect on the
candidate segment selection. The purpose of this process is
to select the potential frame pairs that contain boundaries.
Therefore, larger l significantly collect all boundaries espe-
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TABLE 4. Comparison of the proposed method with other systems evaluated over TREC2001 video Dataset (lc = 1, Tc = 0.9, β = 0.6, Tg = 0.15, lg = 3).

TABLE 5. Comparison of overall transition detection of the proposed method with Apostolidis’s system [9] evaluated over TREC2001 video dataset
(Tc = 0.9, β = 0.6, lc = 1, Tg = 0.15, lg = 3).

cially gradual transitions. However, the effect of choosing a
large l is increasing in the number of candidate frames, as well
as false positives in shot detection. Tcad is the parameter
that will verify whether the segment contains shot boundary.
Therefore, we need to determine l and Tcad that effectively
reduce the number of processed video frames and be able
to collect most of the potential boundaries at the same time.
These two parameters are an inverse variation to each other.
When choosing larger l, Tcad should be slightly lower to pre-
vent collecting non-boundary segments. In our experiments
over two video sources, these two parameters are determined
as follows: l = 5,Tcad = 0.1.
Secondly, the parameter Tc and β in CT criteria have a

significant influence on the cut detection performance. These
two parameters directly affect the precision of cut detection.
The purpose of our proposed cut detection scheme is to
ensure that the segment contains a cut transition by using the
advantage of multiplication. If the cut does exist, the higher
dissimilarity must exhibit. Therefore, setting a high Tc can
significantly achieve good precision while still maintaining a
good recall for the cut detection.

In this paper, we have also investigated the performance
by choosing a high Tc and varying β value. A higher β value
provides better precision, but the recall is slightly lower than
setting a low β value. The recommended Tc takes value in the
interval [0.8, 0.9] and β in [0.5, 0.7] for both video types. The
average precision and recall graph of cut transitions detected
by varying β ∈ [0.01, 1] for two video sources is shown

in Fig.3. It indicates that our proposed scheme provides excel-
lent performance in cut transition detection. To compare the
cut detection result with other proposed methods, we deter-
mine lc = 1, Tc = 0.9, and β = 0.6 for both video sources.

The performance of gradual detection and overall detection
are influenced by Tg and the gradual transition criteria GT .
Based on our observation, the difference between transition
characteristics in documentary videos, and golf videos, are
the length of the gradual transitions. The average gradual
length of TREC2001 is more than 1.5 times that of the grad-
ual transitions duration in the golf videos. This observation
implies that mild changes may occur over a longer period.
Hence, SURF matching scores may not efficiently discrim-
inate between the gradual effects in the documentary video
source. Our assumption is supported by the output generated
by SBD using [46].

In this paper, we also perform the test by varying the thresh-
old Tg ∈ [0.01, 1] and lg ∈ [1, 5] and observing the overall
detection results. Fig.4 shows the recall and precision graph
of the overall detection results for TREC2001 and golf video
sequences. lg significantly affects the recall performance in
the documentary video, which supports our assumption that
the dissimilarity signal λ, based on the SURF matching score
and RGB histogram between two adjacent frames, does not
perform well during the mild change in the long gradual
transition length. However, choosing a larger lg as shown
in Fig.4(a) can effectively increase the overall detection per-
formance.
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In contrast to the documentary video type, the combi-
nation feature λ performs well in the shot detection for
golf video, regardless of choosing a different lg parameter.
However, the precision slightly drops as shown in Fig.4(b)
when increasing lg, because the false positive answers are
detected from the effects of camera/object movement. Conse-
quently, we can conclude that gradual detection operates with
a Tg threshold interval [0.3, 0.4] and lg ∈ [1, 3] for golf video
sources. For the TREC2001 documentary video, the recom-
mended lg falls in the interval [3, 5] and the threshold Tg
falls in the interval [0.1, 0.3]. The precision and recall graph
in Fig.4 show that the proposed SBD can provide a high
accuracy for the overall detection with the selection of inter-
frame distance.

VII. CONCLUSION
Semantic video analysis is one of a challenging task in sports
video application. With the rapid growth rate of popularity
in sports, videos with a sophisticated editing effect have
been extensively broadcast. Shot boundary detection is there-
fore considered an essential step toward obtaining efficient
semantic event searching. Golf is a long-play sport which
contains several camera/object movements and a high corre-
lation between color and content information within a shot.
Moreover, the transition between shots may not be only a
dissolve transition but include logo appearance, scoreboards,
and so on. Our proposed SBD method is therefore designed
to obtain an efficient shot boundary detection, where the
detection process directly analyses the transition behaviour.
Therefore, all shot boundaries are divided into two categories
namely cut and gradual. The candidate segment selection is
performed by the combined features aiming to collect the
potential shot boundaries and reduce the number of processed
video frames. Experimental results show that our proposed
cut transition outperforms the other proposed SBD scheme.
Our proposed SBD system also provides good performance
in the overall shot boundary detection compared to other
recent proposed schemes. The PBI transition detection has
the benefit that users do not require the training process but
would still be able to obtain a good performance in detection
accuracy. We also observed the inter-frame distance based
on the proposed visual features. Our conclusion is that the
inter-frame parameter directly affects the performance of the
gradual shot detection, when implementing the combination
features using SURF with the extended transition effect, such
as in the documentary video dataset. Our future work is to
focus on the detection speed and improve the gradual detec-
tion.
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