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ABSTRACT Many studies of the mining of big learning data focus on user access patterns and video-
viewing behaviors, while less attention is paid to the active video-viewing time. This paper pinpoints this
completely different analysis unit, models the extent to which factors influence it and further predicts when
a user permanently leaves a course. The goal is to provide new insights and tutorials regarding data analytics
and feature subspace construction to learning analysts, researchers of artificial intelligence in education and
data mining communities. To this end, we collect video-viewing data from a large-scale e-learning system
and use the Cox proportional hazard function to model the leaving time. The models mainly include the
interactions between variables, non-linearity assumption and age segmentation. Finally, we use the collected
hazard ratios of model covariates as the learning features and predict which users tend to prematurely and
permanently leave a course using efficient machine learning algorithms. The results show that, first the
modeling can be used as an efficient feature extraction and selection technology for classification problems
and that, second the prediction can effectively identify users’ leaving time using only a few variables. Our
method is efficient and useful for analyzing massive open online courses.

INDEX TERMS Active video-viewing time, modeling and predicting, leaving time, leaving risk.

I. INTRODUCTION
With the rapid development of the Internet and streaming
media technology, the tools used for information dissemi-
nation have gradually been expanded from static texts and
images to animations, audio and videos. In the last few
decades, the research on video viewing has attracted much
attention in academia. Most of the research has focused on
user access patterns with respect to non-educational videos
as well as integration with courses as a kind of educational
technology, among others. Nearly no one has focused on the
active video-viewing time, which refers to the total time that
passes while a user watches a video and only for when the
video player is in the playing state, when mining big learning
data.

Currently, the video on demand (VoD) system is capa-
ble of accommodating video courses and is used in many

learning platforms to provide convenient learning services.
Video-based learning supports repeated practice and makes
thousands of hours of content available on demand [1], which
enables students to learn as required. Recent work on the
rising Massive Open Online Courses (MOOCs) has offered
the possibility of understanding the video-viewing behaviors
and cognitive meanings of a user per operation. These works
claim that video-viewing behaviors such as play and pause
reflect learning states [2]. However, many of these works pri-
marily associate such behaviors with learning performance,
and less attention is paid tomodeling and predicting the active
video-viewing time of users. This topic is very important in
the video-based learning. The active video-viewing time is
the sum of timewhen the human brain interacts with the video
content. Therefore, it is an effective indicator that character-
izes the amount of cognitive engagement [3]. Educators may
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gain insights into whether a student learns something and how
much he/she has learned. For example, a duration of active
watching of tenminutes indicates that a student has consumed
more video content than a student who actively watched for
only five minutes. Moreover, modeling and predicting the
active video-viewing time has significant educational appli-
cations. On the one hand, modeling enables us to study when
the number of leavers (those who leave a course before the
time of interest) or non-leavers (those who leave a course
at or after the time of interest) is maximum while taking
those who are at risk into account. One could learn which
students leave before the time of interest, what causes them
to leave and how to prevent it. Moreover, modeling allows
interpreting the change in leaving risk due to video viewing
as the unit covariate changes, which can help educators to
control some conditions to reduce the risk of students leaving
a course. On the other hand, the active video-viewing time
is also a predictor of academic achievement [4] because a
learner is more likely to achieve a higher performance if
he/she spends more time viewing the necessary videos [5].
Therefore, lengthening the active video-viewing time is liable
to maximize the learning output and thus is a constantly
pursued objective for many educators, such as [6] and [7].
To do this, the first and most important step is to prop-
erly identify which students are high risk based on their
predicted leaving periods. If, during course registration, a
student is predicted to prematurely and permanently leave
a course, educators can plan to provide him/her with the
proper metacognitive tools [6] to help him/her devote more
time to that course. Also, an intelligent learning system could
assess the teaching quality according to the possibility that
a student would leave a course and recommend materials
and learning companions [8], as well as offering pop-up,
personalized hints [9], [10] to make the system more effec-
tive. Besides, the prediction can identify the learning time of
students using carefully selected features which are used to
analyze the viewing activity of video-based learning system
such as MOOCs. Through this research, we hope to provide
new insights and tutorials regarding data analytics and fea-
ture subspace construction to learning analysts, researchers
of artificial intelligence in education and data mining
communities.

Thus, this study deals with modeling and predicting the
active video-viewing time in an e-learning system. The main
difference from other studies is that, on the one hand, we
use a completely diverse analysis unit, i.e., the active video-
viewing time, while on the other hand, we adopt novel models
for analyzing the effects of related variables that are mainly
used for efficient feature extraction and selection. This work
confused us at the outset, however, until we were inspired
by a series of statistical tests. Specifically, this task can be
progressively accomplished by answering the following three
questions:

1) How can we understand the distribution characteris-
tics of the active video-viewing time? This question

requires us to explore the statistical properties and pro-
vides a direction for modeling techniques.

2) Which factors significantly influence a user’s active
video-viewing time? This question requires us to
investigate the effects of multivariables on the active
video-viewing time using time-to-event models and to
develop a process of feature extraction and selection for
prediction. The models quantify the change in leaving
risk as the unit factor changes.

3) Is it possible to predict the approximate time at which a
user will prematurely and permanently leave a course?
This question requires us to predict the time at which
a user will leave a course, which has important impli-
cations for individualized learning since one could
provide strategies to increase a user’s video-viewing
time.

To answer these questions, we use data from a large-scale
e-learning system called Skyclass and especially focus on the
time during which a player is always in the playing state when
a user interacts with it. We primarily use the active video-
viewing time to analyze the characteristics of distribution and
further use it as a dependent variable in modeling and predict-
ing. In the modeling phase, the event of interest is defined
as a user permanently leaving a course without the intention
to return, and several time-to-event models are proposed
with the method enter. Among others, interactions between
variables, the non-linearity assumption and age segmentation
are included. In the prediction phase, we use the mean as
the numerical boundary to distinguish early leaving from
late leaving and utilize several efficient machine learning
algorithms to determine the hazard ratios of the covariates of
statistical significance, which are considered as the learning
features. The main contributions are as follows: 1) we present
multiple models to show the change in leaving risk due to
video viewing as the unit covariate changes; 2) the modeling
can be used as a cost-effective feature extraction and selection
technology for classification problems; and 3) this prediction
mechanism can be used to effectively identify users’ leaving
times by considering only 4 factors, i.e., age, admission score,
video length, and whether users are from the field of medical
science.

This paper is organized as follows. Section 2 reviews the
related work. Section 3 describes how data is collected and
basic statistics. Section 4 discusses the distribution charac-
teristics of the video-viewing time. Section 5 models the
leaving time using the method enter and analyzes the factors
that influence the active video-viewing time. The learning
features are established in Section 6, and we predict the
time at which a user prematurely and permanently leaves a
course. Finally, we draw conclusions and discuss implications
in Section 7.

II. RELATED WORK
Much attention has been paid to video viewing in recent
years, with part of the relevant work being presented in the
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following studies [11]–[14]. However, most of them mainly
considered the user access patterns [15], [16]. For exam-
ple, the authors in [16] studied YouTube videos and found
two types of video access: rarely accessed and frequently
accessed. They attempted to describe the daily access pat-
terns of each type and predict the number of accesses in
the future. There are also some studies, such as [15], [17],
that inferred the quality of a video service by modeling user
behavior. However, there are few studies that measured the
active video-viewing time. The authors in [18] claimed that
video-viewing time is important for system planning, user
engagement understanding and system quality evaluation.
They measured a popular commercial VoD system called
PPLive, characterized the distribution of watching time, and
inferred the relation between video-viewing time and video
features. Unfortunately, their analytics, which were oriented
toward a business system, are probably not suitable for edu-
cational purposes.

Video-related research in the field of education is not
scarce. Generally, videos are usually used as an educational
technology and integrated with courses to improve students’
engagement, motivation, and efficacy, among others. In com-
parison, studies on video-viewing behavior from the data
mining point of view constitute a small proportion of the
research. With the advancement of streaming technologies in
recent years, the video viewing in MOOCs has caught the
attention of researchers; some relevant work can be found
in [19]–[22]. These studies mainly consider the clickstream
behaviors of video viewing and pay little attention to the
active video-viewing time, although the time component is
sometimes utilized. For example, the authors in [21] defined
several clickstream events, such as play, pause, and rate
change, and considered the time lengths of events. Their
objective was to identify the recurring behaviors of users and
evaluate the impact of behaviors on performance. Alterna-
tively, other research has aimed to associate video viewing
with a user’s engagement and dropout [23], [24]. Never-
theless, none of these studies attempted to model, analyze
and interpret the active video-viewing time in educational
systems and to effectively predict the early leavers presented
in this paper. The main reason may be that the data analysis
is usually based on the normality assumption and that the
meaning of active video-viewing time is overlooked. Differ-
ent from that of others, this work uses a completely diverse
analysis unit, i.e., the active video-viewing time, which does
not support the normality assumption and, in the meantime,
has rich pedagogical meanings according to [3] and [4].
Another difference is that the output of our models is a set
of risk values of leaving regarding the target variable with
reference to the baseline, which are used as the features in
machine learning. As far as we know, this is a novel feature
extraction (the original variables are projected to new ones)
and selection (only variables of statistical significance are
selected) technology.

III. PLATFORM AND DATA
A. SKYCLASS
Skyclass is a complete distance learning platform deployed in
China. Skyclass not only transmits the classroom to remote
sites but also records classes, produces courseware, man-
ages educational resources and accommodates videos. Cur-
rently, this system is accessed via personal computers and
mobile devices and is being applied in 11 districts in China,
including Beijing, Zhejiang, Shanghai and Shaanxi. It covers
27 thousand institutions and is utilized by approximately 5.05
million users in total.

The VoD system is the most commonly used learning mod-
ule of Skyclass and can log the durations of user interaction
with the video players. Each log records information about
the interaction event type, the time of an event, the video
materials and so on. Some detailed statistical properties about
this system can be found in the literature [25]. It has been
reported that many video-viewing volumes have the charac-
teristics of a power-law distribution, such as the cumulative
number of operations of video players versus the number of
users and the cumulative viewing times for each course versus
the number of users.

B. ACTIVE VIDEO-VIEWING TIME
We collected 14 million viewing logs from 57,717 unique
users following the method of [26]. To answer the three
questions, we chose the top 7 courses with the most
interactions, which are, in order, Introduction to Mao
Zedong Thought (MS), Political Economy (PE), Linear Alge-
bra (LA), Enterprise Financial Management (EF), Market-
ing (MM), Microcomputer Principle and Interface (MI), and
Health Assessment (HA). Each course has several video clips,
and each clip contains a complete presentation of knowledge
points.

Since our analysis unit is the active video-viewing time,
we only consider the total time during which a player is
always in the playing state. Let the triple < E, t, playing >
be a mathematical expression of video viewing, where E =
{play, pause, drag, leave with return, leave without return}
denotes the types of player events, t denotes the server time
during which an event e ∈ E occurs, playing = {0, 1} denotes
the state of a video player, with 1 indicating the playing state
and 0 indicating the non-playing state. An event play/pause
occurs when a user clicks the play/pause button of a video
player or when play or pause occurs due to other events,
e.g., a drag event, which can be viewed as a pause and play
event and usually occurs when a user slides the frame
of a video player to search for specific video segments.
A leave and return event refers to one in which a user stops
watching a video clip for some time but then resumes viewing
the video clip when he/she takes the same course in the future;
a leave without return event refers to one in which a user
leaves a course permanently, with all subsequent interactions
with the video player occurring when he/she takes a different
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FIGURE 1. The illustration of video-viewing time.

course in the future. Then, the playing state is defined as the
video viewing that occurs from ti to ti+1, with the event at
ti being play and the event at ti+1 being E\{play}, ti < ti+1,
where i is the sequence number of viewing. The active video-
viewing time is the sum of all time periods during which the

player state is 1, denoted as
n−1∑

i=0,playing=1
tplayingi where n is the

sum of video views. This is illustrated in Fig.1. Therefore, the
active video-viewing time is an absolute measure represent-
ing the length of content consumption. In addition, we con-
sider a relative measure called the viewing completion ratio,
which is the proportion of video-viewing time with respect to
the total video length and represents the progress of content
consumption. We use both to analyze the characteristics of
distribution and further use the active video-viewing time,
because of its better properties, as the dependent variable in
modeling and predicting.

C. DATA FUSION
At the university, the features of students are usually stored
in separate database systems. For example, student profiles
are stored in the student management system, and the course
grades are stored in the educational administration system.
To study how variables affect the target variable, i.e. the
active video viewing time, we need to fuse the variables of
interest. Several data tables are integrated, including those
related to student demographics, teacher information, course
information, entrance examinations taken, area of specialty,
and academic level. The student demographics comprise stu-
dent ID, age, gender, region, and so on. The teacher infor-
mation comprises teacher ID, age, gender, professional title
and so on. To fuse the data, we use user identity fields in
Skyclass to match other data tables, and then fill the missing
values in the target dataset. Most of the students’ gender
and age fields are missing, but they can be extracted from
the students’ identity number; also, we obtain the missing
course and teacher information through interviews. Finally,
we delete the invalid data. The students represent mainly
17 areas of specialty. To achieve a greater integration, we
divide the areas of specialty into five categories according
to the taxonomy of the professional directory of the Ministry
of Education in China [27]: Engineering, Medical Science,
Management Science I, Management Science II, and Others.
The difference between Management Science I and II is that
the former belongs to the field of business management,
with the diploma being awarded a management degree, while
the latter belongs to the field of engineering management,

with students being awarded either an engineering degree
or a management degree. Other students not in the four
categories are included in the Others category because of
the small amount of data. The academic level is divided into
high school to junior college (HJC) and junior college to
college (JC). The HJC students refer to those who studied
in high school before watching the course, while the JC stu-
dents are those who have statuses as university students and
want to improve the type of diploma they receive through a
special examination. Correspondingly, for both levels, course
authorizations are obtained via an examination. The scores of
HJC students represent the sums of several courses, while the
scores of JC students represent the results for a single subject.
Ultimately, all the scores are standardized to a scale of 100,
with 60 being the admission threshold. Additionally, we also
consider the video length and video-viewing time. Thus,
the age, admission score, video-viewing time, and video
length are continuous variables, while the others are nominal
variables.

D. BASIC STATISTICS
The input variables are further determined in Section 5. The
final data consists of the information of 7,341 users, and each
user is described by nine variables.1 The minimum age is 16,
while the maximum is 58 (mean = 29.54, SD = 6.59).
The minimum admission score is 60, while the maximum
is 100 (mean = 81.55, SD = 10.17). The minimum video
length is 1.5 minutes, while the maximum is 78 minutes
(mean = 35.59, SD = 12.29). The minimum viewing
time is 0.03 minutes, while the maximum is 60.07 minutes
(mean = 14.10, SD = 10.39). One-way ANOVA shows
that the differences between groups in terms of the contin-
uous variables are statistically significant at the 0.05 level
(df = 6, p = 0.00).
The proportion of male students is 44.8% and of female

students is 56.2%. Four out of seven courses are taught by
male teachers. 46.7% of the population are HJC students.
The basic statistics across specialties are shown in Table 1.
Students of Management Science comprise the greatest pro-
portion, with the number of students of Management I being
nearly twice that of Management II. The number of students
in the Others category is only 6.63%. Those who have the
minimum mean and standard deviation based on gender are
from the Medical Science category, while those who have
the maximum mean are from the Others category and those

1The data is available at https://knoema.com/yyzgruf/video-viewing-time.
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TABLE 1. Statistics across areas of specialty.

TABLE 2. Kolmogorov-Smirnov test.

who have the maximum standard deviation are from the Engi-
neering category. The mean admission score for each spe-
cialty is approximately 82 points, with the standard deviation
being approximately 10. The maximum mean and deviation
of the video-viewing time occur for the Others category,
while the minimum mean occurs for the Medical Science
category and the minimum standard deviation occurs for the
Management II category. One-way ANOVA shows that the
differences between groups in terms of the age and video-
viewing time have statistical significance at the 0.05 level
(df = 4, p = 0.00), while the differences between groups in
terms of the admission score have no statistical significance
(df = 4, p = 0.08).

IV. CHARACTERISTICS OF DISTRIBUTION
Most analysts are much too dependent on the assumption of
normal distribution, which leads to the low reliability of their
interpretations [28]. To overcome this problem, we first check
the normality by performing a Kolmogorov-Smirnov(K-S)
test. The null hypothesis is that the video-viewing time and
the viewing completion ratio are subject to a specific normal
distribution shape. The calculated two-tailed p = 0.000 for all
courses, with 95% confidence at the 0.05 significance level.
This result contradicts the null hypothesis and indicates that
neither video-viewing time nor the viewing completion ratio
supports the normal assumption. This result is not consistent
with that of a separate study of non-educational videos, where
the literature [18] reported that the viewing time of the PPLive
system has an approximately normal distribution. In addition,
we observe the D statistics of the K-S test. This statistic
reflects the maximum distance of the cumulative distribution
functions between the empirical and fitted normal distribu-
tions. We find that the D statistics are large for each course,
as shown in Table 2. The small p-values in Table 2 indicate
the distributions have a significant difference with normality,

FIGURE 2. The CDFs of various distributions.

andmost of the p-values end up with 0 means the significance
is especially prominent even at the 0.001 level.

Additionally, we observe the kurtosis and skewness. They
are showing that the probability density curves of the courses
have sharp peaks and right skewness. Also, the absolute value
of skewness is larger than 1.96 times the standard error,
indicating that there is statistical significance between the
skewness and normality. Similarly, the viewing completion
ratio is right-skewed for all courses except MM. However,
the kurtosis of the viewing completion ratio is flatter than that
of video-viewing time. In summary, the normal distribution is
not an ideal distribution assumption with respect to the video-
viewing time and viewing completion ratio.

Now that there is no evidence for normality, is there a
known distribution function that fits the data? After trying a
variety of distribution functions shown in Fig. 2, we find that
the Weibull distribution function achieves better goodness
of fit than others. Take MS for instance; the cumulative
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FIGURE 3. Cumulative probability density plots of MS with respect to the video-viewing time and viewing complete ratio.

probability plots are shown in Fig. 3. Fig. 3 shows that
Weibull fits the video-viewing time better than the viewing
completion ratio, as its empirical curve is shown to be closer
to the model curve and the D statistic is 0.041. Although
the fit of the Weibull distribution function is poor regarding
the data related to students that abandoned a video after a
few seconds of watching, it is very good regarding the data
related to relatively long durations of viewing. This motivates
us to model the leaving time with the video-viewing time
in Section 5.

V. MODELING THE LEAVING TIME
In this section, we further examine which factors significantly
affect the active video-viewing time to answer the following
questions: which students leave before the time of interest,
what causes leaving, and how can leaving be prevented?
These questions involve the amount of time that passes until
an event occurs; thus, it is possible to build a survival model of
video viewing. The survival model is also called the time-to-
event model and is a widely used statistical technique in many
fields. It is used not only to estimate the elapsed time until an
event of interest occurs but also to evaluate the relationship
between the elapsed time and the explanatory variables [29].
Currently, people are using the model to analyze the occur-
rence of dropouts [30], participant attrition [28], [31] and
other problems. However, this technique has not been applied
to video viewing to study the leaving time regarding users’
interactions with video players. The model has several advan-
tages with respect to our questions. First, it enables us to study
when the number of leavers or non-leavers is maximumwhile
taking those who are at risk into account. Second, it allows
handling censored data to make full use of information, while
the traditional methods would underestimate the mean value,
considering that many users don’t leave before a video ends.
Last, the Weibull distribution can be used to depict the heavy
tail and is one of the most commonly used assumptions in
survival analysis.

The event of interest is defined as that in which a user
permanently leaves a course without the intention to return.

The dependent variable for this study is the elapsed time until
a user permanently leaves a course, before it ends, or until
a video ends, with the user having not yet left the course.
We use a limited set of covariates that include both video-
irrelevant (VIR) and video-relevant (VR) parts. The VIR
covariates are student age, gender, area of specialty, academic
level, admission score, and teacher gender. Although the
teacher age, academic degree, and professional title were
initially considered, their variations with age, degree, and
professorship are small. Therefore, these covariates were not
considered in the final set. Student gender is included because
it was reported that male students perform better than female
students in most cases [32] and that female attrition is larger,
especially when measured based on video viewing [31].
Therefore, we expect females to be more likely to leave than
males. Admission scores are included because a study found
that admission scores are positively correlated with academic
performance at the university level [33], [34], while low
scores are directly related to student dropout [35]. Therefore,
we assume that students with high admission scores are less
likely to leave than those with low admission scores. Teacher
gender is included because different genders may have differ-
ent influences on student engagement. Additionally, we also
assume that student age, area of specialty, and academic level
have impacts on the video-viewing time.

The VR covariates are video category and video length.
Note that students watch different videos from different cate-
gories for different amounts of time andwith classic statistics,
indicating that the video category is likely to affect the active
video-viewing time. We then commence examining how
video length affects video viewing with respect to both the
video-viewing time and viewing completion ratio. To do this,
we put together all the video segments, arrange them in terms
of video length, and divide them into periods of 5 minutes
in length. Then, we compute the mean video-viewing time
and mean viewing completion ratio for each period. We learn
that the relation between the mean video-viewing time and
video length can be described by a quadratic polynomial
f (x) = ax2 + bx + c, where a = −0.009, b = 0.999,
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TABLE 3. Results of applying the fractional polynomial approach to the continuous variables.

and c = −3.635. Because the coefficient a is small, the
parabola rises gently and the mean video-viewing time is
linearly correlated with the video length when the length
is small. However, when the video length surpasses a cer-
tain value, the growth rate of the mean video-viewing time
becomes smaller and smaller until finally achieving negative
growth. This indicates that increasing the recorded video
length appropriately at the beginning can effectively enhance
the mean video-viewing time of the population, while the
effect gradually disappears and even becomes negative when
a video is too long. The relation between the mean view-
ing completion ratio and video length can be depicted by
a linear function f (x) = bx + c, where b = −0.006 and
c = 0.766. This indicates that the viewing completion ratio
declines linearly as the video length increases when the length
exceeds 10 minutes, and every 10-minute increase in video
length leads to a decrease in viewing completion ratio by a
factor of 0.06. The viewing completion ratio is proportional
to the video length once the length is less than 10 minutes.
This probably occurs because short videos mainly include the
course abstract, assignments and tests. Most students either
are willing to spend more time to learn about the course
outlines before formal contact is made or pay more attention
to the segments that would bring them positive results. This
regression analysis shows that the video length does affect
the video-viewing time. However, we still do not know the
significance of taking multivariable effects into account.

A. MODELS
We prefer to avoid any distribution assumption in the process
of model adoption. Therefore, we use the Cox proportional
hazard function to develop M1 ∼ M4 utilizing the enter
method. It uses the mathematical model to fit the relationship
between the survival distribution and the influencing factors,
and evaluate the impact of the influencing factors on the
distribution of the survival function. The Cox proportional
hazard function is a semiparametric regression model with
the form

h(t, x, β) = h0(t)exβ . (1)

The left-hand side is called the hazard function, which is
equivalent to the product of two functions; the baseline func-
tion h0(t) characterizes how the hazard function changes as
a function of survival time, and exβ denotes how the hazard
function changes as a function of the subject covaria-
tes x [36], [37]. The coefficient β is the natural logarithm
of the hazard ratio when the corresponding covariate is
increased by one unit. Whenever the value is larger than 1, the

covariate is associated with an increasing hazard of leaving;
when the value is less than 1, the covariate is associated with
a decreasing hazard of leaving. The estimated hazard ratio of
leaving can be calculated by exponentiating the coefficient.

The developed models are as follows:
1) M1: A model that includes the VIR covariates only.
2) M2: A model that includes both the VR and VIR

covariates.
3) M3: A model that adds interaction terms between

covariates based on M2.
4) M3

∗: A variant of M3 that considers the age
segmentation.

5) M4: A model that takes the non-linearity assumption
of continuous variables into account. This is done
because the log hazard ratios of continuous variables
may not vary linearly and the test is usually neglected
in practice. To do this, we use the fractional polyno-
mial approach [38], which decomposes a continuous
covariate into a combination of several power func-
tions. When the linearity assumption is not satisfied,
we expect to achieve a better fitting through transfor-
mation. Assume that the log hazard function is

ln (h (t)) = ln (h0 (t))+
J∑
i=1

Fj(x)βj, (2)

where

Fj(x) =

{
xp, if pj 6= pj−1
Fj−1(x) ln(x), otherwise

(3)

and p ∈ ℘, ℘ is a possible exponent collection.
We apply the fractional polynomial approach to the

three continuous variables and obtain the statistics shown
in Table 3. Table 3 shows that the video length and age are
statistically significant in the case of linear, one-term, and
two-term power functions. Therefore, we choose the model
with the largest log partial likelihood. We use the gener-
ated powers to reconstruct the variables and use the new
variables as the inputs of models. The admission score is
significant only for the linear function, indicating that this
covariate satisfies the linearity assumption. According to the
formula, M4 decomposes the original video length item into
an item F1 (videolength) = (videolength)−2 and an item
F2 (videolength) = ln (videolength) and decomposes the
original age item into an item F1(age) = (age)−2 and an item
F2(age) = (age)−2ln(age). To avoid the incidental numerical
disaster [37], one may scale down the numerical variable of
interest.
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TABLE 4. Statistics of interest.

B. RESULTS
The results are shown in Table 4. The interpretation of the
fitted Cox’s proportional hazard models requires drawing
inferences from the estimated coefficients in the correspond-
ing models. The estimated coefficient for a covariate rep-
resents the rate of change of the dependent variable as the
unit covariate changes. The extent to which the covariates
influence the leaving risk can be calculated by exponentiating
the estimated coefficients. When only the VIR covariates
are considered, i.e., M1, student age is not significant, while
teacher gender is significant. When the VR covariates are
added, as in M2, the impact of teacher gender becomes
insignificant. When the interactions between variables are
considered, as inM3, student age starts to become a predictor
of leaving, and the academic level is significant at 0.1. The
course categories are not significant in the models, and only
the video-viewing time of the Medical Science students has
statistical significance compared to that of the Engineering
students. Take M2 for example; the estimated hazard ratio of
Medical Science students is e0.212 = 1.236, indicating that
they have a 23.6% higher rate of leaving a video compared
with Engineering students. When the interaction is consid-
ered, the growth rate reduces by 20.1%. Furthermore, the
running result with respect to student gender is inconsistent
with the initial expectation, i.e., the leaving risk of males
is higher than that of females in the models. The admission
scores always significantly influence the video-viewing time
of a population. As is expected, a higher score leads to a lower
leaving risk. For clarity, we explain each of the models as
follows.

In M1, the statistically significant covariates are student
gender, teacher gender, admission score and whether stu-
dents are from Medical Science or Management Science.
Using these covariates as the predictors, male students have
a 10.08% higher leaving risk than their female counterparts.
A male instructor yields a leaving risk that is 5.45% lower

than that of a female instructor. Students from Medical Sci-
ence, Management I, and Management II have a 30.8%,
9.31%, and 10.96% higher leaving risk, respectively, than
Engineering students. Every 10-point increase in admission
score tends to reduce the leaving risk by 2.96%.

In M2, the number of predictors decreases relative
to M1. The main reason is that increasing the video
length dilutes the influence of some VIR covariates. Male
students have a leaving risk of more than 10.3% com-
pared with female students. Only students from Medical
Science have statistical significance, with 23.6% higher
leaving risk compared to Engineering students. Every
10-point increase in admission score tends to reduce the
leaving risk by 4.88%. Every 1-minute increase in video
length reduces the leaving risk by 2.47%, while every
5-minute increase reduces the leaving risk by 11.75%.
M3 reveals significant interactions between variables. The

number of predictors increases to 8. Student age becomes a
significant variable influencing the leaving risk for the first
time, and the leaving risk of a student reduces by 2.27% for
every 1 year older that student is. From a larger age span
perspective, for every 5 years older a student is, the leaving
risk reduces by as much as 10.86%. Male students have a
33.64% higher leaving risk compared with female students.
The leaving risk of students from Medical Science is 20.08%
higher than that of those from Engineering. The leaving risk
of JC students is 22.12% lower than that of HJC students
at the 0.1 significance level. The influences of admission
score and video length are invariant compared to those inM2.
Student age and gender interact with the academic level. The
plots of the estimated log hazard are shown in Fig. 4. Both
groups of lines show a departure from being parallel, and
each of them is statistically significant. The JC students leave
at a higher rate than the HJC students, and the difference in
leaving risk between them becomes larger as age increases.
When considering the interaction between gender and
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FIGURE 4. Plots of considering interaction items. They are showing a departure from being parallel.

FIGURE 5. The log hazard ratio of video length and age.

academic level, the leaving risk of HJC students is higher than
that of JC students. At either academic level, male students
have a lower risk of leaving compared to female students. For
both levels, the difference in male leaving risk is larger than
that of female leaving risk. In other words, JC male students
have the lowest leaving risk, while HJC female students have
the highest.
M4 generates new variables by transforming the original

non-linear variables. For the video length variable x, the new
variable is computed by f (x) = 0.018x−2 − 0.792 ln(x); for
the age variable y, the new variable is computed by f (y) =
−0.828y−2 ln(y). To determine how the new and old variables
affect the leaving risk, we use a ratio estimator [39] to infer
the log hazard functions of the original variables. The plots of
estimated log hazard are shown in Fig. 5. The fractional poly-
nomial model fits the log hazard function of variables well,

except for video lengths less than 10 minutes and ages greater
than 45 years. The reason why this phenomenon occurs may
be the sparse sample size at both ends. In the main body of the
curve, the log hazard of video lengthmonotonically decreases
as the length increases. However, the estimated log hazard
declines rapidlywhen the length is less than 18minutes, while
it undergoes a gentle decline when the length is larger than
18 minutes. The log hazard of age presents a left-inclined and
fat L-shaped curve as the age increases, and the minimum risk
is obtained for an age of approximately 33 years. The log haz-
ard ratio decreases rapidly before the age of 33 and increases
slowly after the age of 33. This indicates that the influence of
video length on the leaving risk in M4 is basically consistent
with that of other models; the difference is the magnitude of
risk reduction, which becomes smaller rather than remains
constant per unit increase in length. The interpretation of the
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TABLE 5. Hazard ratios of age groups.

age effect must be conducted in segments: from the minimum
age to approximately 26 years old, the hazard ratio decreases
exponentially as the age increases; from 26 to 33 years old,
the hazard ratio decreases slowly to a minimum; and above
33 years old, the value increases slightly. Considering that
the newly established variables in M4 change the meanings
of the original variables, we apply the age-segmented hazard
model to the covariates ofM3; the pros and cons of using the
age-segmented model and the non-age-segmented model are
presented in the next section. The estimated hazard values are
shown in Table 5.

The effect of age is statistically significant only below
26 years old, and the leaving risk decreases by 9.3% for every
1-year increase in age, which is much bigger than the group
of mixed ages (2.27%). The leaving risk of male students in
the medium age-group is higher than that of those in the low
age-group. However, the leaving risk of male students in the
high age-group is not statistically significant among groups.
The leaving risk of Management II students in the medium
age-group is lower than that of Engineering students, while
other age groups have significantly increased risk compared
to Engineering students. The admission score is statistically
significant in the low age-group and not very significant in the
high age-groups. However, the effect of video length on the
leaving risk is significantly different for all age groups, where
the leaving risk declines as the video length increases. The
interaction between age and academic level is only significant
in the low age-group. The interaction between gender and
academic level demonstrates two trends: the estimated log
hazard plot for the medium-low age-group is a straight line
with a negative slope; while that for the high age-group has a
positive slope.

C. DISCUSSION
With the addition and decomposition of variables, the models
present different explanatory abilities. From the application
perspective, M3 and M3

∗ are preferable because the for-
mer exhibits interactions between variables, while the lat-
ter takes the statistical differences in age segmentation into
account; from the perspective of analysis,M4 removes unim-
portant components of variables and preserves the important
components through fractional polynomial transformations,

which causes the information to not be completely discarded.
Regarding the experimental results, some violate our ini-
tial assumptions. For example, we would have expected a
significant interaction between student gender and teacher
gender, but teacher gender has no significant effect on the
dependent variable forM2. This phenomenon occurs because
an important variable, i.e., video length is added. Another
violation is that male students are more likely to leave a video
course than female students. The idea is that personalized
assistance of the system needs to create a balance between
gender differences and other influencing variables. The main
limitation of modeling is that we do not directly consider the
effect of difficulty of knowledge on the active video-viewing
time. Instead, we use the categories of courses and assume
that the students learning each category will not experience
significant differences in difficulty. This is a simplification
of the problem because the degree of difficulty of knowledge
varies across individuals, and experts’ definitions of difficulty
do not always cover all students.

VI. PREDICTING THE LEAVING TIME
Note that a user is more likely to leave a course prematurely
if he/she has a higher leaving risk. We have obtained a
subspace of the original feature set by statistically testing
the models and calculated the hazard ratios of covariates by
exponentiating their coefficients. We consider two cases: one
involves measuring how many unit differences exist between
the variable value of interest and the reference value in the
case of continuous variables; the other involves examining the
statistical differences of the category of interest with respect
to the reference category in the case of nominal variables.
To this end, different students have different combinations
of hazard ratios. The goal of this section is to predict, at the
time of registration, whether a student would prematurely
and permanently leave a course by using the hazard ratios
of covariates of statistical significance as the learning fea-
tures. The extracted features are a set of leaving risks which
have values around 1. Whenever the value is larger than 1,
it is more likely to be classified into the early-leaving cate-
gory compared to the reference level; and vice versa. Doing
this has very important implications. First, it separates stu-
dents into groups and provides criteria for who should be
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particularly considered based on a student’s active video-
viewing time. This occurs because the active video-viewing
time is an indicator of academic achievement [4], and one is
more likely to achieve higher performance if he/she spends
more time viewing the necessary videos [5]. Second, once
we achieve this target, we can provide students predicted to
leave at different times with different metacognitive tools
to help them devote more time to courses [6] or make the
system more effective by having it recommend materials and
companions and send pop-up, personalized hints. Further-
more, this problem is also important because if the prediction
performance of a model (especially M3 or M4) is superior
to that of others, it presents a more extensive value than the
other models. However, predicting the exact time at which a
student will leave a course is very difficult or even impossible,
although it is possible to predict the approximate time of
leaving. To do this, we first need to determine the numeri-
cal boundary to distinguish early leaving from late leaving.
In this study, we use the mean as the partition criteria and
define a person as an early leaver if his/her active video-
viewing time does not reach the mean value and as a late
leaver if the opposite is true. Because of this, the research
becomes a classification problem of binary data in machine
learning.

Given a set� of n training cases (x, y) ∈ X l×Y , where x is
a vector denoting the leaving risks of covariates and y ∈ {0, 1}
represents the category value, the goal is to predict the value
of a class label for a test case q described by the same variable
space X as that of the training data. The training set �E and
test set �T are always chosen such that �E ∩ �T = ∅ and
�E ∪�T = �. According to the definition, we have

yi =

0, if
m∑
j=0

tij ≤ mean

1, otherwise,
(4)

where yi represents the i′th student’s class label in �E , tij is
the time of the j′th viewing of the i′th student, and m is the
number of video views after registering for a course.

A. ALGORITHMS
SVM classifier. We choose this because it creates a complex
decision boundary by using different kernel functions. This
algorithm was adopted by Brinton et al. to predict MOOC
performance, and they acquired good results when they used
the probabilities as the learning features [22]. Therefore,
we study whether this algorithm could also produce a good
prediction effect when we use the hazard ratios of model
covariates as the corresponding features. Then, we solve the
following optimization:

minimize
w,ε

(
1
2
||w|| +

C
l

l∑
i=1

εi), (5)

s.t. yi(xi ·w+b) ≥ 1−εi, where εi ≥ 0, ∀i ∈ �T . We use the
Gaussian kernel because of its high popularity and flexibility
in mapping within a multidimensional space [40].

k∗ classifier. This is an instance-based algorithm that clas-
sifies an instance by comparing it to a set of pre-classified
examples. A main task of instance-based learning is to deter-
mine the distance between two instances. We choose k∗
because it uses the information entropy as a distance measure
and always performs well against a range of both rule-based
and instance-based learners [41]. Assume that a and b are two
instances; the program transforms a into b and forms a finite
sequence of transformation starting at a and terminating at b.
k∗ computes the distance sums over all possible transforma-
tions between them and estimates the probability function P∗
that traverses all paths from a to b. This can be formulized ask ∗ (a|b) = −log2P ∗ (b|a)P ∗ (b|a) =

∑
t̄∈P:t̄(a)=b

p(t̄) , (6)

where P is the set of all prefix codes from transformations
and t̄ denotes the members of transformations.
Bootstrap aggregating (Bagging). This generates multiple

versions of a classifier and uses them to get an aggregated
predictor that reduces the variance associated with the predic-
tion [42]. Given a classifier ϕ(x, ℘) and a learning set {℘k}
each consisting of N independent observations, the goal is
to replace ϕ(x, ℘) with the average of ϕ(x, ℘k ) by taking
repeated bootstrap samples [43]. Here, we use a randomly
generated decision tree as the classifier.

Random forest (RF). A random forest is a classifier con-
sisting of a collection of tree-structured classifiers ϕ(x, ℘k ),
where {℘k} are independent and identically-distributed ran-
dom vectors and each tree casts a unit vote for the most
popular class at input x. We train multiple decision trees by
randomly sampling the training data and randomly selecting
features and the combine results of models by taking a major-
ity vote.

The algorithms Bagging and RF are both ensemble learn-
ers. We choose them because each works by running a base
learning algorithm multiple times and forming a vote based
on the resulting hypotheses [44]. They have been reported to
improve the prediction ability well, e.g., [45].

B. PROCEDURE
Method. Our goal is to determine, relative to the original
feature set, which classifiers’ prediction performances are
improved andwhichmodels can be further used for prediction
when we use the hazard ratios of model covariates as the
learning features. Therefore, we choose the original dataset
M0 as the benchmark and apply algorithms to the determined
feature sets of models 1-4 for comparison. In addition, we
apply algorithms to the feature set of the age-segmented
model and show the pros and cons with respect to prediction.
Relative to the alias M3, this dataset is named after M3

∗.
Metrics. Let TP, FP, TN , and FN be the true positive, false

positive, true negative and false negative, respectively, that
are obtained from a classifier. The first metric we choose is
the accuracy, which represents the percentage of correctly
classified samples with respect to the total, computed as
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TABLE 6. Evaluating based on accuracy.

TABLE 7. Evaluating based on F-score.

TABLE 8. Evaluating based on ROC.

(TP + TN )/(TP + TN + FP + FN ). Considering that the
distribution of class labels of the data is a little skewed,
with 56.9% positive and 43.1% negative, the accuracy may
not be the best evaluation indicator. Thus, we also use the
F-score which is the harmonic mean of precision and recall,
denoted as 2TP/(2TP+FN +FP). In addition, observing the
imbalance of positive and negative samples in the test set, the
receiver operating characteristic (ROC) curve is chosen as the
third metric. It remains stable as the distribution of samples
changes and characterizes the ability to distinguish positive
from negative samples for different thresholds.

k-fold cross-validation (CV). CV is a method of model
selection that uses some samples for training and the others
for testing. To do this, we divide � into k subsets �1, �2,...,
�k such that �1 ∪ ... ∪ �k = �, �1 ∩ ... ∩ �k = ∅, and
|�j| = |�|/k , 1 ≤ j ≤ k , where | · | denotes the size of
samples in a set. For each j, 1 ≤ j ≤ k , CV uses�\�j as�E
and �j as �T and computes the generalization error of the
model. When all the models are obtained, CV computes the
mean generalization errors and selects the model of minimum
error. Here, we set k = 10.

C. RESULTS
For observational purposes, we highlight the values of interest
in bold. The results of evaluating based on accuracy are
shown in Table 6. For almost all models, the SVM yields
very poor results, except M0. Because the feature space of
M1 ∼ M4 is a set of leaving risk values which are closely
distributed around 1, most of them are not linearly separable
by super-planes using the kernel function; while the original
features ofM0 are more easily separated by super-planes. For
M4, the k∗, bagging, and RF algorithms yield satisfactory
classification accuracy, with RF producing the best accuracy.

This indicates that the prediction ability of M4 outperforms
that of the others in terms of accuracy when we use the hazard
ratios of covariates as the learning features. Furthermore,
the algorithms applied to the hazard ratio set of covariates
of M3

∗ yield slightly higher accuracies compared with the
algorithms applied to M3, which reveals the advantage of
the age-segmented model in prediction. The performances of
the bagging and RF algorithms for M2 are second only to
those for M4 but superior to those for the other models. The
results of evaluation based on the F-score are very similar
to those of the evaluation based on accuracy, as shown in
Table 7. Using both metrics, we draw the same conclusions:
1) classification is much better when we use the hazard ratio
set of covariates of M4 as the learning features; and 2) RF is
a satisfying classifier when it is used with the hazard ratio set
of covariates.

The results of evaluating based on the ROC curve are
shown in Table 8. It has both similarities and dissimilarity
relative to the accuracy and F-score measures. The simi-
larities are as follows: 1) the SVM can only be used for
prediction for the original feature set but is not appropriate
for the hazard ratio set; 2) the k∗, bagging, and RF algorithms
have the best prediction performances when they are used for
M4; 3) the prediction of the RF algorithm is the best for all
models; and 4) the prediction can be improved to some extent
when the age-segmented case is considered forM3. However,
the difference is that the k∗, bagging, and RF algorithms
yield good prediction performances when applied to M3

∗,
compared with when they are applied toM2, that are inferior
only to those achieved when applied to M4 and superior to
those achieved when applied to all other models.

Now, we discuss the ecological costs of the models, which
reveals how many variables are required for prediction.
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This could help us understand the inputs of economy and
technology. Note that the original space has 9 variables, with
M1, M2 and M4 each using 4, while M3 uses 6. The costs of
M1 ∼M4 are, respectively, 4/9, 4/9, 6/9, and 4/9. Apparently,
M4 has the highest performance with the lowest cost. Specif-
ically, one could easily achieve a prediction performance of
more than 85% when using the RF classifier with 4 factors,
i.e., student age, admission score, video length, and whether
the student is from the Medical Science category.

In summary, the prediction performances achieved using
the feature sets of M2, M3 and M4 are much better than that
of the original one. M4 is optimal and the most economical.
The improved percentage (IP) with respect to the accuracy is
as little as 6.25% and as much as 12.58%. The IP with respect
to the F-score is as little as 4.77% and as much as 9.92%. The
IP with respect to the ROC curve is as little as 5.08% and as
much as 9.95%. We obtain the worst prediction ability using
M1, which considers only the VIR covariates.

D. DISCUSSION
The prediction results are encouraging and suggest that
M3 andM4 are not only able to interpret the impact of specific
conditions or their combinations on the leaving risk but also
have the potential to predict the leaving time accurately.
However, we did not additionally tune the model parameters
because the experiments were of a preliminary nature and
considered fairness in the performance comparison. The pre-
diction error mainly results from the crisp boundary problem
caused by the explicit numerical boundary, which leads to
an arbitrary segmentation of the data. One promising opti-
mization is to define a fuzzy interval around the boundary so
that users in this interval can be included in both categories.
This approach is more reasonable considering that users who
fall within the interval have relatively small differences in
active video-viewing time. However, the implementation of
this approach is beyond the scope of this article and is left for
future work. Additionally, using the median, mode or other
quantiles as the numerical boundary is also possible despite
the fact that each would bring about different classification
results.

The prediction provides valuable implications for design-
ing an intelligent e-learning system. A successful intelligent
e-learning system should consider both usefulness and effec-
tiveness. Usefulness requires that the system automatically
identifies the student groups and provides correct feedback
instantly, while effectiveness means that the system is simple
enough to satisfy specific calculation and application con-
texts. This work presents a novel method for significantly
improving the prediction accuracy and, at the same time,
avoids intensive calculations to enhance the performances
of algorithms. These improvements can be attributed to two
aspects of technical optimization. The first one is the trans-
formation of the feature space, which transforms the raw
variables into values that contribute to the leaving risk. The
second one is the condensed feature space, which merely
selects the components that are statistically significant for

the dependent variable so that the feature space is reduced
to the maximum extent. Additionally, the system can achieve
useful and effective identification by inputting as little as
four variables instead of complex data. For example, when
a 22-year-old Computer Science student who achieves a
score of 90 points on his/her entrance examination watches a
20-minute video, the system would estimate whether he/she
has a greater probability of permanently leaving the course
before the active video-viewing time reaches 8 minutes (the
imaginary mean value) using the random forest classifier.
This indicates that the system can successfully achieve the
prediction function when developers provide a small number
of database interfaces. Moreover, the effectiveness makes it
possible to extend the system to mobile learning scenarios
that are based on smart terminals.

VII. CONCLUSIONS AND IMPLICATIONS
In this paper, we studied the active video-viewing time of an
educational VoD system and dealt with the task of modeling
students’ leaving times and predicting the times at which
they will leave a course. The study was conducted in three
phases. First, we determined the distribution patterns of active
video-viewing time and learned the shapes and characteris-
tics. Second, we developed several statistical models with the
enter method, which quantified the extent to which covariates
in a model affect the active video-viewing time. We were
especially concerned with the models with interaction terms,
a non-linearity assumption of continuous variables and age
segmentation. Finally, we used the hazard ratio of model
covariates of statistical significance as the learning features
and used efficient classification algorithms in machine learn-
ing to predict the time at which a user left a video without the
intention to return.

The main findings are two-fold. On the one hand, the mod-
eling results show the usefulness of the models in interpreting
the influence of variables on the active video-viewing time.
In general, 1) the amount and category of covariates as well
as the extent of influence on the video-viewing time vary
across models; 2) the increasing of the video length in M2
dilutes the influence of some VIR covariates; 3) student age
and gender have significant interactions with academic level;
and 4) the fractional polynomial approach in M4 displays
significant non-linear characteristics of continuous covariates
with respect to video length and age. It is worth noting that
the non-linearity of age suggests that one could segment
age to improve the explanatory ability of a model. On the
other hand, the prediction results show that it is possible
to estimate whether a student would leave permanently by
considering only a few factors. Moreover, the outstanding
prediction ability further illustrates a more extensive value
than that of the models. Putting both the prediction ability
and the ecological cost together, we find that using the frac-
tional polynomial model, which considers the non-linearity
of continuous variables, achieved the highest performance
with the lowest cost. In comparison, the algorithms applied to
the original features not only needed more variables but also
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yielded poor prediction performances. Last but not least, the
prediction ability of the age-segmented model was superior
to those of the non-age-segmented models.

The findings of this paper have important implications.
First, one could choose a proper model to explain the leaving
risk of users so that teachers or policymakers could gain deep
insights into which users will leaving before the time of inter-
est, what causes leaving and how to prevent it. Additionally,
the prediction ability implies that one could estimate whether
a user would prematurely and permanently withdraw from a
course by using only a small number of variables so that they
can intervene with metacognitive strategies to lengthen the
user’s video-viewing time or so that the system can recom-
mend materials and learning companions and offer pop-up,
personalized hints to make the system more effective based
on the extent to which he/she would leave. Moreover, this
work presents valuable guidelines for designing an intelligent
e-learning system and provides new insights and tutorials
regarding the data analytics and feature subspace construction
to learning analysts, researchers of artificial intelligence in
education and data mining communities.
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