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ABSTRACT Security problems have become obstacles in the practical application of wireless sensor
networks (WSNs), and intrusion detection is the second line of defense. In this paper, an intrusion detection
based on dynamic state context and hierarchical trust in WSNs is proposed, which is flexible and suitable
for constantly changing WSNs characterized by changes in the perceptual environment, transitions of states
of nodes, and variations in trust value. A multidimensional two-tier hierarchical trust mechanism in the level
of sensor nodes (SNs) and cluster heads (CHs) considering interactive trust, honesty trust, and content trust
is put forward, which combines direct evaluation and feedback-based evaluation in the fixed hop range.
This means that the trust of SNs is evaluated by CHs, and the trust of CHs is evaluated by neighbor CHs
and BS; in this way, the complexity of evaluation is reduced without evaluations by all other CHs in networks.
Meanwhile, the intrusion detection mechanism based on a self-adaptive dynamic trust threshold is described,
which improves the flexibility and applicability and is suitable for cluster-based WSNs. The experiment
simulation and evaluation indicate that the mechanism we proposed outperforms the existing typical system
in malicious detection and resource overhead.

INDEX TERMS Hierarchical trust, trust evaluation, state context, intrusion detection, wireless sensor
network.

I. INTRODUCTION
With the rapid development and advancement of wireless
sensor technology, wireless sensor networks (WSNs) are
widespread in a variety of areas, including environmental
monitoring, battlefield observation, intelligent home systems,
forest fire detection, and health monitoring [1]. Due to the
self-organizing, dynamic and data-centric characteristics of
WSNs, they are deployed in more and more data observa-
tion fields, and the nodes in WSNs should cooperate with
each other for communication and support of high-level
applications.

However, security issues have accompanied thewide use of
WSNs. Because of the openness of the deployed environment
and the transmission medium, WSNs suffer from various
attacks, including hijack attacks, tampering attacks, DoS
attacks, selective forwarding attacks, and sinkhole attacks.
It is impossible to solve all the security problems by adapting
prevention-based technology; thus, detection-based methods
are an effective supplement. Therefore, intrusion detection in
WSNs is proposed [2], [3], and it plays an irreplaceable role
as an important branch in the field of security mechanisms.

Commonly, intrusion detection often detects the crucial
features or behaviors of the node. The trust-based model
has been widely used in WSNs and P2P networks as an
effective means of guarding against internal attacks [4], [5],
and it is often used in WSNs for security routing, which
selects a secure path according to the trust evaluation of the
neighbors of nodes [6]. The first trust model for WSNs is
a distributed reputation-based framework described in [7],
which could be used for detecting compromised or faulty
nodes, and the estimation of reputation is according to trans-
actional data between nodes indicating the cooperativeness of
partner nodes. However, the ‘‘cooperativeness’’ in [7] refers
to a node’s ability to deliver information or the quality of
data delivered; i.e., the reputation-based framework merely
focused on data accuracy or data authentication in sensor
networks. An intrusion detection mechanism using trust for
clustered WSNs is implemented in [8], which considers
social trust (including intimacy and honesty) and QoS trust
(measuring energy and unselfishness) to form the overall
trust metric. However, the evaluation of the intimacy trust of
nodes only depends on the maximum number of interactions
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between nodes, which could be misled by malicious nodes
exceeding the number of normal interactions.

Based on previous work, an improved hierarchical trust
mechanism using multidimensional trust is established for
WSNs to detect malicious nodes, which considers not only
communication trust (including interactive trust and honesty
trust) and content trust (multidimensional sensing data trust)
but also the state context of nodes, especially state transi-
tions. Meanwhile, it reduces the possibility of misleading
by malicious nodes in the process of interactive trust eval-
uation by taking the upper bound of the number of normal
interactions into account. Besides, the task of trust evalua-
tion and intrusion detection is performed by CHs and BS
with abundant resources; thus, the lifetime of the network is
prolonged.

State context of nodes is introduced for the calculation of
trust value, making nodes in different state transitions adopt
different methods to evaluate trust value, which improves
the flexibility and applicability of the mechanism. Nodes
in WSNs are often set to different states to conserve their
energy, and the transitions of states of sensor nodes demon-
strate either that the current state has timed out or that the
surroundings of the node have changed. State transitions
should be focused, and we should distinguish between nor-
mal changes and attacks. Transitions between different states
may be accompanied by different security issues; thus, the
calculation of the trust value will have different emphases, so
we should adopt different methods to compute trust to make it
more flexible. An example is as follows: If the state of a node
changes from a monitoring state to an active state, there will
exist two cases; one is normal conversion, which means the
node has discovered an abnormal event, such as an occurrence
of fire; the other is attack, such as a hijack attack, tampering
attack, DoS attack or other packets attack, whose purpose is to
consume the energy of the node. So, the interactive trust and
data trust become more important measurement factors, and
we can distinguish the normal conversion or attack through
changes in the trust value. More details are discussed in
section IV-B. Therefore, state context is a key factor of trust
evaluation and intrusion detection.

The main contributions of our work are as follows:
1) State context construction: By analyzing the states of

nodes in WSNs, a state transition context and its judgment
rules are established, through which different methods could
be adopted to calculate trust value effectively, i.e. a self-
adaptive trust calculation method for SNs. Meanwhile, the
details of the possible security problem according to the state
conversions are analyzed.

2) Hierarchical trust improvement: An improved two-tier
hierarchical trust mechanism is proposed, which refers to the
trust of SNs and the trust of CHs. The judgment strength of the
SNs’ trust is reduced by CH-to-SN trust evaluation, whereas
the judgment strength of the CHs’ trust is enhanced through
CH-to-CH, the feedback of 1-hop neighbors of CHs and
BS-to-CH trust evaluation. Meanwhile, multidimensional
trust is proposed to form overall trust, including interactive

trust, honesty trust and content trust. The mechanism is suit-
able for clustered WSNs with multidimensional observing
data.

3) Detection threshold self-adaption: In the malicious
detection process, the threshold of detection could be adjusted
according to the operation of WSNs rather than a fixed value,
which improves the self-adaption and detection rate of the
system.

4) Resource conservation considerations: Due to resource
limits of WSNs such as storage and energy limits of sensor
nodes, measures should be taken to reduce resource con-
sumption, including ten-scale integer representation of trust
value, spatial correlation and alleviation of the computing
tasks of SNs through CHs and BSs responsible for more
computational tasks.

The rest of the paper is organized as follows: Section II
summarizes the related works. The network model and
assumptions are described in Section III, and an improved
hierarchical trust mechanism considering the state context in
trust evaluation of SNs is proposed in Section IV. In SectionV,
intrusion detection based on trust is analyzed. The experi-
ment simulation and performance evaluation are performed in
Section VI. Finally, conclusions of the paper are summarized
in Section VII.

II. RELATED WORKS
The research on trust mechanisms in WSNs and other
networks is widespread, e.g., Underwater Acoustic Sensor
Networks (UASNs), Medical Sensor Networks (MSNs) and
Vehicular Networks (VNets) [7]–[13]; these approaches are
often used to assess data integrity, secure routing, message
authenticity, reliability and the security of nodes. Trust-based
intrusion detection [14]–[16] is a typical application of relia-
bility and security of nodes.

Bao et al. [8] proposed hierarchical trust management for
WSNs and applied it to routing and intrusion detection to
detect selfish or malicious nodes. In the paper, multidimen-
sional trust attributes were considered, and the trust value
was calculated through social trust and QoS trust, includ-
ing intimacy, honesty, energy, and unselfishness; meanwhile,
subjective trust and objective trust were taken into consider-
ation to validate the proposed protocol. However, the node
with the maximum number of interactions with neighbors
was considered as the most trustworthy in the process of the
calculation of the intimacy trust inspired by social networks.
The difference in our work is the consideration of the reason-
able range of the maximum number of interactions, as inter-
action that exceeds the range indicates malicious behavior.
A new function of interactive trust evaluation is put forward
in our work.

Li et al. [9] put forward a lightweight and dependable
trust system for clustered WSNs, which aims at decreasing
resource consumption and enhancing the reliability of CHs’
trust evaluation. At the same time, a self-adaptive weighting
mechanism for trust calculation of CHswas raised, whichwas
superior to the traditional subjective weight method. A series
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of theoretical proofs were given in the research to verify the
effectiveness of the mechanism. In the process of trust eval-
uation, only successful and unsuccessful interactions were
taken into consideration, with no other trust evaluation fac-
tors taken into account. The mechanism in our work takes
interactive trust, honesty trust and content trust into account,
addressing problems of consuming energy maliciously and
tampering multidimensional observing data with lower
resource overhead, which is described in the performance
evaluation.

He et al. [11] put forward a distributed trust evaluation
model for Medical Sensor Networks (MSNs) to address some
security problems, such as node misbehavior. The authors
identified the normal behaviors of nodes by the features of
the MSNs and selected some unique features including data
rate and leaving time to compute the trust value and detect
malicious nodes. Another study [12] by the authors presented
attack-resistant and lightweight trust management for MSNs.
They pointed out the security risk of the trust mechanism
itself and brought forward a two-tier trust architecture called
Retrust, which enhanced the trust measurement of nodes
and master nodes. However, the mechanisms they presented
consume more storage of nodes and CHs because they have
to store the trust value of all other nodes, including both the
direct trust value and indirect trust value or the recommended
trust. The overhead of our method (trust evaluation and intru-
sion detection) is concentrated on CHs and BSs with much
greater resources than SNs, which will prolong the lifetime
of WSNs.

Dhakne and Chatur [14] proposed a distributed trust-based
intrusion detection approach in WSNs, which considered
multidimensional trust on energy, data and communications,
evaluating direct trust, recommendation trust and indirect
trust of nodes, and detected malicious nodes through the
deviation of subjective trust and objective trust. The ability of
detection is improved by multidimensional trust, whereas the
data trust in DTBID refers to 1-dimensional data, andmultidi-
mensional data are not discussed in DTBID. It is essential to
take multidimensional observing data into account because it
is common for several kinds of sensors to be carried on a node
to observe different data. The content trust in our approach
could evaluate multidimensional observing data to discover
data tampering attacks.

Gerrigagoitia et al. [15] presented a reputation-based intru-
sion detection system for WSNs, which adopted reputation
and trust to evaluate the behaviors of nodes. The evaluation
considers only communication factors including correct and
incorrect interactions using a beta function, which is executed
by each node. Every node has evaluation and detection tasks
for other nodes; thus, the overhead is still high forWSNs. Our
method could decrease the overhead of nodes by executing
tasks in CHs and BSs with more resources.

Cervantes et al. [16] proposed a method of detecting
sinkhole attacks for the Internet of Things (IoT), which
could discover sinkhole attacks in the network layer through
the watchdog, reputation and trust mechanism together.

The system adopts Dempster-Shafer theory to improve the
detection rate, and it could be used in the network of fixed
nodes and mobile nodes. It is designed for detecting sinkhole
attacks, and other attacks would escape from detecting. Our
approach is suitable for hybrid attacks including tampering,
black hole, selective forwarding and other energy consump-
tion attacks due to multidimensional trust evaluation.

III. NETWORK MODEL AND ASSUMPTIONS
In this section, data transmission features of common WSNs
used for monitoring are introduced; then, the spatial correla-
tion of nodes is described for energy preservation. After that,
the state transitions of nodes considered in this paper and the
network model are explained.

A. DATA TRANSMISSION FEATURES
There are four data transmission models according to [17],
including continuous, event-driven, observer-initiated and
hybrid, whose features are different. Sensors deliver the
observing data continuously at a pre-defined rate in a con-
tinuous model, and it is common in WSNs, as is transmit-
ting data at a predetermined period, the feature of which is
regularity or periodicity. In the event-driven model, as the
name suggests, the observing data are delivered when some
events or anomalies are discovered whose characteristic is
irregularity and abruptness. The observer-initiated model or
request-reply model is triggered by query operations of other
nodes, and passivity is the feature. The hybrid model is the
most common in practice; it combines continuous, event-
driven and observer-initiated models together, and its features
are more complex than other three models.

TheWSNwe focused on is deployed for monitoring events
or observing phenomena on some occasions, such as forest
fire, pollution, and logistics environments. It is a hybrid
model of data transmission using a storage and forwarding
mechanism. The observing data are delivered to the sink peri-
odically in normal circumstances, and the data transmission
breaks the cycle when events occur or a query is initiated. The
data are transmitted to the sink directly or indirectly through
other neighbor sensors.

B. SPATIAL CORRELATION
In many scenarios, sensor nodes are deployed densely to
acquire more accurate observations to improve the intelli-
gence of the WSNs. As a result, nodes which are close to
each other acquire the same observations for the same phe-
nomenon and generate a large amount of redundant data. The
data should be transmitted to the sink directly or indirectly,
which will consume a lot of energy and reduce the efficiency
of the network. Spatial correlation could solve the problem
effectively. The closer the distance between nodes, the more
redundant the data, and the higher the spatial correlation.
Therefore, a small section of nodes in the same area are
sorted to deliver their observing data representing nodes
that are densely deployed in the area. Thus, the redundant
data decrease, and the lifetime of the network is extended.
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FIGURE 1. States and their transitions.

In [18], spatial correlation has been employed on theMedium
Access Control (MAC) layer, and the transmission of redun-
dant data from closely located sensors could be controlled;
at the same time, energy consumption is also reduced. Spa-
tial correlation could be utilized to decrease the redundant
information.

C. STATES AND TRANSITIONS
Sensor nodes in WSNs are in different states to conserve
energy, and it is not necessary for all nodes to appear to be
active all the time due to the restriction of resources. The
states of nodes are considered including hibernation, moni-
toring and active, which are three basic and necessary states,
and other states are not taken into consideration here. The
hibernation state shows that nodes are not working and that
there is almost no energy consumption, whereas the monitor-
ing state means that nodes are observing and delivering data
at a regular frequency, which will cost more energy. However,
the active state demonstrates that the node has discovered
an event occurrence and is transmitting a large amount of
information about events to sink, and its energy consumption
is the largest of the three states. Data transmission is the basis
for judging the state of nodes because different states have
different data transmission rates [19].

States and their transitions are described in Fig. 1. The
transitions of different states depend on pre-defined rules,
such as time out or event occurrence. As with spatial correla-
tion described in section III-B, closely located nodes alternate
between hibernation and monitoring states according to time
rules. If a monitoring node discovers an event, it will revert
to an active state to deliver more information about the event.
When the event ends, the state of the node returns to moni-
toring. The data transmission rate in three states listing from
high to low is active, monitoring and hibernation.

Transitions between different states may be accompanied
by different security issues, especially the transition between
monitoring and active. Normal transitions and attacks could
be distinguished by trust calculation; hence, state transition
is the context of trust calculation, and data transmission rate
is the context of state transition. The analysis is detailed in
Section IV-B.

D. NETWORK MODEL
The topology ofWSNwe consider is a cluster-based network,
based on which a two-tier hierarchical trust mechanism is put
forward. The members of the WSN are categorized into clus-
ter heads (CHs), sensor nodes (SNs) and base station (BS),

FIGURE 2. The network model of a cluster-based WSN.

as shown in Fig.2. In a cluster, a CH possesses more energy
than SNs, and all SNs could communicate with CH directly,
whereas a CH could forward the fusion data to a BS directly
or through other CHs, which is similar to the structure of [19]
and [20]. Each SN has a unique identity and belongs to a
unique cluster. The composition of clusters is out of the scope
of this article and can be found in [20].

In summary, the network we are researching is a cluster-
based WSN used for monitoring events with a hybrid
data transmission model; meanwhile, spatial correlation is
employed in the WSN to reduce the energy cost, and nodes
stay within three different states in the network operation pro-
cess. An example model of WSN is displayed in Fig. 2. Due
to spatial correlation, only a few nodes are in the monitoring
state, and SNs discovering events revert to an active state.
CHs store and forward the data to BSs continuously, and the
data are stored in a queue maintained by CHs before forward-
ing. The increase in length of the data queue indicates an
increase in the SNs’ data transmission; therefore, the length
of the data queue is an important context of state transitions,
which is similar to [19].

We make the following assumptions in this paper:
1) 1) The WSN is cluster-based, and SNs in a cluster could

communicate with the CH directly, whereas CHs communi-
cate with BSs directly or indirectly through other CHs.

2) Each SN has a unique ID and belongs to a unique cluster,
and CHs have more energy than SNs.

3) The data transmissionmodel in aWSN is hybrid, includ-
ing continuous and event-driven.

4) The states of SNs include hibernation, monitoring and
active, and the transition between monitoring and active is
taken into consideration during the trust evaluation of SNs.

5) Sensor nodes are deployed densely and redundantly for
reliability.

IV. AN IMPROVED HIERARCHICAL TRUST MECHANISM
In this section, an improved two-tier hierarchical trust mech-
anism is introduced, which consists of SN trust evaluation
and CH trust evaluation. The details of trust calculation are
described below.
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FIGURE 3. The structure of two-tier hierarchical trust evaluation.

A. OVERVIEW OF HIERARCHICAL TRUST MECHANISM
Based on the cluster-based WSN described in section III-D,
a two-tier hierarchical trust mechanism is introduced. Unlike
prior works, the first level trust is simplified by CH-to-SN
evaluation due to the direct communication between SN and
CH in a cluster, whereas the second level trust is conducted by
CH-to-CH direct evaluation and BS-to-CH direct or indirect
evaluation through the feedback of a 1-hop-neighbor CH.
This is shown in Fig. 3, inwhichwe can see that the evaluation
of trust is executed by CHs and BSs. The evaluation of the
trust is periodic, the update cycle of which is1t , a predefined
interval according to the operation of WSN.

Two-tier trust evaluation consists of multidimensional
trust, including network related trust and observing data
related trust, because the WSN is a data-centric network, and
it is essential to take the observing data into consideration.
Meanwhile, it is common for sensor nodes to carry various
types of sensors with them to acquire information. Therefore,
the trust in this article is classified into interactive trust,
honesty trust and content trust. The first two are network-
related trust, while the last one is data-related trust. Their
definitions are as follows:

Interactive trust refers to the trust value computed by the
number of interactions between nodes, and an interaction
means a node sending/receiving a packet or a request to/from
another node. In a certain range, the greater the number of
interactions between two nodes, the higher the degree of their
trust, and it will reverse when it exceeds the normal range.

Honesty trust means the trust value calculated by the
successful and failed interactions between two nodes. The
greater the number of successful interactions than failed,
the higher the degree of their honesty trust.

Content trust means the trust degree evaluated by the devi-
ation between observing data and the effective average of
observing data. The more proximal the data, the higher the
content trust value of the node.

In this work, the trust value is mapped to the integer
number in the range of [0, 10], where 0 demonstrates the
most distrustful, while 10 implies the most trusted, and 5 is
the medium trust. Adopting ten-scale integer representation
of a trust value could save the memory of sensors [9].

B. SENSOR NODES TRUST EVALUATION
Sensor nodes trust is evaluated by the CH in a cluster,
i.e., CH-to-SN trust, which considers multidimensional trust,

including interactive trust, honesty trust and content trust,
during the procedure of trust calculation.

1) INTERACTIVE TRUST OF SNs
Interactive trust SITij(1t) is calculated by the number of
interactions between node j and its CH i in 1t . In this paper,
interaction refers to all communication behavior including
sending and receiving of request and data packets. According
to the interaction of members in social networks, the greater
the number of interactions of two nodes, the higher the trust
value [21]. However, in WSNs, if the number of interactions
exceeds a threshold, the trust value will decrease because
there may exist malicious interactions such as attacks that
send a large amount of packets or requests to exhaust the
energy of the node.

Therefore, unlike trust evaluation in social networks, the
interactive trust evaluation method in WSNs is put forward.
Inspired by Normal Distribution in Statistics, the probability
density function, which is normalized to [0, 1] to calculate the
interactive trust, is adopted when the number of interactions
exceeds a threshold.

Interactions between CH and SNs are abstracted as an
undirected weighted graph, the weight of which represents
the number of interactions between them. The interactive trust
value of SN j evaluated by CH, SITij (1t) can be defined as:

SITij(1t)=

{⌊
10×wij/max(wij)

⌋
, j ∈ G, wij ≤ λµ;⌊

10×exp(−
∣∣wij−µ∣∣/θ )⌋ , j ∈ G, wij > λµ;

(1)

where bxc denotes the largest integer that is equal to or
less than x, µ is the mean value of the number of interactions
between CH and SNs in the same state, λµ is taken as the
threshold of the interaction range, in which λ is a parameter
used to define the upper limit of normal interactions, and θ
is a significant factor, which values 1, 10 and 100 when wij
is a single digit, tens digit or hundreds digit, correspondingly,
and so on.

Here, states of SNs should be noted because they have
a great impact on the interactive trust evaluation between
SNs and CH (the number of normal interactions is different
based on different states). Therefore, the evaluation process
of interactive trust of SNs is classified into three categories
according to different states. The judgment of states could
refer to section III-D and [19]. For hibernation SNs, they
inherit their last nonhibernating trust value, whereas for the
interactive trust of monitoring and active SNs is calculated
through the number of interactions between CH and SNs,
which are at the same state according to (1), respectively.

Two examples are shown in Fig. 4 (a) and (b). In the
example graph G, a set of SNs {A, B, C, D, E and F} in
the same state (for example, the monitoring state) interact
directly with a CH marked as i, and the weight on edges
denoted as wij represents the number of interactions between
them in an update cycle 1t , and in this example, we set the
parameter λ = 2.
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FIGURE 4. An abstracted graph of interactions between CH and SNs
(all SNs are in the same state – monitoring state). (a) and (b) The vertexes
A, B, C, D, E and F represent the SNs in the monitoring state, CH
represents the cluster head. The number on each edge dipicts the number
of interatcions between each SN and the CH in an evaluation cycle.

TABLE 1. Interactive trust evaluation results of SNs in Fig. 4.

Here, the evaluation results of examples in Fig. 4 computed
according to (1) are listed in TABLE 1. The results show that
node B has the highest interactive trust in both examples, but
node C is different. The mean value of the number of inter-
actions in Fig. 4 (a) and (b) is 5 and 8, respectively. Thus, the
threshold of normal interactions for (a) and (b) is 10 and 16,
respectively. In Fig. 4 (a), the number of interactions is less
than the threshold, so nodes with the maximum number of
interactions (here, it is 7) have the highest trust value; i.e., the
trust value of node B is 10, and the trust value of others is the
ratio of the number of interactions to the maximum number of
interactions. Whereas in Fig. 4 (b), the number of interactions
between node C and CH exceeds the threshold, and thus the
trust value of node C is not the highest; and the higher the
number of interaction than the threshold, the lower the trust
value according to (1).

2) HONESTY TRUST OF SNs
Honesty trust SHTij (1t) is calculated by the number of
successful and unsuccessful interactions between CH i and
a nonhibernating SN j in 1t . The CH i overhears the SN j
if j does not deliver a packet in 1t or transmits the packet
to another node that is not in its routing table, or if the
packets from j do not reach the CH i, the interaction between
them is considered an unsuccessful interaction. Otherwise,
we consider it a successful interaction. For instance, if a node
is compromised and suffers from a black hole or selective
forwarding attack, all packets or partial packets from it will
not reach the CH. The higher the ratio of the number of
successful interactions to the number of all interactions, the
higher the trust value.

The number of successful and unsuccessful interactions
between nonhibernating nodes and CH i in 1t is denoted as
s and f , and the trust value is evaluated with (2) according to
the improved beta function.

SHTij(1t)

=

{
b10× (s+ 1)/(s+ f + 2)c , when f = 0⌊
10× (s+ 1)/(s+ f + 2)× f −1/2

⌋
, when f 6= 0

(2)

When there are no interactions between nonhibernat-
ing members, i.e., s = f = 0, the trust value is 5.
If there are unsuccessful interactions, the honesty trust value
will decrease sharply because of the punishment executed
by f −1/2 [9]. For hibernation members, they inherit the trust
value of their last nonhibernating state.

3) CONTENT TRUST OF SNs
Content trust is the trust evaluation based on observing data,
which is data-oriented trust calculated by CH. Content trust is
introduced because theWSN is a data-centric network and the
observing data are the factor of most concern for applications.
Tampering attacks often occur in WSNs to interfere with the
network and applications and can be identified by content
trust.

In WSNs, nodes often carry different sensors with them,
such as temperature sensors, humidity sensors, light inten-
sity sensors, and air pressure sensors. They will transmit
multidimensional observing data to the CH, and the devi-
ation between the observing data and the effective average
of observing data determines the content trust. Euclidean
distance is adopted to evaluate the content trust in this work.
As for the effective average, we denote mak and σk as the
mean value and standard deviation of the kth-dimension
observing data of nonhibernating SNs; the effective average
of the kth-dimension data is the mean value of the observing
data that are in the range of [mak − σk ,mak + σk ]. For
instance, if a 1-dimension observing data set is {10, 11, 10,
14, 10}, the mean value and standard deviation is 11 and
1.55, respectively. The effective average is the mean value of
observing data that are in the range of [9.45, 12.55]; i.e., the
mean value of {10, 11, 10, 10} and {14} is excluded because
it is out of range. Due to the dense deployment of nodes, if
an observing event occurs, most nodes around the event will
report the observing data, and it is impossible for only one
node to observe obviously different data, unless the node is
compromised or attacked.

Therefore, content trust SCTij (t) is calculated as follows:

SCTij(t)=
⌊
10×exp(−Dij)

⌋
, Dij=

(∑dm

k=1
(xik−xjk )2

)1/2

(3)

where Dij denotes the Euclidean distance between the
multidimensional effective average calculated by CH i and
the multidimensional data observing by SN j, dm indicates the
dimensions of observing data; and xik and xjk represent the
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effective average of the kth-dimension data stored in CH i
and the kth-dimension data of SN j, respectively. Hibernation
SNs inherit the trust value of their last nonhibernating state.

4) OVERALL TRUST OF SNs
The overall trust of SN j evaluated by CH i is calculated
as (4), which aggregates the interactive trust, honesty trust
and content trust.

SOTij =
⌊
αSITij + βSHTij + (1− α − β)SCTij

⌋
(4)

where parameters α, β ∈ [0, 1] are weights for each subtrust
value. The higher the weight, the more important that subtrust
is to overall trust and vice versa. The parameters are different
according to different occasions considering state transitions,
and discussions are as follows:

We consider hibernation state, monitoring state and active
state as described in section III-C. The state transition
between hibernation and monitoring depends on the prede-
fined time period, and we assume that there is no security
event during the occasion. However, the transition between
monitoring and active state may be accompanied by the
occurrence of security issues. Therefore, three occasions are
discussed, including No state transitions between monitoring
and active, State transition from monitoring to active and
State transition from active to monitoring.
Case 1:No state transitions betweenmonitoring and active.
In this occasion, states of nodes periodically alternate

between monitoring and hibernation, which is common in
WSNs. According to the assumption above, it has no effect on
the evaluation of trust; therefore, the calculation is executed
by (4) with the parameter α = β = 1/3, which means the
interactive trust, honesty trust and content trust have the same
importance.
Case 2: State transition from monitoring to active.
When there exists state transition from monitoring to

active, the most significant change is that the queue length
of corresponding CH increases sharply. According to data
transmission features and the network model described in
section III-A and III-D, abnormal events may occur in the
environment; otherwise, attacks may occur, especially DoS
attacks, tampering attacks or other attackswhose purpose is to
consume energy. Therefore, the interactive trust and content
trust are of greater concern among the three trusts, and the
evaluation of the trust of active nodes is executed by (4) with
the parameter α = 1/2 and β = 0. If the abnormal event of
the environment is true, the neighbors of the node will also
increase the transmission rate, and the effective average of
observing data will also be very proximate with the data of the
node, which means the trust value of the active node is still
at a high level. Otherwise, if only the active node changes
its behavior or observing data, its trust value will decrease
significantly, which means the active node may be attacked.
Case 3: State transition from active to monitoring
When a normal active node converts its state to monitoring,

there exists two cases: One is that the abnormal event of an
environment is ended, and the other is that a node is suffering

from a tampering attack or a black hole attack or selective
forwarding attack. Therefore, honesty trust and content trust
are of more concern, and the trust evaluation is calculated by
(4) with the parameter α = 0 and β = 1/2. If the abnormal
event indeed ends, the effective average of observing data will
be similar to the observing data of the node, and the honesty
trust will not fall to a low level, which means the trust of
the node will be at a high level. Otherwise, the difference
in observing data or decrease in transmission rate (the CH
will not receive enough packets from the node as with others)
makes the trust value decrease in an obvious way, which
means that the observing data of the node are tampered with
or the node drops all the packets or part of the packets.

C. CLUSTER HEADS TRUST EVALUATION
Cluster heads trust evaluation is enforced in this work by
CH-to-CH evaluation, BS-to-CH evaluation and feedback
from 1-hop neighbors of CH in order to avoid mali-
cious CHs in WSNs. Similar to the trust of SNs, CH
trust evaluation also includes interactive trust, honesty
trust and content trust. Interactive trust and honesty trust
are computed by BS-to-CH and feedback from 1-hop
neighbors of CHs, whereas content trust is evaluated by
BS-to-CH evaluation through the proximity between the
fusion data and the effective average observing data of non-
hibernating SNs in its cluster.

FIGURE 5. The schematic diagram of interactions between BS and CHs,
and the interactive trust of C4 evaluated by BS is based on the feedback
of C1, C2 and C6.

1) INTERACTIVE TRUST OF CHs
Interactive trust of CHs is divided into direct trust and indirect
trust. The former is evaluated by BS for its 1-hop-neighbor
CHs, and the latter is evaluated by feedback from CHs that
are 1-hop neighbors of a CH that is a non-1-hop neighbor of
a BS. Here, feedback is defined as positive feedback and neg-
ative feedback, which means the trust value calculated by its
1-hop neighbors is greater than or equal to 5 and less than 5,
respectively.

As shown in Fig. 5, C1, C2 and C3 are 1-hop neighbors
of BS, whereas C4, C5 and C6 are non-1-hop neighbors
of BS; therefore, the trust of C1, C2 and C3 is evaluated by
BS directly, and the trust of C4, C5 and C6 is calculated by
the feedback of the respective 1-hop neighbors of each CH;
i.e., the interactive trust of C4 is computed by the feedback of
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C1, C2 and C6, which are 1-hop neighbors of C4; similarly,
the trust of C5 (respectively, C6) is evaluated by the feedback
of C2, C3 and C6 (respectively, C4 and C5). The numbers on
edges represent the number of interactions between two CHs.

The interactive trust of each CH is initialized to 5, and
the trust between a CH and its 1-hop neighbors is updated
with (5).

ITij(1t)=


⌊
10× wij/max(wij)

⌋
, wij≤λµ;⌊

10× exp(−
∣∣wij−µ∣∣/θ )⌋ , wij>λµ;

(5)

where j is 1-hop neighbors of i, and wij represents the number
of interactions between i and j, µ denotes the mean value of
wij, λ is a parameter used to define the upper limit of the
normal interactions, and θ is a significant factor, which values
1, 10 and 100 when wij is a single digit, tens digit or hundreds
digit, correspondingly, and so on.

Interactive trust evaluation of 1-hop-neighbor CHs of BS b
is based on (5) denoted as ITbj (1t), which means i = b, and
for non-1-hop-neighbor CHs of BS, the value is calculated
by BS according to the feedback of their 1-hop neighbors.
The 1-hop neighbors of CH j compute the interactive trust
between each of them and CH j with (5); then, BS evaluates
the interactive trust according to the feedback with the beta
function:

FITj(1t) = b10× (fP + 1)/(fP + fN + 2)c (6)

where j represents the destination CH, fP and fN denote the
number of instances of positive feedback [ITij(1t) ≥ 5]
and negative feedback [ITij(1t)5] of CH j’s 1-hop neighbors,
respectively. In order to improve the quality of feedback,
BS considers only the feedback of CH j’s 1-hop neighbors
whose interactive trust in last 1t is larger than or equal to 5.
If there are no neighbors that meet this condition, the interac-
tive trust of the CH is set to 5.

Therefore, the interactive trust of CH j evaluated by BS
b denoted as CITbj (1t) is calculated as follows:

CITbj(1t)

=

ITbj(1t), j is the 1− hop neighbor of b;

FITj(1t), j is non− 1− hop neighbor of b;
(7)

Take C4 in Fig. 5 as an example; the interactive trust of C4
is evaluated by C1, C2 and C6 with (5) as 6, 6 and 3, which
means the number of positive feedback and negative feedback
are 2 and 1, respectively. Therefore, the interactive trust of
C4 calculated by BS denoted as CITb4 (1t) is 6 according to
(6) and (7).

2) HONESTY TRUST OF CHs
Similar to interactive trust evaluation, the honesty trust of
CHs is evaluated by BS-to-CH evaluation and feedback of
1-hop neighbors of CHs. The direct CH evaluation is executed

with (8).

HTij(1t)

=

{
b10×(s+1)/(s+f +2)c , when f = 0⌊
10×(s+1)/(s+f +2)× f −1/2

⌋
, when f 6= 0

(8)

where i and j represent 1-hop-neighbor CHs in WSN, and
s and f denote the number of successful and unsuccessful
interactions between them, respectively. CH i sends a packet
to k through j and overhears the behavior of j; if j does not
forward the packet in a predefined period or forwards it to
another node that is not in the routing table, the interaction is
unsuccessful (dishonest); otherwise, it is successful (honest).
The trust evaluation of 1-hop-neighbor CHs of BS is directly
computed by BS b denoted as HTbj (1t), where i = b in (8).
For CHs that are not 1-hop neighbors of BS, the evaluation

is executed by the feedback of their 1-hop neighbors with (8)
and (9).

FHTj(1t) = b10× (fP + 1)/(fP + fN + 2)c (9)

where j represents the destination CH and fP and fN denote
the number of positive feedback [HTij(1t) ≥ 5] and negative
feedback [HTij(1t)5] of CH j’s 1-hop neighbors, respectively.
Similarly, BS also considers only the feedback of CH j’s
1-hop neighbors whose honesty trust in last 1t is larger than
or equal to 5.

Therefore, the honesty trust of CH j evaluated by BS
b denoted as CHTbj (1t) is calculated as follows:

CHTbj(1t)

=

{
HTbj(1t), j is the 1− hop neighbor of b;
FHTj(1t), j is non− 1− hop neighbor of b;

(10)

3) CONTENT TRUST OF CHs
CHs fuse the observing data of SNs in respective clusters and
transmit to the BS directly or indirectly through other CHs.
Content trust of the CH is evaluated by BS according to the
proximity between the fusion data and the effective average
observing data of nonhibernating SNs in the cluster; the
proximity Dpj is defined as:

Dpj =
(∑dm

k=1
(xjk − xjfk )2

)1/2

(11)

where dm indicates the dimensions of observing data, xjk and
xjfk represent the effective average of the kth-dimension data
of SNs calculated by CH j and the kth-dimension fusion data
of CH j, respectively. The CH is required to transmit the
effective average and fusion data to BS b for content trust
evaluation, which is conducted as:

CCTbj(1t) =
⌊
10× exp(−Dpj)

⌋
(12)

where CCTbj (1t) represents the content trust of CH j eval-
uated by BS b in update cycle 1t , and Dpj is the proximity
calculated by (11).
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4) OVERALL TRUST OF CHs
The overall trust of CH j evaluated by BS b is calculated
as (13), which aggregates the interactive trust, honesty trust
and content trust.

COTbj=
⌊
ω1CITbj+ω2CHTbj+(1−ω1−ω2)CCTbj

⌋
(13)

where parameters ω1, ω2 ∈ [0, 1] are weights for each sub-
trust value.We consider each subtrust as an equally important
trust; thus, parameter ω1 = ω2 = 1/3, and they could be set
to different weights according to different occasions.

V. INTRUSION DETECTION BASED ON
HIERARCHICAL TRUST
According to the two-tier hierarchical trust mechanism, an
intrusion detection method at the SN level and CH level is
proposed in this section to discover malicious SNs or CHs.
The process of the method is introduced, and then the detec-
tion at the SN level and CH level is described.

A. THE MODULES OF THE SYSTEM
The modules of the system include the formation of cluster-
based WSN, the evaluation of the hierarchical trust, intrusion
detection at different levels and the measures taken after a
malicious SN or CH is detected. The process of the method
is shown in Fig. 6.

FIGURE 6. The process of IDS based on two-tier hierarchical trust.

The task in formation of cluster-basedWSN is the partition
of clusters after the network deployment, which is not the
scope of this work and may be found in [20]. The evalu-
ation of two-tier hierarchical trust is described in detail in
Section IV, in which the trust value of SNs is evaluated by
their respective CH, and the trust of CHs is calculated by BS,
reducing the burden on SNs. Intrusion detection at different
levels is introduced in section V-B and section V-C, and the
measures taken include alarm, isolation of the malicious SN,
re-selection of the CHwhen malicious CH is discovered, etc.,
which are not discussed in detail in this work.

B. INTRUSION DETECTION AT SN LEVEL
Malicious SN detection is executed by the respective CH. The
CH c evaluates and maintains the trust value of SN j in the

FIGURE 7. The process of malicious SN detection by a CH.

same cluster and selects a trust threshold TSthi according to
the trust value of SNs in cluster i, which is calculated as:

TS thi

=

{⌊
avgj∈CL and SOTcj≥5

{
SOTcj

}⌋
; ∃ j, s.t. SOTcj ≥ 5

5; others

(14)

where i represents the identification of a cluster, CL is the
cluster with CH c and SN j, and avg is the average function.

According to the state context described in Section IV-B,
the trust value of SN who has state transition between moni-
toring and active is evaluated preferentially, and the process of
the calculation and detection is demonstrated in Fig. 7. After
the deployment of WSN, the formation and initialization of
clusters are conducted. Before evaluating the trust of SNs,
a CH observes if there exists state conversion of SNs between
monitoring and active. If it exists, the CH calculates the trust
of SNs with different parameters according to the state con-
text. Then, the trust of other SNs in the cluster is calculated,
and the threshold of SN trust is not selected until all SNs
in the cluster are traversed. Finally, the trust of each SN is
compared with the threshold, below which the SN is regarded
as a malicious one and measures should be taken to avoid its
further damage.

C. INTRUSION DETECTION AT CH LEVEL
The intrusion detection at CH level is conducted by BS b,
reducing the possibility of being deceived by CHs and
decreasing the energy consumption of CHs. The trust cal-
culation of each CH is different from SN since there is no
state transition of CHs in this work. Malicious CH detection
is similar to malicious SN discovery, which also detects by a
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threshold of trust of CHs. The BS b computes and maintains
the trust value of each CH j and selects a threshold trust TCth

as the detection metric, which is computed as follows:

TC th

=

{⌊
avgj∈CHS and COTbj≥5

{
COTbj

}⌋
; ∃ j, s.t. COTbj ≥ 5

5; others

(15)

where CHS is the set of CH in WSN, and avg is the average
function. The BS b compares the trust of each CH in WSN
to the threshold calculated by (15) and considers the CH
whose trust value is less than the threshold as malicious or
compromised. Measures should be taken to reduce harm to
the WSN, for instance, isolation of CH and re-election of a
new CH, which is not the scope of this work.

VI. EXPERIMENT SIMULATION AND
PERFORMANCE EVALUATION
A. DETECTION RATE EVALUATION OF IDSHT
Our experiments are conducted with the NS2 simulator, and
we predefine 111 members including 100 SNs, 10 CHs
and a base station in cluster-based WSN with 10 clusters
deployed randomly in an area of 50 × 50 square meters. All
SNs and CHs are stationary, and CHs are predefined whose
energy, computation and memories are more than SNs, and
the energy, computation and storage of BS is not limited.
According to assumptions, part of nodes (we set 70%) are
in a monitoring or active state, and the data update cycle is
set to 10 seconds, and experiments last for 1000 seconds.

In experiments, 2-dimensional observing data with
temperature and humidity as examples are considered.
Malicious behaviors including DoS attacks, selective for-
warding attacks, tampering attacks and energy exhaustion
attacks are simulated. Malicious nodes with DoS attacks per-
form sending requests and data information constantly, and
nodes with selective forwarding attacks forward the receiving
packets with a probability of 20%; meanwhile, nodes with
tampering attacks tamper the observing data randomly, and
the energy exhaustion attack performs communication with
other nodes constantly.

The average trust value of normal members and abnor-
mal members in an update cycle is calculated during the
experiments; meanwhile, the trust threshold for malicious
detection is counted. Fig. 8 demonstrates the average trust
value and threshold of normal and abnormal members in
10 update cycles, from which we could see that the average
trust value of normal and abnormal members is in the vicinity
of 8 and 4, respectively, and the dynamic trust threshold for
malicious detection is different in each update cycle. Based on
the mechanism we proposed, normal members and abnormal
members could be distinguished apparently. The trust value
of abnormal members in our mechanism is not decreasing
sharply because the trust evaluation combines the interactive,
honesty and content trust, and only when all three trust values
reduce will the overall trust value decrease significantly.

FIGURE 8. The trust value and threshold of normal and abnormal
members.

The proposed method IDSHT is compared with DTBID
(Distributed Trust based Intrusion Detection) proposed
in [14], which also considers multidimensional trust includ-
ing energy, data and communications, and detects malicious
nodes through comparison of subjective and objective trust.
But the data trust in DTBID refers to 1-dimensional data, and
multidimensional data are not discussed.

For detection of each single attack type, only a type of
attack is injected to the network, and the number of malicious
members is set to 20% of the whole members, distributed
evenly to each cluster. Experiments are executed 10 times
independently for detecting each type of attack, the detection
rate of which is the average of the results of 10 experiments.

FIGURE 9. Malicious detection rate of different behaviors using IDSHT
and DTBID.

Fig. 9 shows the malicious detection rate of different
attacks using IDSHT and DTBID. Both methods have a high
detection rate for DoS attacks, selective forwarding attacks,
tampering attacks and energy exhaustion attacks because both
of them considermultidimensional trust factors. However, the
detection rate of IDSHT we proposed is higher than that of
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DTBID due to more strict punishment in the process of trust
calculation. The detection rate of tampering attacks is nearly
100% according to the content trust for both 1-dimensional
and multidimensional observing data, whereas DTBID only
considers 1-dimensional data.

For the overall detection rate with all types of attacks
above, we set the number of malicious members with dif-
ferent attacks as 5%-60% of the whole members with a
5% increase, and the malicious members are distributed
evenly in each cluster. Four types of attacks are considered
and shown in Fig. 9, and a member could be attacked by one
or more attacks simultaneously. Malicious detection with the
same number of malicious members is conducted 10 times
independently, and the overall detection rate is the average of
10 results. In this process, the overall false positive rate and
false negative rate are evaluated simultaneously.

FIGURE 10. Comparison of detection rate of IDSHT and DTBID.

The comparison of the detection rate of two methods is
shown in Fig. 10, which indicates that the detection rate of
bothmethods is decreasing with the increase in the proportion
of malicious members. However, the IDSHT maintains a
higher detection rate due to the dynamic threshold of trust as
shown in Fig. 8, whereas the threshold of difference between
subjective trust and objective trust in DTBID is not self-
adaptive according to the introduction in [14]. In the simu-
lation, the proportion of malicious members increases from
5% to 60%, and the detection rate of IDSHT and DTBID is
decreasing from 100% to 89% and 81%, respectively.

There are two important indexes in intrusion detection sys-
tems - false positives and false negatives; the former indicates
normal nodes recognized as malicious nodes, and the latter
indicates malicious nodes recognized as normal nodes. The
false positive rate is defined as the ratio of the number of
normal nodes recognized as malicious ones to the number of
whole normal nodes. The false negative rate is the ratio of the
number of malicious nodes recognized as normal ones to the
number of whole malicious nodes. Fig. 11 and Fig. 12 depict
the false positive rate and false negative rate of both methods
with the increase in proportion of malicious members, from
which we can see that both the false positive rate and false

FIGURE 11. Comparison of False positive rate of IDSHT and DTBID.

FIGURE 12. Comparison of False negative rate of IDSHT and DTBID.

negative rate of IDSHT is from 0 to 11%, whereas that of
DTBID is from 0 to 17% and 19%, respectively. The false
positive rate of both methods is equal when the proportion
of malicious members is 35%, just as shown in Fig. 11. The
reason is that the dynamic detection threshold in our method
is just the same as that of DTBID. There after the false
positive rate decreases and grows slowly due to the dynamic
detection threshold which is adaptive to the operation of the
network. This indicates that the performance of IDSHT is
better than that of DTBID because in the simulation, both
the false positive rate and false negative rate of IDSHT are
lower than that of DTBID. The reason is that the dynamic
detection threshold excludes some normal fluctuation in trust
value, which makes the system more flexible.

The value of the parameter λ in (1) and (5) has a significant
impact on the performance of the system. When the value is
small, it will result in a higher false positive rate because some
normal interactions exceed the threshold leading to a decrease
in trust value. However, when the value is large, it will result
in a higher false positive rate and false negative rate because
the abnormal interactions are treated as normal ones and
become the most trustable, making nodes with normal inter-
actions acquire lower trust values according to (1) and (5).
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FIGURE 13. The false positive rate according to different λ.

The relationship between the value of λ and the performance
of the system is shown in Fig. 13, on the condition that there
are 30%malicious nodes in theWSN. From Fig. 13, we could
infer that the parameter λ has an impact on the performance
of the system, and the false positive rate is around 17%, 8%,
32% and 32%when λ = 1, 2, 3 and 4, respectively. Therefore,
λ = 2 is the most suitable for our work.

B. OVERHEAD EVALUATION OF IDSHT
In this section, the maximum communication overhead and
storage overhead of the proposed IDSHT are analyzed and
compared with LDTS [9], which is a lightweight and depend-
able trust system for clusteredWSNs and similar to our work.

1) THE MAXIMUM COMMUNICATION OVERHEAD ANALYSIS
The communication overhead evaluation is conducted on the
condition that the WSN is at a heavy load and consumes
maximum communication. Here, some variables and assump-
tions are defined to compute the communication overhead.
There are m clusters in WSN, i.e., m CHs and n SNs in
each clusters, the communication between which is through
packet transmission. According to the assumption described
in section III-D, SNs in a cluster communicate with CH
directly and the communication betweenCHs andBS is direct
or indirect through other CHs. Therefore, the communication
overhead consists of SN with CH, CH with CH and BS
with CH.

In a cluster, an SN interacts with its CH by sending a packet
and receiving a feedback packet, which means 2 packets
transmit during this interaction. Thus, all SNs in the cluster
communicate with its CH at the worst occasion, and 2n pack-
ets are consumed in a cluster. The total number of packets of
all m clusters is 2mn.

The communication between CHs also consists of packet
and feedback packet. If a CH communicates with another CH,
2 packets are consumed, and it will cost 2(m − 1) packets
when the CH communicates with all other CHs. Therefore, at
the worst condition, it will consume 2(m−1) (m−1) packets

when all CHs communicate with other CHs. Meanwhile, the
BS communicating with all CHs will cost 2m packets.

Above all, the maximum of the communication overhead
of IDSHT inWSN is computed as 2mn+2(m−1)(m−1)+2m,
and the communication overhead of LDTS is computed as
2mn2 + 2m2

− 4mn+ 2m+ 2, correspondingly.

FIGURE 14. Communication overhead with 1,000 nodes (a) and with
10,000 nodes (b).

The comparison of themaximum communication overhead
of IDSHT and LDTS is shown in Fig.14 (a) and (b) for the
condition where there are 1,000 and 10,000 nodes in clustered
WSNs, respectively. The curves in Fig.14 (a) and (b) show
that the communication overhead of IDSHT is lower than that
of LDTS overall, especially when the number of clusters is at
a low level, and the overhead is tending to approach with the
increase in the number of clusters and the expansion of the
scale of WSNs.

2) THE MAXIMUM STORAGE OVERHEAD ANALYSIS
The SN in each cluster interacts with its CH directly, and
it does not need to store information of other SNs in the
process of trust evaluation. Therefore, the SN only stores the
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FIGURE 15. Storage overhead of SNs with 1,000 nodes.

ID of itself and the observing data. That means there is no
additional storage overhead caused by trust evaluation in SNs,
whereas the storage overhead of SNs of LDTS is 7n, where n
represents the number of SNs in a cluster; the reason is that
SNs of LDTS have to store the trust information of all other
SNs in a cluster.

The comparison of SNs’ storage overhead caused by trust
evaluation of IDSHT and LDTS is shown in Fig. 15 according
to the number of clusters with 1,000 nodes in WSN. Since
the trust of SNs in the proposed IDSHT is evaluated by
corresponding CH and that of LDTS is calculated by other
SNs in a cluster, we could see from Fig. 15 that the storage
of SNs of IDSHT is less than that of LDTS, and the larger
the number of clusters, the smaller the gap in SNs’ storage
overhead. The reason is that the number of SNs in a cluster
decreases as the number of clusters increases, so the storage
of SNs decreases.

The storage overhead of CHs should be considered impor-
tant because CHs bear the heavier task, including trust calcu-
lation of SNs and their 1-hop neighbor CHs and malicious
SNs detection. Each CH maintains two databases during
malicious detection, including an SN dependent database and
a 1-hop-neighbor-CH dependent database. Here, the vari-
able m, n, dm represent the number of clusters, the number of
SNs in a cluster and the dimension of observing data, respec-
tively. The storage of trust value is 0.5 bytes just because we
have normalized the trust value to the integer in [0, 10], which
could be denoted and stored with 4 bits.

The SN dependent database and 1-hop-neighbor-CH
dependent database maintained by each CH during the trust
evaluation and malicious detection are shown in Table 2 and
Table 3, respectively, which describe the items, storage and
relevant implications in detail.

A CH has to store all items in table 2 for each SN except
µ, θ , mak , σk , xik , TQ and TSthi because these seven items
are shared in a cluster. Therefore, the total storage of an SN
dependent database with n SNs in a cluster is computed as:

STORSN−dp = 18n+ 12dm + 8.5 (16)

TABLE 2. The structure of SN dependent database maintained by a CH.

TABLE 3. The structure of 1-hop-neighbor CH dependent database
of a CH.

Similarly, a CH should store all items in table 3 for each
1-hop-neighbor CH except µ and θ since they are shared
among neighbors. We assume that all other m − 1 CHs are
1-hop neighbors of a CH, which is the worst case, and the
CH needs to maintain the information of other m − 1 CHs.
Therefore, the total storage of a 1-hop-neighbor CH depen-
dent database is computed as:

STORCH−dp = 9.5(m− 1)+ 8 (17)

Therefore, the overall maximum storage of a CH with trust
evaluation is computed by (18) with the sum of (16) and (17).

STORoverall = 18n+ 9.5m+ 12dm + 7 (18)

whereas the storage of a CH in LDTS is computed as
0.5mn2 + 7(m− 1).
The comparison of CHs’ maximum storage overhead of

IDSHT with 1-dimensional data and LDTS caused by trust
evaluation is shown in Fig. 16. We can see that the storage
overhead of IDSHT with 1-dimensional data is lower than
the overhead of LDTS on the whole, and the overhead tends
to approach as the number of clusters increases. With the
increase in the dimension of observing data, the storage
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FIGURE 16. Storage overhead of CHs with 1,000 nodes.

overhead of CHs in IDSHT is increasing at an extremely
low level, essentially constant, so the dimension of observing
data almost has no impact on the storage overhead of CHs.
This demonstrates that the storage overhead of the proposed
IDSHT is better than that of LDTS, especially when the
number of clusters is at a lower level.

VII. CONCLUSION
In this article, an intrusion detection mechanism based on
state context and hierarchical trust (IDSHT) for cluster-based
and constantly changingWSNs is proposed; it considers trust
evaluation and the self-adaptation detection threshold. During
trust evaluation, factors of communication, multidimensional
observing data and state transitions of SNs are considered.
Meanwhile, the judgment strength of SNs’ trust is reduced
by CH-to-SN trust evaluation, whereas the judgment strength
of CHs’ trust is increased through CH-to-CH, feedback of
1-hop neighbors of CHs and BS-to-CH trust evaluation.
Moreover, the mechanism could adapt different weights to
evaluate SNs’ trust value according to the state transitions,
improving the efficiency of the system. Malicious behaviors
could be detected based on the trust and dynamic threshold,
which improves the adaptability of the system. Simulation
results demonstrate that the proposed IDSHT requires less
storage and communication overhead compared with existing
typical systems, and it performs well in malicious detection
with a higher detection rate and lower false positive rate and
false negative rate.
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