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ABSTRACT In the computed tomography (CT) field, image reconstructions from truncated projections
acquired by only illuminating the region of interest are an effective method to reduce the radiation dose.
Theoretically, it has been proven that the exact interior reconstruction is feasible with some prior knowledge.
However, the traditional data-consistency-based motion correction methods cannot be applied to truncated
data. In this paper, we propose a locally linear embedding (LLE)-based motion correction method for locally
truncated projections. Compared with the fast rotation of the X-ray source, the object motion is relatively
slow and can be approximated by a smooth polynomial function. Based on this knowledge, a constraint term
is added to optimize the estimated motion parameters. Extensive numerical simulations are performed. Our
results demonstrate the feasibility and satisfactory performance of the proposedmethod. As far as the authors
know, this algorithm is the first of its kind for motion parameter estimation only from truncated projections
in the CT field.

INDEX TERMS Truncated projection, motion correction, locally linear embedding.

I. INTRODUCTION
Computed tomography (CT) has been widely accepted to
detect the interior structures of objects. Particularly in clinical
applications, CT images provide important information to
help physicians make correct diagnostic decisions. However,
X-rays are harmful and may induce genetic, cancerous and
other diseases, which limits the extension of CT for clin-
ical applications. To maximize the benefits of CT, the as-
low-as-reasonably achievable principle is widely accepted in
clinics, and several solutions have been proposed for dose
reduction. For example, we can only illuminate a region-
of-interest (ROI) and reconstruct images from truncated
projections.

Theoretically, exact reconstruction can be performed from
truncated projections under some conditions. The well-
known two-step Hilbert transform method developed by
Noo et al. [1] in 2004 is considered a milestone work for
image reconstruction from truncated projections. Based on
their algorithm, an image in the field of view (FOV) can be
exactly reconstructed along a PI segment if two endpoints
of the PI-segment are outside the convex hull of the image
object support. Then, Defrise et al. relaxed this condition

in 2006. They concluded that an exact reconstruction was
available if one endpoint of the PI segment was outside the
object support [2]. Later, Ye et al. proved that if a sub-region
in the FOV was known, the interior problem for ROI could
be exactly and stably solved. The aforementioned algorithms
assume some special prior knowledge, which may lead to
certain limitation in practical applications. In 2009, more
general results were reported. Inspired by the compressive
sensing (CS) theory, it was proven that the exact solution for
an interior problem can be determined if the ROI is piece-
wise constant or piecewise polynomial [3]–[7]. Because most
human organs can be approximated as piecewise constant
regions, the CS-based algorithms have wide applications.

Motion is sometimes inevitable in practice during a CT
scan. For example, infant and seriously injured patients can-
not remain stationary during the entire scanning procedure.
Many studies have been performed to reduce the motion
artifacts. For example, we can improve temporal resolution by
increasing the source rotation speed or using multiple X-ray
sources [8], [9]. Minimizing the contribution of the views
with obvious motion is also a popular method [10], [11].
However, these methods cannot thoroughly eliminate the
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motion artifacts. Therefore, it is necessary to develop algo-
rithms to compensate for motion artifacts by estimating
the motion parameters. The available algorithms can be
divided into two categories: analytical methods [12]–[14]
and iterative methods [15]. In general, analytical methods
are based on the data consistency condition (DCC) because
of the redundancy of CT projections. The Helgason-Ludwig
consistency condition (HLCC), which is the well-known
DCC in the CT field for two-dimensional (2D) parallel
beam projection data, can be applied for motion arti-
fact reduction. During recent decades, many other DCCs
were proposed [16]–[18] for different projection geometries.
Furthermore, several iterative algorithms were developed.
In 2008, Panetta et al. [19] proposed an optimization-based
geometrical calibration algorithm, which is appropriate for
cone-beam projection. In 2009, Patel et al. [20] proposed a
motion correction method for a cone-beammicro-CT system,
which also only demands the raw projection data. In 2016,
Chen et al. [21] proposed a locally linear embedding (LLE)-
based geometrical calibration method for fan-beam geome-
try. Using the derivative of re-projection with respect to the
motion parameter, Sun et al. [22] developed another motion
correction algorithm for helical geometry in 2016. Although
the existing analytical and iterative methods work well, they
assume that the projections are nontruncated. For the interior
problem, they fail, or their performances are significantly
compromised.

On one hand, many methods are available to solve the
interior problem to reconstruct an ROI from truncated pro-
jections. On the other hand, as far as the authors know,
there is no practical algorithm to estimate the motion param-
eters for motion artifact reductions from locally truncated
projections. To conquer this difficulty, a new algorithm is
required. In 2014, Clackdoyle and Desbat [23] constructed a
new integral-type DCC assuming a parallel-beam geometry,
which can be applied to truncated projections. Yu et al. [24]
improved Clackdoyle and Desbat’s result by extending it to a
generalized condition that is suitable for 2D fan-beam geome-
try and general scanning trajectory. This generalized DCC by
Yu et al. provides a method for geometrical calibration and
motion estimation from a set of locally truncated projections.
However, it is only valid when the origin is outside the
convex support of the imaging objects. Because the origin is
located inside imaging objects for most practical problems, it
is of high significance to develop an algorithm to estimate
the motion parameters from locally truncated projections.
This issue motivated us to develop the LLE-based method
described in this paper.

According to the LLE theory, because of the redundancy
of projection, one can map a high-dimensional projection
space into a low-dimensional motion-parameter space. Here,
the key is how to address the data truncation in the frame-
work of LLE for dimensionality reduction. In fact, the trun-
cated projections are also redundant and can be processed by
dimensional reduction. However, we find that the truncated
projections can cause obvious deviations on the corrected

motion parameters. Therefore, a polynomial-based regular-
ization is introduced to make the motion trajectory converge
to a smooth curve. This regularization is the key contribution
of our paper. The remainder of this paper is organized as
follows. In Section II, we describe the LLE-based algorithm
in detail for motion estimation. In Section III, we demonstrate
the feasibility of the proposed algorithm for truncated projec-
tions with numerical simulations. In Section IV, we discuss
some related issues and conclude the paper.

II. METHOD
In general, an image has dimensions of W × H , which
represent the width and height of the image, respectively. The
acquired sinogram dimension isWD×V , which represent the
width of the detector and the amount of projections. A 2D CT
reconstruction problem can be modeled as a linear system

Au = b, (1)

where u is an image, b is the corresponding sinogram, andA is
the system matrix. Both u and b in Eq. (1) are stretched into
vectors, whose dimensions areN = W×H andM = WD×V .
Although u and b are vectors, we prefer to call them the image
and sinogram to avoid confusion. The relationship between u
and b is determined by the system matrix A, which contains
M × N elements. For any element am,n, its value represents
the contribution of the nth image pixel to the mth projec-
tion value. The system matrix is determined by geometric
parameters and motion parameters, which include translation
t and rotation θ . t is a matrix consisting of two vectors that
represent the translations along the x and y directions, and θ is
a vector. These three vectors have identical lengths of V . The
vth element in any of the aforementioned vectors corresponds
to the vth projection view bv. bv is a vector with length
WD, and all bv (v = 1, 2, · · · ,V ) form projection vector b
in Eq. (1). The geometric parameters of a given CT system
are fixed. Thus, the value of system matrix A is a function of
variables t and θ ,

A = A(t, θ). (2)

Because the behaviors of A, u and re-projection b̃ are con-
sistent, u and b̃ can also be treated as functions of motion
parameters t and θ . With these known conditions, we can
establish a motion parameter estimation algorithm for trun-
cated projections as follows

(t, θ) = argmin
t,θ

∥∥∥b− b̃(t, θ)∥∥∥2
2
, s.t. A(t, θ)u(t, θ) = b.

(3)

To solve Eq. (3), we propose a two-step method that consists
of image update and motion parameter update. They are
alternatively implemented as follows.

A. IMAGE UPDATE
In this section, image reconstruction is slightly different
from the conventional method. A reconstructed image com-
monly represents a stable object. However, in our study, the
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imaging object continuously moves, and different projection
views correspond to different object positions. If we perform
back-projection as usual, many interpolation operations are
required to compensate the translation and rotation for one
discrete image, and the interpolation operations can cause
deviations, which decrease the image reconstruction perfor-
mance. To solve this problem, we fix the object and move the
system coordinate.

FIGURE 1. Sketch map for the object motion at time τ . The solid line
represents the original object pose and the dashed line corresponds to
the object pose at moment τ .

Figure 1 shows an example at moment τ : the X-ray source
rotates an angle ατ , the object translates tτ and rotates θτ .
Because of the principle of relative motion, we treat the
object coordinate as the global coordinate. To represent the
coordinates of the detector and source in conformity with the
global coordinate, they must be translated along the opposite
direction of tτ and subsequently clockwise rotated in θτ
around the global origin. This transformation of coordinates
can be analytically accomplished with no approximation. As
a result, we can accurately reconstruct the image at time 0.

The ordered-subset simultaneous algebraic reconstruction
technique (OS-SART) [25] is used to reconstruct a CT image
within the ordered subsets. The so-called ordered subset is to
partition the index set B = {1, 2, . . . ,M} into T nonempty
disjoint subsets Bs = {ms

1,m
s
2, . . . ,m

s
M (s)} such that

B =
⋃

0≤s≤T−1

Bs. (4)

Within any subset, the image reconstruction is expressed as

ul,kn = ul,k−1n + λ
∑
m∈Bs

am,n∑
m′∈Bs

am′,n

bm − Amul,k−1

am+
,

s = k mod T , (5)

where l is the index of the outside loop, k is the index of the
inside loop, a+n and am+ are the sum of the nth column and

mth row of system matrix A, respectively. At the beginning of
the first iteration, the initial guess of the image is set to be
zero. Then, the reconstructed result at the end of the previous
iteration is stored as the initial guess in the current iteration,
which is expressed as

ul−1,K = ul,1, (6)

where K is set to be the iteration number of the inside loop.
In addition, the total variation (TV) is used as a constraint,

and a fast gradient-based algorithm is used to minimize
the TV [26]. Three merits make it more practicable and
competitive. First, the only required parameter to adjust is
mainly determined by the object TV value, and theminimized
result is not sensitive to the parameter value within a certain
range. Second, it always offers a clear image profile with
no overshoot or over-smooth phenomenon on the material
boundary. Third, the fast convergence rate ensures that the
filtered images are almost piecewise constant.

The OS-SART and gradient-based TV minimization algo-
rithms form a complete image update procedure, which can
be formulized as

u = argmin
u

‖b− Au‖2 + TV (u). (7)

The first part on the right side is called the fidelity term,
which is enforced by the OS-SART algorithm. The part next
to the fidelity term is called the regularization term, which
can be minimized by the gradient-based algorithm. Within
one inside loop, one can obtain an optimized result by alter-
natively applying the aforementioned algorithms to minimize
the cost function in Eq. (7). To speed up the convergence, the
weighting strategy in the fast iterative shrinkage-thresholding
algorithm (FISTA) [27] is introduced, which uses the last two
outputs as a feedback to refine the current output.

B. PARAMETER UPDATE
In this part, we use the LLE algorithm to estimate the motion
parameters [28]. LLE is a dimensionality reduction algo-
rithm. Similar to the methods of principal component anal-
ysis (PCA) [29] and multidimensional scaling (MDS) [30],
it is implemented via mapping vectors in a high-dimensional
space onto vectors in a low-dimensional space. However,
unlike PCA and MDS, which are only appropriate to model
linear variabilities in high-dimensional data, the LLE algo-
rithm is very popular for preserving the nonlinear relation
among the data points.

Suppose that there is a set of high-dimensional vectors
bv in WD-dimensional space. They are sufficiently sampled
from a smooth underlying data structure. We expect that
each data point and its neighbors maintain a sort of linear
relationship within a local region so that each data point
can be expressed by its neighbors with linear coefficients.
Then, the dimensionality reduction procedure is summarized
as follows. First, J nearest neighbors for each observation
are selected by the metric of Euclidean distance. Second,
with these selected neighbors, the corresponding observation
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can be reconstructed by computing the linear coefficients.
Third, with these computed linear relationships, each high-
dimensional observation bv is mapped to a low-dimensional
vector yv which represent the global internal coordinates.
To compensate for motion artifacts, we use the measured

projections to estimate the motion parameters of the imaging
object. Because all projections are collected on different time
points, they correspond to different object poses. Thus, in this
work, the high-dimensional vector bv represents the vth view
of projections, and the mapped low-dimensional vector yv
represents the corresponding motion parameters at the vth

time point. We estimate the motion parameters view by view
and type by type. For any view, one can densely sample
the motion parameters around the current estimation. Then,
a set of re-projections b̃vj are generated with these densely
sampled parameters, from which J nearest neighbors can be
selected according to the Euclidean distance. If these samples
are not far from the ground truth, the original projection can
be linearly approximated by its J neighbors,

bv =
J∑
j=1

wvjb̃vj, (8)

where wvj is the corresponding linear coefficient, which is
the contribution of the jth neighbor to the vth observation.
To calculate these linear coefficients, a cost function subject
to two constraints is introduced,

ε(w, v) =

∥∥∥∥∥∥bv −
∑
j

wvjb̃vj

∥∥∥∥∥∥
2

s.t.
∑
j

wvj = 1,wvj = 0

if b̃vj /∈ neighborhood . (9)

Minimizing the reconstruction error with these constrained
weights can make the reconstructed results invariant to rota-
tions, rescales and translations among the observations and
their neighbors. This invariance property makes the recon-
structions very stable.

The method to solve Eq. (9) is simple. We begin by cal-
culating the local covariance matrix; each element can be
calculated as

cjk = (bv − b̃vj)T (bv − b̃vk ). (10)

If the neighbor amount is larger than the dimension of an
observation, the covariance matrix is singular. For this case,
the covariance matrix can be conditioned by adding a small
constant onto the diagonal elements. Because solving the
constrained Eq. (9) is equivalent to solving the linear equation∑

j

cjkwvj = 1 s.t.
∑
j

wvj = 1, (11)

one can make a left division of an entire vector by the covari-
ance matrix and enforce the computed weights to sum to one.
Now, we have constructed a neighborhood-preserving map-
ping with these linear coefficients, with which the estimated

motion parameters correspond to the vth projection view can
be reconstructed

yv =
∑
j

wvjỹvj, (12)

where ỹvj is the corresponding densely sampled motion
parameter for the jth re-projections b̃vj, and yv is the estimated
translation or rotation. The entire described procedure can
be used to minimize the first part of Eq. (3), where b̃ is
reconstructed with its neighbors.

FIGURE 2. Flowchart for implementation of the proposed algorithm.

Because the projections to estimate the motion parame-
ters are truncated, the problem to minimize the cost func-
tion in Eq. (3) may contain multiple local minimizers, and
the convergence speed can also be degraded. To solve this
problem, we consider adding an additional constraint to the
cost function Eq. (3). Because of the fast data acquisition
of the X-ray CT scanner, the motion speed of the imaging
object is naturally much slower than that of the X-ray source.
Therefore, the trajectory of the moving object is smooth with
lower frequencies, and we assume that the motion parameters
can be well fitted to a polynomial function

8(v) =
E∑
e=1

aeve, (13)

where ae is the coefficient of polynomial, and E is the
polynomial order. One can use the least-square method to
estimate the polynomial coefficients per r iterations. Then,
this polynomial function can be used to guide the motion
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FIGURE 3. Reconstructed phantom images from noise-free projections. (a) is reconstructed from global
and motionless projections; (b) is reconstructed from motionless and truncated projections with our
motion correction algorithm; (c) and (d) are interior reconstructions from the projections with uniform
and spiral motions before correction; (e) and (f) are the counterparts of (c) and (d) with motion
correction. The display window is [0 0.5] cm−1.

parameter estimation in future iterations. Because we alter-
natively update the motion parameters, Eq. (3) can be revised
in an iterative form as follows

t l+1x = argmin
tx

∥∥∥b− b̃(tx)∥∥∥2
2
+ δl ‖tx −8‖22

s.t. A(t l+1x , t ly, θ
l)ul+1tx = b

t l+1y = argmin
ty

∥∥∥b− b̃(ty)∥∥∥2
2
+ δl

∥∥ty −8∥∥22
s.t. A(t l+1x , t l+1y , θ l)ul+1ty = b

θ l+1 = argmin
θ

∥∥∥b− b̃(θ )∥∥∥2
2
+ δl ‖θ −8‖22

s.t. A(t l+1x , t l+1y , θ l+1)ul+1θ = b, (14)

where δl = 1 when mod(l, r) = 0; otherwise, δl = 0. Each
view of re-projections b̃v can be expressed by Eq. (8), and all
views of re-projections make up the re-projection vector b̃.
Although Eq. (14) gives a form of minimizing the differ-
ence among the entire projection and re-projection vectors,
we tackle the projections view by view, and this strategy is
equivalent to solving Eq. (14).

For the first iteration, we initialize all motion parameters as
zero. Then, the estimated parameters are stored as the initial
guesses for the next iteration. In each iteration procedure,
we update the motion parameters in order, which are the
translation along x direction, translation along y direction
and rotation. Each parameter update must follow the image
update with the newly estimated motion. With Eq. (14),
one can only use the raw projection data to estimate the
motion parameters of the object via the regularized mapping.

Finally, our motion correction based on the constrained LLE
algorithm (MCCL) is summarized as a flowchart in Figure 2.

III. NUMERICAL SIMULATIONS
A. EXPERIMENTAL SETUP
The proposed algorithm is implemented according to the
flowchart in Figure 2. To demonstrate its feasibility, we
analytically generate three sets of truncated projections of
a modified Shepp-Logan phantom with different motions:
motionless, uniform motion and a motion with spiral trajec-
tory. For the three groups of datasets, we further introduce
noise to test the correction ability of MCCL. As shown in
figure 3 (a), the phantom is made of 10 ellipses of different
sizes. Its height andwidth are 9.0 cm and 7.0 cm, respectively.
The attenuation coefficient of the outer ring is 1.0 to simulate
a skull. The inner part of the phantom with lower attenuation
coefficients represents the soft tissues. Both distances from
the X-ray source to the origin and from the detector to the
origin are 15.0 cm. In total, 512 detector cells are uniformly
distributed along a 10.0 cm detector (each detector cell is
0.195 cm long); 360 projections are uniformly collected
within 360 degrees, which indicates that the positions of the
source and detector are known. The time sampling interval
between two adjacent views is set as 0.01 s, i.e., the object
motion is sampled 100 times per second.

To quantitatively evaluate the performance of our pro-
posed algorithm, we use several assessment metrics. The
root-mean-square error (RMSE) and structural similar-
ity (SSIM) are used to evaluate the reconstructed image qual-
ity [31]. Both methods are implemented by comparing the
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FIGURE 4. Motion correction errors of motionless projections. From left to right, three plots represent the errors for translations
along x and y direction and rotation, respectively.

FIGURE 5. Estimated motion parameters and errors of uniform motion. The top row shows the true and estimated motion
parameters, and the bottom row gives the corresponding estimation errors. From left to right, three columns are corresponding to
the translations along x and y directions and the rotation, respectively.

reconstructed image and ground truth in the field of view.
The RMSE measures the pixel intensity error, whereas the
SSIM reflects the structural similarity between the recon-
structed image and ground truth. In this work, the ground
truth is reconstructed from global projections without motion.
To quantitatively analyze the motion, a mean translation
excursion (MTE) and mean rotation excursion (MRE) are
defined as

MTE =
∫ τV

0
‖tτ‖ dτ/τV , (15)

and

MRE =
∫ τV

0
|θτ | dτ/τV . (16)

After the motion correction, the estimated motion parameters
can be used to calculate the corrected MTE and MRE

CMTE =
∫ τV

0

∥∥t̂τ − tτ∥∥ dτ/τV , (17)

CMRE =
∫ τV

0

∣∣∣θ̂τ − θτ ∣∣∣ dτ/τV , (18)

where t̂τ and θ̂τ are the estimated translation and rotation at
time τ . With these definitions, we evaluate the rectified extent
of the motion artifact by computing the relative MTE and
MRE as

RMTE = CMTE/MTE, (19)

RMRE = CMRE/MRE . (20)

B. NOISE-FREE PROJECTIONS
The reconstructed images contain 256 × 256 pixels to cover
a 10 × 10cm2 region, which is sufficient to display the
entire phantom. Parameter r is set to be 30; the iteration
number of image update K is set to be 10; the order of the
polynomial E is set to be 4 and 18 for the uniform motion
and spiral motion, respectively. Figure 3 shows the reference
image and reconstructed images from projections with dif-
ferent motions before and after the motion corrections. The
corrected image from motionless projections has a similar
central structure in the field of view, which demonstrates
that the proposed algorithm is convergent. The correspond-
ing motion estimation errors are shown in figure 4. The
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FIGURE 6. The same as figure 5 but for spiral motion.

FIGURE 7. Reconstructed images before and after motion corrections
from noisy projections. The top row shows the images without motion
corrections and the bottom row shows the images with motion
corrections. The left column corresponds to the uniform motion and the
right column corresponds to the spiral motion. The display window
is [0 0.5]cm−1.

estimated offsets along the x and y directions have maxi-
mal absolute deviations of approximately 0.05 cm, which is
approximated to an image pixel size possibly because the
estimation error is related to the mismatch between discrete
and analytical image models. The image quality is poor
for the reconstructed images without compensation from
motion estimation. Uniform motion makes the image look
like a superposition with two phantoms, and the motion
with a spiral trajectory thoroughly blurs the object structures.
Both images fail to offer correct information of the object.

TABLE 1. Quantitative evaluation results of the proposed algorithm for
motion corrections.

In contrast, the reconstructed images are very similar to the
reference after motion corrections, and part of the neighbor
region is comparable to the reference. Figures 5 and 6 are
the motion parameters and estimation errors for the uni-
form and spiral motions, respectively. The estimated rotation
parameters appear more accurate compared to their magni-
tudes. These results are consistent with the estimation for the
motionless object: the maximal absolute error is similar to
the image pixel size. Furthermore, the corrected offset errors
along x and y directions are always enlarged when the pro-
jection direction is approximately parallel to the estimation
offset directions. This type of error may be caused by the
truncated projections and weakness of distance perception.
In summary, the corrected motion parameters are very similar
to the ground truth.

C. NOISY PROJECTIONS
Poisson noise is superimposed to the raw projections by
assuming 105 incident photons for each detector cell. Param-
eters r , K and E are identical to those in the noise-free cases.
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FIGURE 8. The same as figure 5 but from noisy projections assuming 105 incident photons per detector cell.

FIGURE 9. The same as figure 6 but from noisy projections assuming 105 incident photons per detector cell.

Figure 7 displays the reconstructed images with and without
motion corrections. The corrected images have very similar
qualities to the noise-free ones. The two central small ellipses
are plump, and the boundaries of two narrow and dark ellipses
are easily distinguished. Although the structure composed of
three smaller ellipses outside the FOV is slightly distorted,
it does not affect the required information. The estimated
motion parameters and their corresponding errors are shown
in figures 8 and 9. Their accuracies are slightly degraded
because of Poisson noise. The error magnitudes are approx-
imately 2- to 3-fold that of the corresponding noise-free

cases. Fortunately, the estimated motion parameters always
fluctuate near the ground truth, which can ensure better
reconstructed image qualities. The estimation errors obey
the observed rules of the noise-free cases, and the estimated
rotation parameters show a higher accuracy than translations.

D. QUANTITATIVE EVALUATION RESULTS
The quantitative evaluation results for the proposed algorithm
are summarized in Table 1. The RMSE results reveal that the
corrected images remain the original attenuation for different
materials because they are relatively small. The similarity of
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corrected reconstructions and reference is considered high in
terms of visual observation and SSIM indices. Both RMSE
and SSIM results are affected by noise with slightly enlarged
amplitudes of variation. All CMTE indices for noisy and
noise-free cases are in the same magnitude of pixel size,
and those deviations are acceptable. The RMTE indices show
that the correction for translation is more sensitive to noise.
Both CMRE and RMRE indices show good corrections for
rotation in both noise-free and noisy cases because the image
reconstruction is more sensitive to the rotation errors. In other
words, for the same motion artifact level, the rotation error is
smaller than the translational motion error.

IV. DISCUSSIONS AND CONCLUSIONS
In section III, several groups of datasets are applied to demon-
strate the feasibility and evaluate the performance of the
proposed MCCL algorithm. The motion estimation results
show that the MCCL has a strong capability to estimate
the motion parameters from truncated projections. As far as
the authors know, this algorithm is the first of its kind for
motion parameter estimation only from truncated projections
in the CT field. To generate projections of a moving object,
the translations and rotation are set to be large compared to
the phantom size. The large magnitude of motion induces
severe artifacts in the initial reconstruction without motion
compensation. Considering the truncation of projections, the
FOV, which can be illustrated by all projections, is small.
It is difficult to map the truncated projection space with
very limited available information onto the motion parameter
space. Synthesizing all difficult conditions, the reconstructed
images and accuracy of the estimated motion parameters are
decent.

In the numerical implementation of the proposed algo-
rithm, many details must be discussed. Regarding the selec-
tion of the polynomial order E , we hope that the MCCL is
appropriate for most cases, and a relatively large E is desir-
able. Nevertheless, the computer precision enforces an upper
limit.Meanwhile, amoderate value can theoretically suppress
the artifact caused by the noise and mismatch. Finally, E is
limited in the range of 4-18 depending on the motion com-
plexity.

Translations and rotations reveal different sensitivities dur-
ing the motion corrections. The results of quantitative evalu-
ations show that the correction for rotation is always more
accurate than those of translations. In addition, the cor-
rectable range for rotation is wide (more than 90 degrees),
whereas the correctable range for translation is limited. This
difference is consistent with the common sense that image
reconstruction is more sensitive to the errors of rotation
angles. When the object continuously moves out of the FOV,
the corresponding motion parameters cannot be successfully
estimated. Similar to the interior reconstruction, relative to
the object size, the smaller the FOV is, the worse the esti-
mation accuracy is for a given motion pattern. Therefore, to
guarantee satisfied estimation accuracy, the FOV could not
be too small. Beside, we must ensure a fixed region of the

object always stay in the FOV, that is, the minimum size of
FOV also depends on the motion range for a satisfied motion
estimation. For practical applications, we recommend that the
FOV radius should be at least 1/3 of the object radius.

The parameter sampling intervals can also determine the
motion estimation results. In our experiments, the sampling
interval for translation is smaller than the correction error.
If the interval is large, the corrected parameters will fluctuate
around the ground truth. The sampling interval for rotation is
not as sensitive. However, the sampling range must be wide
at the beginning; otherwise, the motion correction will not
converge. Thus, we apply a multi-scale scheme to solve the
problems of convergence and accuracy: the sampling interval
can be decreased from a large value to a small value during the
iterations. In our numerical simulations, the sampling interval
for translations is set to be 0.0001cm. For rotation, we set the
sampling interval as 2 degree in the first 100 iterations and
0.002 degree for the rest iterations. For anymotion parameter,
we symmetrically extract 21 uniform sampling points around
current estimation.

The parameter r is the period that we valid the constraint
term. Although the constraint method can improve the accu-
racy of motion estimation, enforcing the motion trajectory
into a polynomial form for each iteration may affect the
convergence rate. We try to weaken this kind of conflict by
setting a period to employ the constraint term.

TV as a regularization term for image update is another
factor that affects the correction accuracy. On one hand,
a moderate TV intensity can effectively suppress the noise
and help to solve the interior problem. On the other hand,
a strong TV regularization makes the reconstructed image
over-smooth and decreases the accuracy of the estimated
motion parameters.

The most difficult challenge is how to use the truncated
projections to estimate the motion parameters. Theoretically,
each projection view must correspond to a group of motion
parameters. The mapping relationship is fixed, although
the projection is truncated. However, the accuracy will be
affected by the data truncation. To promote the stability of
this mapping, we can improve the image and projection
resolutions. However, the resolution improvement for pro-
jections will lead to more severe noise or an increase in
radiation dose, and a greater total pixel number will increase
the computation complexity. To overcome these problems,
we add a regularization term onto the LLE-based mapping
to reduce the deviations of the estimated motion parameters.
The numerical simulation results confirm the merits of this
strategy.

The motion correction results for noisy projections show
that MCCL can be slightly affected by noise. In the near
future, we will investigate other possible regularization terms
to help suppress the noise. The accuracy of the reconstructed
image is an important element to determine the estimated
motion parameters. We hypothesize that some valid prior
information may help to improve the noise suppression
performance.
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In conclusion, we have proposed a constrained LLE-based
algorithm to compensate for motion artifacts from truncated
projections. This algorithm is the first of its kind for motion
parameter estimation only from truncated projections in the
CT field. The algorithm is implemented by alternatively
updating the reconstructed image and motion parameters.
Numerical simulations with and without noise demonstrate
the feasibility of MCCL, which verifies that the truncated
projections DO encode motion information of an object.
We believe that the proposed MCCL possesses the develop-
mental prospect and potential application value in the near
future.
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