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ABSTRACT Depth images play an important role in 3-D applications. However, due to the limitation of
depth acquisition equipment, the acquired depth images are usually in limited resolution. In this paper,
a spatially adaptive tensor total variation-Tikhonov model is proposed to solve this problem. The tensor
total variation regularization is adopted to maintain sharp edges that reflect latent discontinuities in the real
world, while the Tikhonov regularization ensures that depth changes smoothly inside objects. Furthermore,
a fused edge map is proposed to indicate edge regions and balance both regularization terms. In edge regions,
tensor total variation regularization is predominant, thus edge blurring artifacts are suppressed. In non-edge
regions, Tikhonov regularization plays a more important role to suppress staircasing artifacts. Specifically,
texture edges are removed in the fused edge map, and texture copying artifacts are avoided. Experimental
results demonstrate the effectiveness and superiority of the proposed framework. Moreover, the proposed
method yields much sharper edges and a lower percentage of bad pixels.

INDEX TERMS Depth image super resolution, tensor total variation regularization, Tikhonov regularization.

I. INTRODUCTION
The recent years have witnessed the great development and
popularity of 3D-based applications such as depth-based
image rendering [1], 3DTV [2] and object reconstruction [3].
In these applications, it is of critical importance to acquire
depth information. The most common methods of depth
acquisition are from stereo matching and from special depth
cameras. It is a long history to use stereo matching to obtain
depth images with high resolution and high accuracy in com-
puter vision. However, it is difficult to recover depth infor-
mation for textureless areas and the computational load is
quite heavy. Recently, thanks to the development of hardware,
it is more common to use special devices, i.e., structure light
and time of flight depth cameras, to obtain depth information.
Unfortunately, due to the inherent limitation of physical sen-
sors, the captured depth images are often in low resolution,
which makes depth image super resolution quite necessary.

In the past years, many super resolution methods have
been proposed to increase the resolution of depth images.
Inspired by the development of super resolution for natural
images [4], [5], early researchers solved the super resolution
problem by fusing multiple depth measurements into one [6].
However, methods of this kind require a static scene thus limit

their applications. Besides, the calibration and registration of
multiple images are also complicated. A more general and
flexible case is to upsample depth image from a single low
resolution one. Zhong et al. [7] recovered high resolution
depth image by exploiting the local smoothness property of
the depth image itself, while some other researchers upsam-
pled low resolution depth image by incorporating an external
database of high resolution depth examplars [8]–[10].

Notice that both the color image and the depth image
contain information about edges in the real world. There is
a strong relationship between depth discontinuities and color
edges [11]. By exploiting this property, many color guided
depth super resolution methods have been proposed [12].
Generally, these methods can be generally classified into two
categories: filter based and optimization based.
Filter-based methods interpolate unknown pixels with an

interpolating filter, where the weights are designed carefully.
Yang et al. [13] generated high resolution depth images by
iteratively refining the input low resolution depth image with
a bilateral filter. Kopf et al. [14] produced the high resolution
solution by leveraging the guidance color image as a prior.
Min et al. [15] increased low resolution depth image by
using a weighted mode filter based on a joint histogram of
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depth image and color image. Kim et al. [16] proposed a
fast upsampling method based on a common edge region
generating from the color and depth images. Pixels in the
common edge region are detected and selected byminimizing
a cost function, while other pixels are estimated by using
bilinear interpolation. Liu et al. [17] found that the Euclidean
distance may be disturbed by texture edges, and proposed to
use geodesic distance to weight pixels nearby. More recently,
an edge preserving filter named guided image filter was
introduced in [18] and further extended in [19] by exploiting
local gradient information in the depth map.

Optimization based methods formulate the super resolu-
tion problem as an optimization problem, where a prior
reflecting the latent property of the desired results is utilized.
Diebel and Tuhrun [20] first used Markov random field to
model depth image and obtained the upsampling depth image
by solving an energy function. The function consists of two
quadratic potentials, measuring the reconstruction constraint
and the depth smoothness prior. Jung et al. [21] improved
this Markov random field model by introducing a confidence
map, with which the prior model and the energy function
are updated. In recent years, some other properties have also
been used. Park et al. [22], [23] adopted a nonlocal struc-
ture regularization to maintain fine details and structures.
Ferstl et al. [24] used total generalized variation to recover
polynomial order results. Yang et al. [25] proposed to use
an adaptive color guided autoregressive model exploiting
nonlocal similarity in color image to recovery high quality
depth images. In [26], Liu et al. adopted a robust penalty
function to handle the inconsistency between color edges and
depth discontinuities.

Generally, depth image reflects the latent geometry struc-
ture of a scene, where objects are separated by discontinuities
and the depth inside objects usually changes smoothly. In this
paper, a tensor total variation (TTV) is adopted firstly, to not
only preserve sharp edges but also align those edges to the
guided image. However, due to the inconsistency between
color edges and depth discontinuities, texture copying arti-
facts are very likely to appear if a guided color image is
directly utilized. Besides, in smooth regions, the staircasing
artifacts exist due to the total variation nature of TTV. In order
to handle these problems, a fused edge map is then proposed.
The fused edge map is generated from the low resolution
depth image and its corresponding high resolution color
image, indicating discontinuities and balancing the tensor
total variation regularization term and Tikhonov regulariza-
tion term. With the fused edge map, the tensor total variation
regularization is predominant in edge regions and sharp edges
are preserved. In non-edge regions, Tikhonov regularization
plays a more important role, making the depth changing
smoothly and suppressing staircasing artifacts. Furthermore,
texture edges in non-edge regions are removed thus texture
copying artifacts are avoided.
The contributions of this paper are threefold:
1. Mathematical analysis of the tensor total variation in

depth image upsampling is first proposed and how it aligns

the edges in the recovered high resolution depth image to the
guided image is presented.

2. A fused edge map is proposed to indicate discontinu-
ities from low resolution depth image and the correspond-
ing high resolution color image. With this fused edge map,
texture copying artifacts introduced by texture edges will be
avoided.

3. A spatially adaptive tensor total variation-Tikhonov
model is proposed for depth image super resolution. Spe-
cially, a strong strength of tensor total variation regular-
ization is enforced in edge regions while a strong strength
of Tikhonov regularization is enforced in non-edge regions.
In this way, a piecewise smooth high resolution depth image
with sharp edges is recovered. In addition, we use a first
order primal dual algorithm to solve this convex but not
differentiable problem.

The rest of this paper is organized as follows: in Section II
we introduce the mathematical model for depth image
super resolution and several classical regularization terms.
In Section III, we analyze the property of tensor total vari-
ation and propose to use a fused edge map to avoid some
undesirable artifacts, after that the overall spatially adaptive
TTV-Tikhonov model is introduced and a numerical solution
is obtained. In order to demonstrate the effectiveness of the
proposed method, we test our method on both synthetic scene
and Middlebury datasets in Section IV. Finally, we conclude
our work in Section V.

II. BACKGROUND
A. MATHEMATICAL MODEL
In this paper, we propose to recover the high resolution depth
image uh via solving the following energy function:

uh = argmin
u

{µ
2
f (u, u0)+8(u)

}
(1)

where f denotes the data fidelity function with u0 being the
observed depth image. The second term8 is a regularization
term and µ is a parameter balancing both terms. The first
term is designed to make the solution be consistent with the
observed image after degradation. Similar to [24], the data
term in the proposed model is defined as follows:

f (u, u0) =
∫
�

w ‖u− u0‖22 dx (2)

where w ∈ {0, 1} indicates the availability of the depth value
in the corresponding position and � ⊂ R2 is the image
domain.

The regularization term 8 encodes the prior information
about the desired solution and solves the ill-posed nature
of the super resolution problem [5]. Many regularization
terms have been proposed for natural images in recent years.
For example, Tikhonov regularization exploits the piece-
wise smooth property while total variation regularization
favors piecewise constant results. More recently, sparsity,
non-local similarity and some other properties are also
exploited in [27]–[30]. In the following paragraphs, we will
list some relevant regularization terms.
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B. TIKHONOV REGULARIZATION
Themost well-known Tikhonov regularization [31] is defined
as

Tikhonov(u) =
∫
�

‖0u‖22 dx (3)

where u is the restored image. The commonly used Tikhonov
matrix 0 is the first or second order derivative operator.
Tikhonov regularization has been widely used in many

scenes [32], [33] due to its mathematical and computational
simplicity. In spite of these advantages, Tikhonov regular-
ization penalizes large gradients and favors smooth results,
which is undesirable in some applications.

C. TOTAL VARIATION REGULARIZATION
In order to preserve sharp edges, many other regularization
terms have been proposed. The most well-known one is total
variation (TV) [34], which is defined as:

TV (u) =
∫
�

‖∇u‖2dx (4)

Compared with Tikhonov regularization, the high varia-
tions of u in (4) is not over-penalized. Therefore, sparse
gradients are allowed in the solutions and sharp edges can
be preserved. However, it is known that the total variation
regularization favors sparse gradients and leads to a piecewise
constant solution, resulting staircasing artifacts in smooth
regions [35].

D. TOTAL GENERALIZED VARIATION REGULARIZATION
Total generalized variation (TGV) [36], proposed by
Bredies et al., is a generalization of total variation aiming
to reduce staircasing artifacts by incorporating higher-order
derivatives. The TGV assumes that the signal is piecewise
polynomials. An order of k favors results which is a poly-
nomial of degree less than k. The higher k is, the higher
order smoothness of the solution will be. However, the com-
putational cost will highly increase too. In many situations,
an order of 2 produces visually appealing results. The primal
definition of the second order TGV is formulated as:

TGV 2
α (u) = min

v

{
α1

∫
�

|∇u− v|dx + α0

∫
�

|ε(v)|dx
}

(5)

where v is an auxiliary vector field, α0 and α1 are fixed
positive parameters. ε (v) = (∇v + ∇vT )/2 denotes the
symmetrized derivative. For a more detailed analysis and
discussion of TGV, we refer the readers to [36] and references
therein for more details. Due to the well performance of
recovering signals allowing jump discontinuities while avoid-
ing staircasing artifacts, the TGV regularization has been
used in many applications [24], [37], [38]. Especially, in [24],
Ferstl et al. used the color guided total generalized variation
regularization to recover piecewise affine surfaces.

III. SPATIALLY ADAPTIVE TTV-TIKHONOV MODEL
The above mentioned regularization terms utilize only a sin-
gle image. However, in depth image upsampling, an auxiliary

FIGURE 1. Some sample tensors to demonstrate the latent structure of an
image.

FIGURE 2. The analytic Chess scene. (a) Synthesized view of Chess.
(b) Color image of Chess.

color image is usually applicable. Notice that discontinu-
ities in depth image often coincide with color edges. Many
color guided depth image super resolution methods have
been proposed. In this section, a guided tensor total variation
exploiting both the edge information in the guided image and
the edge preserving property of total variation is first intro-
duced and analyzed. However, using the color image to guide
tensor total variation regularization directly suffers from the
texture copying and staircasing artifacts. These artifacts are
demonstrated and analyzed by using an analytic Chess scene
later. After that, a fused edge map is proposed to solve
these problems. Finally, the overall spatially adaptive tensor
total variation-Tikhonov model is obtained and a numerical
solution is derived to solve this convex but not differentiable
problem.

A. TENSOR AND TENSOR TOTAL VARIATION
It has been observed that the color edges and depth discon-
tinuities usually appear together at boundaries of objects.
A high resolution color image provides more accurate edge
information such as the location and direction than the low
resolution depth one. In order to exploit such information
from the guided image while preserving the depth discon-
tinuities, we propose to use a guided tensor total variation
regularization term defined as:

TTV (u) =
∫
�

‖T∇u‖1dx (6)

where T is a symmetric, positive definite diffusion tensor cap-
turing local information such as edge direction and strength.
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FIGURE 3. Visual comparison of 4× super resolution results on our synthetic scene Chess: (a) the groundtruth depth image. Super resolution
results of (b) using Tikhonov regularization; (c) using total variation regularization; (d) using color guided tensor total variation regularization;
(e) using fused edge map guided tensor total variation regularization; and (f) using the spatially adaptive tensor total variation - Tikhonov
regularization.

In this paper, the proposed diffusion tensor is defined as:

T = exp(−β|∇IH |γ )θ+θT+ + θ−θ
T
− (7)

where θ+ = ∇IH
/
‖∇IH‖2 is the normalized direction of

the image gradient and θ− is orthogonal to θ+. IH is the
guided image and two parameters β, γ are used to adjust the
magnitude and the sharpness of T , respectively. In the fol-
lowing we will analyze how this guided tensor total variation
regularization aligns depth edges to color ones.

Generally, let λ1, λ2 be the eigenvalues of T , with
λ1 ≥ λ2, and v1 and v2 are the corresponding unit eigenvec-
tors. From (7), we have λ1 = 1, λ2 = exp (−β|∇IH |γ ), v1 =
θ− and v2 = θ+. In Fig. 1, we visualize T as an ellipse, where
the semi-major axis and semi-minor axis is λ1 and λ2. The
directions of the semi-major and semi-minor axis are given
by v1 and v2, respectively. We find that the eigenvalues can
describe local structure: λ1 ≈ λ2 in homogeneous regions,
while λ1 >> λ2 at edge region and corner region.
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In order to analyze the guided tensor total variation regu-
larization, suppose n is an unit vector standing for an arbitrary
2D direction and ∇u = An where A is the amplitude of the
gradient of u. Let ω ∈ (−π, π] denotes the angle between
n and v1. According to the eigendecomposition theorem,
(6) can be expressed as

‖T∇u‖1 =
√
(T∇u)T (T∇u)

= A
√
(λ21 − λ

2
2)cos

2ω + λ22 (8)

The above function implies that the value of tensor total
variation is influenced by both the amplitude A and the
angle ω. The minimum value is achieved for ω = ±π/2,
which means a solution with the same direction as v2 of the
guided image is preferred. Thus edges in the recovered depth
image are aligned to the guided ones. Besides, the value of
TTV is also influenced by the minor eigenvalue of tensor T ,
reflecting the local geometry of the guided image.

B. ARTIFACTS ANALYSIS
In order to provide a more clearly analysis of different regu-
larization terms, we make a synthetic Chess scene on which
different regularization terms are applied. The Chess scene
consists of a slant planes, a fronted planar plane and a curve
plane. The synthesized view and the color image of the scene
are shown in Fig. 2. The depth image of this scene is shown
in Fig. 3(a). The Tikhonov regularization, TV regularization
and color guided TTV regularization are adopted for compar-
ison and the corresponding results are shown in Fig. 3(b)–
(d). To clearly compare results of these methods, we plot
the 200th line of the every resultant depth image. Espe-
cially, the magenta, red and green regions are enlarged to the
top-left, top-right and bottom-left corner inside the figure,
respectively, to offer a more intuitive comparison of different
regularization terms.

We first compare discontinuities recovered by different
regularization terms, especially the location and the sharp-
ness. In Fig. 3(b), the edge blurring artifacts appear at bound-
aries. On the contrary, in Fig. 3(c), the sharpness of edges are
better recovered due to the edge-preserving property of total
variation regularization. Furthermore, by introducing the cor-
responding color image, a more accurate edge is recovered,
as shown in the magenta region in Fig. 3(d).

Although color guided tensor total variation regularization
recovers more accurate and sharper discontinuities, some
undesired artifacts still exist in the recovered depth image.
In this paper we pay more attention to the staircasing artifacts
and the texture copying artifacts. The staircasing artifacts [35]
are shown in the red region in Fig. 3(c), where the smooth
depth becomes piecewise constant when using total variation.
In these regions, the intensity also varies smoothly, (6) is
degraded into the classic total variation and the staircasing
artifacts appear in Fig. 3(d). On the contrary, in Fig. 3(b),
Tikhonov regularization provides smooth results in these
regions, which is further utilized in the proposed model.

FIGURE 4. Generation of the fused edge map F from low resolution
depth image Dl and corresponding high-resultion color image Ih.

When color guided tensor total variation regularization is
applied, the minor eigenvalues of the tensors are spatially
varying and the tensor total variation is degraded into a
spatially weighted total variation: lower weights are around
color edges while higher weights are in smooth regions.
In this way, a smooth solution with jumps at texture edges
will be preferred, resulting the texture copying artifacts [39].
As shown in the green regions in Fig. 3(d), the depth is chang-
ing smoothly while a texture edge exists. In this situation,
a jump edge appears in the recovered depth image.

From the above analysis we find that the texture copying
artifacts appear due to the incorrect guidance of color edges,
thus using color edges to directly guide tensor is inappropri-
ate. In order to suppress these artifacts, we propose to use
a fused edge map to guide tensor instead of directly using
color image. The fused edge map is calculated from both the
color and the depth images. We hope this fused map is more
similar to the true structure edges of depth image, eliminat-
ing texture edges. By using this map, the unmatched edges
can be detected and texture copying artifacts will be eased.
Furthermore, with the guidance of the fused edge map,
smooth regions are also extracted, thus the Tikhonov regu-
larization term can be enforced to alleviate the staircasing
artifacts.

C. FUSED EDGE MAP
In this paper, the proposed fused edge map is generated as
illustrated in Fig. 4. First, a color edge image and a depth edge
image are extracted. The color edge image Ech is obtained
with Canny operator, while the depth edge imageEdl is identi-
fied with a neighborhood-statistic scheme. Specifically, given
a pixel p and its neighborhood N (p), p is regarded as an edge
pixel if the difference between the maximum and minimum
depth value in N (p) is greater than a predefined threshold.
After that the Edl is upsampled to the same resolution of color
image by using nearest interpolation. Finally, the fused edge
map F is generated by fusing Edh and Ech.

From Fig. 4 we find that both Edh and Ech contain infor-
mation of the latent discontinuities in real world. However,
Edh provides more accurate information of the appearance
of discontinuities but is lack of location information. On the
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contrary, Ech has more accurate location information but also
too many abundant useless texture edges. In order to utilize
information of discontinuities from both the color image and
the depth image, the fused edge map is derived according to
the following rules:
Rule 1: Color edges and depth edges with similar direc-

tions are regarded as true edges and preserved in the fused
edge map. Since color image introduces too many abundant
edges, direction information is adopted to remove those fake
edges inEch. Supposing θd and θc are the directions of an edge
pixel in Edh and Ech, if |θd − θc| is smaller than a predefined
angle θth, this pixel is regarded as an edge pixel in the fused
depth map.
Rule 2: Color edges with no correspondent depth edges are

regarded as fake edges and discarded in the fused edge map.
This situation happens mostly due to the abundant texture in
color image. Using these fake edges will result in the texture
copying artifacts, as analyzed in III-B.
Rule 3: Depth edges with no correspondent color edges

are disregarded in the fused edge map. The edges in low
resolution depth images are more likely to be the true bound-
aries. However, these depth edges are disregarded since the
accuracy of the location information degrades rapidly as the
magnification increases.
Rule 4: Non-edge regions in both depth and color images

are regarded as non-edge regions in the fused edge map.
Following the above rules, we obtain a binary fused edge

map F where pixels in edge regions are set to 1 while pixels
in non-edge regions are set to 0. From Fig. 4 we can find
that most true edges are preserved exactly andmany abundant
texture edges are removed.

D. SPATIALLY ADAPTIVE TTV-TIKHONOV MODEL
After the fused edge map is obtained, we use this map
to adaptive balance the tensor total variation regularization
and Tikhonov regularization at different regions. Specifically,
the high resolution depth image uh is obtained by

uh = argmin
u

{∫
�H

ω ‖u− u0‖22 dx

+

∫
�H

α1‖TF∇u‖1dx +
∫
�H

α2

2
‖∇u‖22 dx

}
(9)

where the ‖TF∇u‖1 is the fused edge map guided tensor
total variation term and ‖∇u‖22 is the Tikhonov regularization
term. α1 and α2 are positive weights that balance TTV and
Tikhonov regularization terms. TF∇u is defined as

TF∇u =

{
T∇u, Fu = 1
∇u, Fu = 0

(10)

Fu indicates the current pixel u in the fused edge map F .
Compared with (6), for those texture edges, the original total
variation is used thus the weights are equal in the local neigh-
borhood and a smooth result is preferred. Then the texture
copying artifacts can be alleviate.
In order to suppress the staircasing artifacts, the Tikhonov

regularization terms is imposed to non-edge regions. We use

the fused edge map to separate edge regions and non-edge
regions. For those edge regions, total variation is the dominant
regularization thus edges can be preserved, for non-edge
regions, the Tikhonov regularization strength the depth values
to be smooth.

E. NUMERICAL SOLUTION
The proposed model is convex but not smooth, so simple
minimization algorithms are not applicable. In order to solve
such TVminimization problems, manymethods are proposed
in recent years [40]–[42]. In this paper, we use first order
primal dual algorithm [43] to solve this problem. Applying
the Legendre Fenchel transform to (9), we can reformulate it
to the following convex-concave saddle point problem:

min
u

max
p,q

α1 〈TF∇u, p〉 + α2 〈∇u, q〉 + ω ‖u− u0‖22 (11)

where p and q are dual variables. The feasible sets of these
variables are defined by

P = {p ∈ R2
|
∥∥pij∥∥ ≤ 1}

Q = {q ∈ R|
∥∥qij∥∥ ≤ 1} (12)

Choosing steps σp, σq, τu > 0 and setting initialization
value p0, q0 = 0, ūn = un = u0. By iteratively updating pri-
mal and dual variables, this model can be solved as follows:

pn+1 = Pp{pn + σpα1TF∇ūn}
qn+1 = (1+ σq∂F∗)−1(qn + σq

√
α2∇ūn)

un+1 =
un + τu((α1TF∇)∗pn+1 + (

√
α2∇)

∗qn+1 + ωu0)
1+ τuω

ūn+1 = un+1 + θ (un+1 − ūn)
(13)

where (α1TF∇)∗ and (
√
α2∇)∗ have the adjointness property{

−u · (α1TF∇)∗(p) = (α1TF∇)(u) · p
−u · (

√
α2∇)

∗(q) = (
√
α2∇)(u) · q

(14)

The projection operator Pp and the resolvent operator of
F is defined as

Pp(p̃i,j) =
p̃i,j

max (1,
∣∣p̃i,j∣∣) (15)

x = (I + τ∂F)−1(y)

= argmin
x

{
‖x − y‖22

2τ
+ F(x)

}
(16)

In (9) we have F(
√
α2∇u) =

∥∥√α2∇u∥∥22/2 thus

qn+1 = (1+ σq∂F∗)−1(qn + σq
√
α2∇ūn)

=
qn + σq

√
α2∇ūn

1+ σq
(17)

We update the above iteration until a stopping criterion is
reached or the iteration reaches a predefined number. In our
method, the relaxation parameter θ is set to 1 during the
iteration.
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FIGURE 5. Visual comparison of 4× upsampling results on our synthetic scene Chess: The synthesize view using recovered depth image of (a) the
groundtruth depth image; (b) using Tikhonov regularization; (c) using total variation regularization; (d) using color guided tensor total variation
regularization; (e) using fused depth map guided tensor total variation regularization; and (f) using the spatially adaptive tensor total variation -
Tikhonov regularization.

TABLE 1. Quantitative results (in MAD) on Middlebury datasets at three subsampling rates. The best results are in bold.

TABLE 2. Quantitative results (in PBP with error threshold 1) on Middlebury datasets at three subsampling rates. The best results are in bold.

IV. EXPERIMENTS
In order to demonstrate the effectiveness of our methods,
we perform experiments with both synthetic scene and Mid-
dlebury datasets. We first compare the proposed adaptive
regularization term with the classical regularization terms
in synthetic Chess scene to demonstrate the superiority.
Furthermore, extensive experiments on Middlebury datasets
are used to test the proposed method with some state-of-the-
art algorithms.

A. SYNTHETIC SCENE
We use the Tikhonov regularization, total variation regular-
ization, color guided tensor total variation, fused edge map
guided tensor total variation, and the proposed method for
depth image super resolution for the synthetic Chess scene

and the results are illustrated in Fig. 3. In order to give a
clearly comparison of different super resolution methods,
the synthesized views are shown in Fig. 5.

It can be observed in Fig. 3(b) that the Tikhonov regular-
ization favors smooth solutions, and surface inside objects are
well recovered while the discontinuities are over-smoothed.
Thus jagged artifacts appear in Fig. 5(b). Due to the edge pre-
serving property of the total variation, sharp discontinuities
are better maintained but staircasing artifacts are introduced.
Besides, note that without color images, the edges in the
upsampled depth images are misaligned with color images,
as shown in Fig. 5(c).

When a color image is introduced, as analyzed in
Section III-B, the location of edges in the interpolated image
are well aligned to color images in Fig. 3(d). However,
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FIGURE 6. Visual comparison of 4× super resolution results on Art : (a) The groundtruth. Super resolution results of (b) Bilinear
interpolation, (c) MRF [20], (d) GF [18], (e) JBFcv [13], (f) NLM-WLS [22], (g) TGV [24], and (h) the proposed method.

in smooth regions with homogeneous colors, staircasing arti-
facts still exist. Moreover, for those regions where color edges
are inconsistent with depth discontinuities, texture copying
artifacts appear in Fig. 3(d) and Fig. 5(d).

By introducing the fused edge map, texture edges in color
images are eliminated thus texture copying artifacts can
be effectively suppressed, as shown in Fig. 3(e). However,
in Fig. 5(e), the staircasing artifacts still exist. In Fig. 3(f),
due to the well balance between Tikhonov regularization
and tensor total variation regularization in different regions,
the discontinuities are well preserved and the recovered sur-
face inside objects changes smoothly.

B. MIDDLEBURY DATASETS
We also test our model on Middlebury datasets [44]. Three
datasets Art, Books and Moebius are used for evaluation.

We compare the proposed methods with six state-of-the-art
methods: Bilinear interpolation, MRF-based method [20],
guided image filtering (GF) [18], joint bilateral filtering on
cost volumes (JBFcv) [13], the nonlocal means regularized
weighted least square (NLM-WLS) [22], total generalized
variation (TGV) [24]. Since the original resolutions of depth
image and color image are different, we crop and cut those
input images to the same resolution. The low resolution depth
images are downsampled from groundtruth depth image
directly and three upsampling factors are tested in this paper.

Table 1 shows the quantitative results of the three datasets
in terms of Mean Absolute Difference (MAD). From this
table we find that our method gives lower MAD, especially
at small upsampling factors. Furthermore, another widely
used metric to evaluate the quality of depth image in stereo
matching [45] named the Percentage of Bad Pixels (PBP) is
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FIGURE 7. Visual comparison of 8× super resolution results on Moebius: (a) The groundtruth. Super resolution results of (b) Bilinear interpolation.
(c) MRF [20]. (d) GF [18]. (e) JBFcv [13]. (f) NLM-WLS [22]. (g) TGV [24]. (h) The proposed method.

adopted to evaluate different methods in this paper. Quantita-
tive results in PBP of the proposed method and other methods
are reported in Table 2. Occasionally, the method in [24]
yields lower PBP than the propose method. The reason lies in
the fact that TGV favors piecewise affine solutions, which is
quite appropriate for Books dataset. In contrast, the proposed
method is more general and achieves better performance in
most cases.

Fig. 6 shows illustration of 4× upsampling results on Art.
In order to show a more clearly comparison, the enlarged
depth image and error maps of the given regions are also
shown. In Fig. 6, bilinear interpolation gives smooth results at

boundaries. By introducing the auxiliary color image, sharper
edges are recovered. Comparing those error maps in Fig. 6,
we find that the proposed method obtains results with more
accurate edges due to the fused edge map and the edge
preserving property of total variation.

We also give 8× upsampling results onMoebius in Fig. 7.
Compared with other methods, the proposed method recovers
the sharpest strip and tablecloth.

V. CONCLUSION
In this paper, a spatially adaptive tensor total variation-
Tikhonov regularization model is proposed to recover
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piecewise smooth depth image with sharp edges. In order to
solve the convex but not differentiable model, a first order
primal dual algorithm is adopted. Quantitative results show
that the proposed method obtain high resolution depth image
with lower percentage of bad pixels and mean absolute differ-
ence. Furthermore, the visual comparison demonstrates that
the proposed method obtains sharper edges in the recovered
depth images.

REFERENCES
[1] C. Fehn, ‘‘Depth-image-based rendering (DIBR), compression, and trans-

mission for a new approach on 3D-TV,’’ Proc. SPIE, vol. 5291, pp. 93–104,
May 2004.

[2] S. Schwarz, R. Olsson, and M. Sjöström, ‘‘Depth sensing for 3DTV:
A survey,’’ IEEE Multimedia Mag., vol. 20, no. 4, pp. 10–17,
Oct. 2013.

[3] S. M. Seitz, B. Curless, J. Diebel, D. Scharstein, and R. Szeliski, ‘‘A com-
parison and evaluation of multi-view stereo reconstruction algorithms,’’ in
Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit. (CVPR),
vol. 1. Jun. 2006, pp. 519–528.

[4] K. Nasrollahi and T. B. Moeslund, ‘‘Super-resolution: A comprehensive
survey,’’Mach. Vis. Appl., vol. 25, no. 6, pp. 1423–1468, 2014.

[5] S. C. Park, M. K. Park, and M. G. Kang, ‘‘Super-resolution image recon-
struction: A technical overview,’’ IEEE Signal Process.Mag., vol. 20, no. 3,
pp. 21–36, May 2003.

[6] S. Schuon, C. Theobalt, J. Davis, and S. Thrun, ‘‘Lidarboost: Depth
superresolution for ToF 3D shape scanning,’’ in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit., Jun. 2009, pp. 343–350.

[7] G. Zhong, L. Yu, and P. Zhou, ‘‘Edge-preserving single depth image
interpolation,’’ in Proc. Vis. Commun. Image Process. (VCIP), Sep. 2013,
pp. 1–6.

[8] J. Xie, R. Feris, S.-S. Yu, and M.-T. Sun, ‘‘Joint super resolution and
denoising from a single depth image,’’ IEEE Trans. Multimedia, vol. 17,
no. 9, pp. 1525–1537, Sep. 2015.

[9] J. Xie, R. S. Feris, and M. T. Sun, ‘‘Edge-guided single depth image super
resolution,’’ IEEE Trans. Image Process., vol. 25, no. 1, pp. 428–438,
Jan. 2016.

[10] O. Mac Aodha, N. Campbell, A. Nair, and G. Brostow, ‘‘Patch based
synthesis for single depth image super-resolution,’’ in Proc. Eur. Conf.
Comput. Vis., pp. 71–84, 2012.

[11] C.-C. Su, L. K. Cormack, and A. C. Bovik, ‘‘Color and depth pri-
ors in natural images,’’ IEEE Trans. Image Process., vol. 22, no. 6,
pp. 2259–2274, Jun. 2013.

[12] I. Eichhardt, D. Chetverikov, and Z. Jankó, ‘‘Image-guided ToF depth
upsampling: A survey,’’ Mach. Vis. Appl., vol. 28, no. 3, pp. 267–282,
2017.

[13] Q. Yang, R. Yang, J. Davis, and D. Nister, ‘‘Spatial-depth super resolution
for range images,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,
Oct. 2007, pp. 1–8.

[14] J. Kopf, M. F. Cohen, D. Lischinski, and M. Uyttendaele, ‘‘Joint bilateral
upsampling,’’ ACM Trans. Graph., vol. 26, no. 3, p. 96, Jul. 2007.

[15] D. Min, J. Lu, and M. N. Do, ‘‘Depth video enhancement based on
weighted mode filtering,’’ IEEE Trans. Image Process., vol. 21, no. 3,
pp. 1176–1190, Mar. 2012.

[16] K. Sung-Yeol and H. Yo-Sung, ‘‘Fast edge-preserving depth image upsam-
pler,’’ IEEE Trans. Consum. Electron., vol. 58, no. 3, pp. 971–977,
Mar. 2012.

[17] M. Y. Liu, O. Tuzel, and Y. Taguchi, ‘‘Joint geodesic upsampling of depth
images,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2013, pp. 169–176.

[18] K. He, J. Sun, and X. Tang, ‘‘Guided image filtering,’’ IEEE Trans. Pattern
Anal. Mach. Intell., vol. 35, no. 6, pp. 1397–1409, Jun. 2013.

[19] K. L. Hua, K. H. Lo, and Y. C. F. F. Wang, ‘‘Extended guided filtering for
depth map upsampling,’’ IEEEMultimedia Mag., vol. 23, no. 2, pp. 72–83,
Feb. 2016.

[20] J. Diebel and S. Thrun, ‘‘An application of Markov random fields
to range sensing,’’ in Proc. Adv. Neural Inf. Process. Syst., 2005,
pp. 291–298.

[21] J. I. Jung and Y. S. Ho, ‘‘Depth image interpolation using confidence-based
Markov random field,’’ IEEE Trans. Consum. Electron., vol. 58, no. 4,
pp. 1399–1402, Nov. 2012.

[22] J. Park, H. Kim, Y. Tai, M. S. Brown, and I. S. Kweon, ‘‘High-quality depth
map upsampling and completion for RGB-D cameras,’’ IEEE Trans. Image
Process., vol. 23, no. 12, pp. 5559–5572, Dec. 2014.

[23] J. Park, H. Kim, T. Yu-Wing, M. S. Brown, and I. Kweon, ‘‘High quality
depth map upsampling for 3d-ToF cameras,’’ in Proc. Int. Conf. Comput.
Vis., 2011, pp. 1623–1630.

[24] D. Ferstl, C. Reinbacher, R. Ranftl, M. Ruether, and H. Bischof,
‘‘Image guided depth upsampling using anisotropic total generalized
variation,’’ in Proc. IEEE Int. Conf. Comput. Vis. (ICCV), Sep. 2013,
pp. 993–1000.

[25] J. Yang, X. Ye, K. Li, C. Hou, and Y. Wang, ‘‘Color-guided depth recovery
from RGB-D data using an adaptive autoregressive model,’’ IEEE Trans.
Image Process., vol. 23, no. 8, pp. 3443–3458, Aug. 2014.

[26] W. Liu, X. Chen, J. Yang, and Q. Wu, ‘‘Robust color guided depth map
restoration,’’ IEEE Trans. Image Process., vol. 26, no. 1, pp. 315–327,
Jan. 2017.

[27] J. Yang, J. Wright, T. S. Huang, and Y. Ma, ‘‘Image super-resolution
via sparse representation,’’ IEEE Trans. Image Process., vol. 19, no. 11,
pp. 2861–2873, Nov. 2010.

[28] W. Dong, L. Zhang, G. Shi, and X. Wu, ‘‘Image deblurring and
super-resolution by adaptive sparse domain selection and adaptive regu-
larization,’’ IEEE Trans. Image Process., vol. 20, no. 7, pp. 1838–1857,
Jul. 2011.

[29] J. Jiang, X. Ma, Z. Cai, and R. Hu, ‘‘Sparse support regression for
image super-resolution,’’ IEEE Photon. J., vol. 7, no. 5, pp. 1–11,
Oct. 2015.

[30] J. Jiang, X. Ma, C. Chen, T. Lu, Z. Wang, and J. Ma, ‘‘Single image
super-resolution via locally regularized anchored neighborhood regression
and nonlocal means,’’ IEEE Trans. Multimedia, vol. 19, no. 1, pp. 15–26,
Jan. 2017.

[31] A. N. Tikhonov, V. I. Arsenin, and F. John, Solutions of Ill-Posed Problems,
vol. 14. Washington, DC, USA: Winston, 1977.

[32] V. B. S. Prasath, D. Vorotnikov, R. Pelapur, S. Jose, G. Seetharaman,
andK. Palaniappan, ‘‘Multiscale tikhonov-total variation image restoration
using spatially varying edge coherence exponent,’’ IEEE Trans. Image
Process., vol. 24, no. 12, pp. 5220–5235, Dec. 2015.

[33] W. Li, Q. Du, and M. Xiong, ‘‘Kernel collaborative representa-
tion with tikhonov regularization for hyperspectral image classifica-
tion,’’ IEEE Geosci. Remote Sens. Lett., vol. 12, no. 1, pp. 48–52,
Jan. 2015.

[34] L. I. Rudin, S. Osher, and E. Fatemi, ‘‘Nonlinear total variation based noise
removal algorithms,’’ Phys. D, Nonlinear Phenomena, vol. 60, nos. 1–4,
pp. 259–268, 1992.

[35] T. Chan, S. Esedoglu, F. Park, and A. Yip, ‘‘Recent developments in total
variation image restoration,’’ Math. Models Comput. Vis., vol. 17, no. 2,
2005.

[36] K. Bredies, K. Kunisch, and T. Pock, ‘‘Total generalized variation,’’ SIAM
J. Imag. Sci., vol. 3, no. 3, pp. 492–526, 2010.

[37] T. Zhen, J. Xun, Y. Kehong, P. Tinsu, and B. J. Steve, ‘‘Low-dose CT
reconstruction via edge-preserving total variation regularization,’’ Phys.
Med. Biol., vol. 56, no. 18, p. 5949, 2011.

[38] R. Ranftl, K. Bredies, and T. Pock, ‘‘Non-local total generalized variation
for optical flow estimation,’’ in Proc. Eur. Conf. Comput. Vis., 2014,
pp. 439–454.

[39] D. Chan, H. Buisman, C. Theobalt, and S. Thrun, ‘‘A noise-aware filter
for real-time depth upsampling,’’ in Proc. Workshop Multi-Camera Multi-
Modal Sensor Fusion, Algorithms Appl., 2008.

[40] T. Goldstein and S. Osher, ‘‘The split Bregman method for
L1-regularized problems,’’ SIAM J. Imag. Sci., vol. 2, no. 2, pp. 323–343,
2009.

[41] A. Chambolle, ‘‘An algorithm for total variation minimization
and applications,’’ J. Math. Imag. Vis., vol. 20, no. 1, pp. 89–97,
2004.

[42] C. Wu and X.-C. Tai, ‘‘Augmented Lagrangian method, dual methods, and
split Bregman iteration for ROF, vectorial TV, and high order models,’’
SIAM J. Imag. Sci., vol. 3, no. 3, pp. 300–339, 2010.

[43] A. Chambolle and T. Pock, ‘‘A first-order primal-dual algorithm for convex
problems with applications to imaging,’’ J. Math. Imag. Vis., vol. 40, no. 1,
pp. 120–145, 2011.

[44] D. Scharstein and C. Pal, ‘‘Learning conditional random fields for stereo,’’
in Proc. IEEE Int. Conf. CVPR, Jun. 2007, pp. 1–8.

[45] D. Scharstein and R. Szeliski, ‘‘A taxonomy and evaluation of dense two-
frame stereo correspondence algorithms,’’ Int. J. Comput. Vis., vol. 47,
nos. 1–3, pp. 7–42, Apr. 2002.

13866 VOLUME 5, 2017



G. Zhong et al.: Spatially Adaptive Tensor Total Variation-Tikhonov Model for Depth Image Super Resolution

GANG ZHONG received the B.S. degree in com-
munication engineering from Huazhong Univer-
sity of Science and Technology, Wuhan, China,
in 2008. His research interests are video coding
and image processing, focusing on depth image
super resolution.

SEN XIANG (S’11) received the B.S. and Ph.D.
degrees from Huazhong University of Science and
Technology, Wuhan, China in 2010 and 2016,
respectively. He was a Visiting Scholar with
the University at Buffalo, State University of
New York, USA, from 2013 to 2014. He is cur-
rently a Lecturer with the School of Informa-
tion Science and Engineering, Wuhan University
of Science and Technology, Wuhan. His research
interests include depth image processing, 3-D

video, and structured light depth acquisition and related areas.

PENG ZHOU received the B.S. degree in com-
munication engineering from Taiyuan University
of Technology in 2004, and the M.S. degree
in communication and information systems from
Yangtze University, Jingzhou, China, in 2009.
He is currently pursuing the Ph.D. degree with
Huazhong University of Science and Technology.
His research interests are plenoptic sampling and
spectral analysis, focusing on sampling theory
in 3-D.

LI YU received the B.S. degree in electronics and
information engineering, the M.S. degree in com-
munication and information system, and the Ph.D.
degree in electronics and information engineering
from Huazhong University of Science and Tech-
nology (HUST),Wuhan, China, in 1995, 1997, and
1999, respectively. In 2000, she joined the Elec-
tronics and Information Engineering Department,
HUST, where she has been a Professor since 2005.
She was a Co-Sponsor of the China AVS Standard

Special Working Group, where she was involved as the Key Member. Her
team has applied more than ten related patents and submitted 79 proposals to
AVS standard organization. Her research interests include multimedia com-
munication and processing, computer network, and wireless communication.

VOLUME 5, 2017 13867


