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ABSTRACT Due to advancements in the development of wireless medical sensing devices and wireless
communication technologies, the wireless body area network (WBAN) has become an eminent part of
e-healthcare systems. WBAN uses medical sensors to continuously monitor and collect the physiological
parameters of a patient’s health and send them to a remote medical server through a portable digital assis-
tance (PDA)/mobile. Due to limitations in communication, such as power, storage, and the computational
capabilities of sensors, data aggregation techniques are used to reduce the communication overhead in
real-time data transmission in WBAN. However, since the WBAN transmits sensitive health data, data
security and data privacy are a major concern. In this paper, we propose a secure privacy-preserving data
aggregation (SPPDA) scheme based on bilinear pairing for remote health monitoring systems to improve data
aggregation efficiency and data privacy. Our proposed SPPDA scheme utilizes the homomorphic property
of the bilinear ElGamal cryptosystem to perform privacy-preserving secure computation and combines
it with the aggregate signature scheme, enabling data authenticity/integrity in the WBAN. The proposed
SPPDA scheme is proved to be semantically secure under the decisional bilinear Diffie-Hellman assumption.
Security analysis demonstrates that our proposed scheme preserves data confidentiality, data authenticity,
and data privacy; it also resists passive eavesdropping and replay attacks. A performance evaluation based on
simulation results and a comparison of computational cost with related schemes show that data aggregation
and batch verification at the PDA significantly reduce communication and transmission overhead and support
efficient computation at the remote server.

INDEX TERMS Wireless body area network, remote health monitoring system, secure data aggregation,
bilinear pairing, bilinear ElGamal cryptosystem, homomorphic encryption, aggregate signature, batch
verification.

I. INTRODUCTION

Recent advancements in cyber-physical systems (CPS), wire-
less sensing and communication technologies and their
seamless integration in the present day world have led to
the development of a wide range of applications in areas
such as environmental monitoring, industrial monitoring,
and real-time remote health monitoring systems. The Wire-
less Body Area Network (WBAN) is one such combina-
tion of tiny wearable devices referred to as medical sensors
attached to a patient’s body in remote health monitoring
systems. The WBAN is used to monitor patient’s physio-
logical parameters such as temperature, blood pressure, and

electrocardiography (ECG). Medical sensors continuously
monitor and collect patient’s data and send them to a remote
medical server through a local processing unit (LPU) like a
PDA/mobile.

The WBAN consists of small medical sensors that have
scarce resources in terms of memory, energy, and storage and
that communicates wirelessly with an LPU. The LPU has
more resources than sensors but is still limited, as it uses
the battery and communicates wirelessly with the medical
server. The medical server is very powerful in terms of energy,
computational power, and storage. As such, the WBAN is
deployed in a hostile environment, where sensors may be
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incapable of providing reliable functions or can be easily
compromised by malicious adversaries; thus sensitive health
data may be subject to privacy issues, or data misusage may
also occur [1]. According to Health Insurance Portability and
Accountability (HIPAA) [2], it is mandatory to protect all sen-
sitive medical data pertaining to a particular patient’s health.
Therefore, privacy preservation of sensitive health data is a
legal requirement. Hence, it is very important to protect sen-
sitive health data against eavesdropping, false injections and
forgery. Unrestricted access to personal health data leads to
privacy violations, while selective reporting, impersonating
and masquerading leads to incorrect diagnosis and treatment
of the patient who is remotely monitored.

Data aggregation is an essential technique to eliminate
data redundancy and reduce energy consumption. In the data
aggregation process, the sensor nodes are organized as a tree,
rooted at the base station. The intermediate nodes aggregate
the data from the leaf nodes and then forward the aggregated
result to the base station. However, data aggregation is chal-
lengeable in some applications such as remote health moni-
toring systems. The sensor nodes are often deployed in hostile
environments with low bandwidth and insecure communica-
tion channels. This may lead to malicious data modifications
and data forgery, resulting in the violation of a user’s privacy.
For example, an attacker might forge a fake alarming reading
and have it distributed in the network to degrade network
performance. In addition, privacy is also a primary concern
in remote health monitoring systems, as health data are
highly relevant to the patient being monitored. For example,
motion sensors can reflect certain behavior, such as walking,
sleeping, and having a meal. As a result, the disclosure of
such health data violates user data privacy. Therefore, how
to efficiently aggregate different types of data and preserve
patient privacy is a challenging task in a resource constrained
WBAN.

In order to overcome the above-stated issues of secu-
rity and privacy regarding medical health data during
transmission and data aggregation in WBAN, we propose
a bilinear pairing-based Secure Privacy-Preserving Data
Aggregation (SPPDA) scheme for a remote health monitoring
system. With this proposed scheme, we identify the necessary
security and privacy requirements in the WBAN. In particu-
lar, we point out the necessity for an end-to-end secure data
transmission from medical sensors to the remote medical
server in the WBAN.

The contributions of this paper can be summarized as
follows:

o We propose a Secure Privacy-Preserving Data Aggre-
gation (SPPDA) scheme based on bilinear pairing
for remote health monitoring systems. Our proposed
SPPDA scheme ensures data confidentiality, data pri-
vacy and data authenticity by combining pairing based
homomorphic encryption scheme and aggregate signa-
ture scheme in WBAN.

« We use data aggregation technique at the LPU in
WBAN, to reduce the overall communication cost in our
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proposed scheme. To improve the efficiency and reduce
computational complexity of the proposed scheme,
computationally heavy pairing-based operations like
key generations and decryption are shifted to the remote
medical server, which is quite powerful in terms of
energy, computational power, and storage. Hence, data
aggregation efficiency and data accuracy is assured in
our proposed scheme.

e« We conduct a security analysis to state and prove
the correctness of the proposed scheme. The proposed
SPPDA scheme is proven to be semantically secure
under the Decisional Bilinear Diffie-Hellman (DBDH)
assumption. Security analysis also demonstrates that our
proposed scheme preserves data confidentiality, data
authenticity, and data privacy; it also resists passive
eavesdropping and replay attacks. A performance eval-
uation based on simulation results and a comparison of
computational cost with related schemes show that data
aggregation and batch verification at the PDA signif-
icantly reduce communication and transmission over-
head and support efficient computation at the remote

server.
The rest of the paper is organized as follows. In Section II,

related works are presented. Section III describes the sys-
tem model, security requirements and the design goals of
the proposed scheme. We introduce the preliminary knowl-
edge on the cryptographic techniques used for our scheme
in Section IV. In Section V, an overview of the proposed
scheme and basic notation followed by the main construc-
tion of our proposed SPPDA scheme are discussed. Also,
in Sections VI and VII, we present the security analy-
sis and performance evaluation for our proposed scheme.
Finally, Section VIII concludes the paper and discusses future
research directions.

Il. RELATED WORKS

In this section, we first explain the concept of data aggre-
gation and the importance of security and privacy in this
concern. Later, we put our emphasis on the discussion of
some other literature related to our research which also
achieves security, privacy-preservation and/or data integrity
for WBAN.

A. DATA AGGREGATION

The data aggregation process has the benefit of achieving
efficiency in bandwidth and energy in resource-constrained
sensor networks. The sensors are deployed in hostile envi-
ronments; hence, security and privacy are a major concern.
Therefore, privacy-preserving secure data aggregation has
become a hot research problem in various applications of
sensor networks including remote health monitoring systems,
smart grids, industrial monitoring systems and intelligent
transport systems. The standard method to preserve the confi-
dentiality of data is by encrypting it. Secure data aggregation
protocols can be categorized as hop-by-hop encryption
protocols and end-to-end encryption protocols [3], [4].
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In hop-by-hop encryption protocols, the aggregator has to
decrypt the message and then aggregate it. In end-to-end
encryption protocols, the intermediate nodes aggregate the
data without decrypting it. The end-to-end data aggregation
scheme saves 70% of the data transmission energy [5].

Privacy homomorphism is the general method of an
encryption transformation that allows direct computation on
the encrypted data [4]. The first privacy homomorphism
encryption transformation was done by Rivest et al. [6].
In WSN, this privacy homomorphism is applied for con-
cealing in-network data processing at the intermediate
aggregator node. Such a process is called concealed data
aggregation (CDA) with privacy homomorphism [4]. The
concealed data aggregation schemes based on symmetric
homomorphism suffer from tedious key management prob-
lems compared with the schemes based on asymmetric
homomorphism, which uses simple public/private keying
techniques [4]. Elliptical curve cryptography in combination
with bilinear pairing has emerged as a viable option for
asymmetric cryptography in various applications of wireless
sensor networks, WBAN being one among them. Due to
the small key size, compact signatures and efficient security
provided by pairing-based cryptographic techniques, these
pairing-based cryptosystems are vastly studied and imple-
mented in wireless sensor networks [7], [8]. Additionally,
various secure data aggregation schemes [9] and [10] authen-
tication and key management schemes [11] based on ECC
and pairing were proposed in the literature.

B. SECURITY AND PRIVACY-PRESERVATION

Exploring simple cryptographic privacy techniques,
Lu et al. [12], proposed an efficient and privacy preserv-
ing data aggregation (EPPA) scheme based on Paillier
cryptosystem. The authors structure multidimensional data
into one ciphertext by using super-increasing sequence. Sim-
ilarly, Zhang et al. [10] proposed a priority based privacy-
preserving data aggregation (PHDA) scheme for WBAN.
They also used a bilinear pairing-based Paillier cryptosys-
tem, an additively homomorphic cryptosystem, to achieve
privacy in data aggregation. Same as [12], they used super-
increasing sequences to combine multi-dimensional data
into one ciphertext. Lin et al. [13], proposed a data aggre-
gation scheme that employs the super-increasing sequence
and perturbation techniques to achieve multidimensional
aggregation. Chen et al. [14], proposed a multifunctional
data aggregation (MuDA) scheme. The authors applied
BGN cryptosystem for privacy preserving data aggregation.
Although MuDA scheme supports statistical functions
through multifunctional aggregations, it does not assure data
authenticity and integrity during data aggregation.

Ren et al. [15], proposed sensitive data aggregation scheme
based on data hiding in WBAN. They applied lossless com-
pression techniques on the sensitive data and then combine
them with other ordinary data, to reduce the transmis-
sion energy consumption and prevent disclosure of sensitive
data respectively. Subsequently, Othman et al. [16], proposed
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a compressed sensing based secure data transmission proto-
col for WBAN. Zhu et al. [17], proposed a privacy-preserving
data collection and query scheme for body sensor networks.
They have used bilinear pairing based DNF cryptosystem for
secure data collection.

Additionally, Zhou et al. [18] compare the techniques of
secure multiparty computation, fully homomorphic encryp-
tion, and a one way trap-door function in the paradigms of
privacy-preserving data aggregation and outsourced verifi-
able computations in a cloud assisted WBAN. More recently,
Kocabas et al. [19] surveyed various emerging encryption
schemes based on secure storage, secure sharing and secure
computations for medical cyber-physical systems (MCPS).
The authors compared the implementation of conventional
encryption schemes such as AES and ECIES for secure stor-
age, attribute-based encryption schemes such as CP-ABE for
secure data sharing and homomorphic encryption schemes
such as Paillier cryptosystem and BGV scheme for secure
computations on MCPS. However, the authors suggested that
none of the schemes were fit for designing the WBAN sup-
ported MCPS.

Therefore, from the above study, it can be noted
that none of the above privacy preserving schemes cov-
ered data integrity assurance aspect during secure data
aggregation.

C. INTEGRITY ASSURANCE

Liu et al. [20] proposed a bilinear pairing based Certificate-
less Signature Scheme (CLS) for a WBAN. They proved
that the CLS scheme is unforgeable against adaptive chosen
message attack under the assumption of the computational
Diffie-Hellman problem. Zhou et al. [21] proposed a privacy-
preserving key management scheme for a cloud assisted
WBAN. They used a blinding technique and embedded a
human body’s symmetric structure into a blow’s symmet-
ric key structure to ensure the privacy of the patient’s id,
sensor deployment, and location privacy. Yang et al. [22]
proposed a bilinear pairing-based privacy preserving authen-
tication scheme with adaptive key evolution in a remote
health monitoring system. They modeled the key informa-
tion leakage process to set proper key renewal intervals and
controlled adaptive key evolution through it [22]. To ensure
data authenticity and integrity in a WBAN, Shen et al. [23]
proposed a collision resistant aggregate signature scheme.
The security model was based on [24] in combination with
coalition attacks. Similarly, Wang et al proposed a bilin-
ear pairing-based privacy-preserving remote data integrity
checking and sharing (ICS) protocol for cloud assisted
WBAN [25]. They proved that the ICS protocol is existen-
tially unforgeable based on the computational Diffie-Hellman
assumption and that it satisfies the security property of
restrictive irretrievability and provable data integrity against
malicious public cloud servers. However, these schemes
do not facilitate techniques for providing confidentiality
of data.
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FIGURE 1. Overview of secure remote health monitoring system based on a WBAN.

D. CONFIDENTIALITY AND INTEGRITY ASSURED
PRIVACY-PRESERVATION

Zhu et al. [26] proposed secure data aggregation scheme
based on homomorphic encryption and message authentica-
tion code (MAC), to preserve confidentiality and integrity of
data. Sun et al. [9] proposed a privacy-preserving scheme in
emergency response based on a WBAN. For the privacy of
the scheme, the authors use anonymous credentials based on
Pederson’s commitment and proof of knowledge. They make
use of bilinear pairing-based signatures for the authenticity
of the data. Although their work supports confidentiality,
privacy and integrity but unfortunately, their scheme does not
support in-network data aggregation in WBAN.

To conclude, it is observed that most of the schemes were
focused only on some security requirements but not all.
Hence, it is required to design a new data aggregation scheme
that supports most of the security requirements such as con-
fidentiality, data authenticity and integrity and end-to-end
data privacy in remote health monitoring systems. The new
scheme should be efficient and scalable in terms of computa-
tional complexity and meet the security standards. Although
our proposed SPPDA scheme addresses the same issues as
the above literatures to provide confidentiality and integrity
assured privacy preserving data aggregation in WBAN, our
research focuses on i) in our SPPDA scheme, the security is
ensured both at data acquisition, data aggregation and data
transmission phases; and ii) Our proposed scheme is efficient
and scalable and achieves confidentiality, data authenticity,
integrity and end-to-end data privacy in remote health moni-
toring systems.
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Iil. PROBLEM FORMALIZATION

In this section, we formalize our research problems in
WBANS, including system model, communication model,
adversary model, security requirements, and design goals.

A. SYSTEM MODEL
In our system model, we consider a WBAN-based remote
health monitoring system to monitor a patient’s health resid-
ing at the remote location. This includes a Medical Server
(which is accessed by the trusted authority TA), an aggregator
(here LPU), and the sensing nodes SN = {s1, 52, ..., Sk},
(wearable medical sensors). In this system, we focus on col-
lection and transmission of the patient’s privacy-preserving
health data to the medical server. Specifically, this process
can be done in three stages such as secure data aggregation,
secure data transmission and secure data storage and access
as described in Fig. 1.
The stake holders of the remote health monitoring system
are:
o Sensing Nodes (SN), denoted by SN = {s1, 52, ..., Sk},
(where ‘k’ is the allowable number of sensors on
a patient’s body) are the wearable sensors on the
patient’s body; these sensors sense the patient’s data,
such as ECG sensor, blood pressure sensor, motion
sensor, pulse oximetry sensor. The sensing nodes are
responsible for reporting the sensed health data to the
aggregator.
o Aggregator (LPU) is connected wirelessly to the med-
ical sensors (SN). Its job is to collect the individ-
ual health data and compute the aggregation on them.
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FIGURE 2. Network model.

Consequently, the aggregated data are reported to the
remote medical server. The LPU will aggregate each
user’s health data and report the aggregated data to the
remote medical server honestly, but it is also curious
about the individual sensor’s readings.

o Medical server (MS) represents an individual server in
the remote health monitoring system. We consider a
scenario where the medical server can be accessed by the
trusted authorities and the concerned doctor/emergency
medical team.

The network model in Fig. 2 depicts the data aggregation
process in a remote health monitoring system. It follows the
bottom-up approach for the transmission of medical health
data from the patient to the medical server in stages of
level 1, 2 and 3 respectively.

We recognize the WBAN based remote health monitoring
system as a two-tier communication network (as depicted
in Fig. 1):

1) The Intra-body communication network is responsi-
ble for secure data generation for every given epoch of
time. It comprises of an aggregator connected with a set of
sensing nodes given by SN = {s1,s2,..., sk}, as shown
in Fig. 2. Each sensing node (SN) can electronically record
the continuous real-time data regarding physiological mea-
sures on a patient’s body. For secure data generation, the sens-
ing nodes (SN) perform encryption and authentication on
the health data of the patient. A tree-based routing pro-
tocol like Tiny Aggregation (TAG) [27] can be used in
the intra-body communication network to collect the health
data from various SN’s and transmit it to the aggregator.
For every given epoch of time, LPU performs secure data
aggregation. In the process of secure data aggregation, the
health data from various sensors on a patient is com-
pressed as one and then transmitted to a remote med-
ical server. The LPU also performs some authentication
operations to guarantee the health data’s authenticity and
integrity.

2) The extra-body communication network is responsible
for secure data transmission, and it secures data storage and
access in remote health monitoring systems. It comprises
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of an aggregator (LPU) and the remote medical server (MS)
(as depicted in Fig. 1). It can be noted that LPU acts
as a common intersection point between both the intra-
body and the extra-body communication networks. The LPU
transmits the aggregated patient’s health data to the remote
medical server (MS), which resides in a secure location
inside or outside the hospital. On receiving the physio-
logical values as the patient’s health data, the physician
can get real-time situational awareness. Hence, a proper
diagnosis and timely treatment can be departed to the
patient.

B. COMMUNICATION MODEL
In the Intra-body communication network, the communica-
tion between each sensor node s; € SN and the LPU is
achieved through relatively inexpensive Wi-Fi technology.
That is, within the Wi-Fi coverage of the LPU, each s; € SN
can directly/indirectly communicate with it. On the other
hand, in an extra-body communication network, since the
distance between the LPU and remote medical server (MS) is
far, the communication between them is either through wired
links or any other links with high bandwidth and low delay.
More precisely, we assume the following: (i) there is
one MS, which is always trustworthy as it is stored in a secure
location. It is responsible for generating the public and private
key pairs for sensor nodes and is powered with sufficient
computational and storage capability. (ii) Each sensor node
communicates with exactly one LPU. The LPU is respon-
sible for data aggregation and sends it directly to the MS.
(iii) We assume that time is synchronized; (iv) we also assume
that the communication channels between the LPU and med-
ical server are secure.

C. ADVERSARY MODEL

Security plays an important role in the process of data aggre-
gation and data transmission in remote health monitoring
systems. In our security model, we consider the MS and LPU
and the SN’s as trustable and honest entities. However, there
exists an adversary A residing at the LPU to eavesdrop on the
medical health data. More seriously, the adversary .4 could
also intrude into the database of the LPU to steal the individ-
ual patient’s personal health data. In addition, the adversary
A could also launch some active attacks such as false message
injections to threaten the data integrity. This unauthorized
access to sensitive data leads to privacy violations, while
selective reporting, impersonating and masquerading lead
to incorrect diagnosis and treatment of the patient, who is
remotely monitored [1].

D. SECURITY REQUIREMENTS

Therefore, in order to prevent the adversary from learning the
patient’s health data and to detect the adversary’s malicious
actions, the following security requirements should be satis-
fied in a remote health monitoring system:
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1) CONFIDENTIALITY AND DATA PRIVACY

To protect the patients’ sensitive health data, which was
collected from medical sensors, from the adversary, i.e., even
if the adversary eavesdrops on the Wi-Fi communication in
the LPU, it cannot identify the contents of the data packet.
Also, if the adversary tries to have unauthorized access to
the database on the LPU, it cannot identify the individual
medical sensor’s data. In this way, medical sensor’s data can
achieve the privacy-preserving requirement. Confidentiality
also includes the prevention of aggregated data from the LPU
being identified by any adversary, except the authorized MS.

2) AUTHENTICATION AND DATA INTEGRITY

To authenticate encrypted health data that has been collected
and sent by a legitimate medical sensor and not altered during
transmission i.e., if an adversary forges and/or modifies a
report, malicious operations should be detected so that proper
data aggregation is done at the LPU, and correct health data
are received by the medical server.

E. DESIGN GOALS

Under the system model mentioned above and security
requirements, our design goal is to develop a secure privacy-
preserving data aggregation scheme for a remote health mon-
itoring system based on a WBAN. Specifically, the following
objectives should be achieved.

The aforementioned security requirements should be guar-
anteed in the proposed scheme. The primary security objec-
tive of our proposed scheme is to maintain the confidentiality
of data been transmitted by the medical sensors to the remote
server. The goal is also to retain the integrity of the data,
which can be achieved by authentication of the data source.
Additionally, the proposed scheme should maintain the med-
ical data anonymity/data privacy without allowing any adver-
sary to identify the content of the data. Finally, the freshness
of data has to be maintained to know the exact current status
of the patient for timely diagnosis and treatment.

IV. PRELIMINARIES

This section introduces the cryptographic primitives that
are used as the building blocks in our proposed SPPDA
scheme.

A. BILINEAR PAIRINGS
Let G1, G, and G7 be finite cyclic groups of prime order p,
and let g1, go be the generators of Gy, G, respectively. The
map e:G| x G, — Gr is said to be an admissible map if it
satisfies the following three conditions:
1) Bi-linearity: e(g{, glz’) = e(g1, g2)"Va, b € Zp (where
Zp =10, 1, ..., p— 1} is a Galois field of order)
2) Non — degeneracy: e(g1, g2) # 1
3) Efficiently computable

Such a mapping e is called bilinear mapping; it can be
constructed by modified Weil or Tate pairings on ellip-
tic curves [28]. Pairings are the basic operations used
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in the instantiation of homomorphic encryptions and data
authentication involved for secure data transmission and data
aggregation procedures of our scheme.

B. COMPLEXITY ASSUMPTIONS

Definition 1: Computational Diffie-Hellman assump-
tion (CDH): Let G, G; be two multiplicative cyclic groups
and g1, g» be the generators, with prime order p. The CDH
problem is described as follows: Given (g2, g5, gg) for ran-

dom a, b € Zp, it is hard to compute e(g1, gz)‘”’.

Definition 2: Bilinear Diffie-Hellman assumption (BDH):
Let G1, G2 be two multiplicative cyclic groups and g1, g2
be the generators, with prime order p. The BDH problem
is described as follows: Given (g2, g5, gé’, g5) for random
a, b, c € Zp, it is hard to compute e(g1, g2)“"c.

Definition 3: Decisional Bilinear Diffie-Hellman assump-
tion (DBDH): Let G, G2 be two multiplicative cyclic groups
and g1, g2 be the generators, with prime order p. The DBDH
problem is described as follows: Given (g2, g5, gg, &5, X) for
random a, b,c € Z, and X € Gr, it is hard to decide if
X =e(g1, g2)™".

C. HOMOMORPHIC ENCRYPTION SCHEME

In our construction, we use a Bilinear ElGamal encryp-
tion scheme [29], which is a variant of the ElGamal
cryptosystem [30]. The Bilinear EIGamal encryption scheme
consists of four probabilistic polynomial time algorithms
(Setup, Key generation, Encryption and Decryption):

1) Setup (1*): On input of security parameter A, outputs a
bilinear group gk = (g1, &2, G1, G2, Gr, ) where e:G; x
G, — G is the bilinear map.

2) Keygeneration (gk): On input of gkgk outputs a key pair
(Epk, Esi) = ((e(g1, g2))", g}) for arandomu € Z,.

3) Encryption (m, Epr): To encrypt a message m € Gr
under Ep, select a random r € Z, and output the
ciphertext as

C = (g Ey-m) = [g), e(g1,82)" - m]

4) Decryption (Eg,e): To decrypt the ciphertext C =
(C1, C2) and obtain m, compute m = C/(e(gy, C1))

Therefore to decrypt, it is enough to compute
C>/(e(g], C1)), and the main idea is that we need only gf
to decrypt. Based on [29], we prove that this encryption
scheme is semantically secure under the DBDH assumption
in Theorem 1. (Refer to Section VI). The homomorphic
property of the Bilinear ElGamal encryption scheme is
given as

E(my,r)-E(my, ) = E(my -ma; 11 +12)

= g5, (g1, g2) "D - (my - ma)]

Here E (m, r) refers to the encryption function as stated above,
and the parameters mp, my are the message and ry, r, are the
random values from Z,. Therefore to decrypt the ciphertext
and get the m1.my, we use the function Decryption(Es, e) and
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compute
mp-my = —e(g’f, o)
_e(g1,82)" ) my my
e(g}. g5 ")

_elg, ) NETD) gy om
B e(gl’ gz)u(rl+r2)

D. AGGREGATE SIGNATURE SCHEME

The aggregate signature scheme used in our scheme is based
on the BGLS (named after the initials of the authors Boneh,
Gentry, Lynn, and Shacham) [24] signature scheme. It con-
sists of six probabilistic polynomial time algorithms (Setup,
Key generation, Sign, Verify, Aggregate Sign, and Aggregate
Verification):

1) Setup (1*): On input of a security parameter A, outputs
a bilinear group gk = (g1, &2, G1, Go, Gr, ¢, H), where
e:G| x G — Gr, the bilinear map and H : {0, 1}* — Gy is
a one-way hash function.

2) Keygeneration (gk): On input of gk, outputs a key
pair (Spr, Ssk) = (g3, x) for arandom x € Zj,.

3) Sign (m, Sg): To sign a message m € G under the secret
key Ssx = x, compute 0 = h* = [H(m)]".

4) Verify (m, o): Given Sy, a message m and a signature o,
compute 2 = H(m) and accept if

e(o, g2) = e(H(m), Spr) = e(h, Spk)

5) AggregateSign (m, o;): For computing aggregate signa-
tures, each user s; € SN, input signature o; on each distinct
message m; € {0, 1}*, outputs o = ]_[f;l o; where o € Gj.
6) Aggregateverification (m;, o): Ensure that the messages m;
are distinct. Compute h; = H(m;) for 1 < i < k = |SN| and
accept if e(o, g2) = [ 15, e(hi, Spi)

The Aggregate Signature Scheme is provably secure under
the CDH problem in a random oracle model as it is based on
the BGLS Signature scheme [24].

2 by bi-linearity, we get

V. PROPOSED SECURE PRIVACY-PRESERVING

DATA (SPPDA) SCHEME

In this section, we initially discuss an overview of our
proposed SPPDA scheme regarding the combination of
basic preliminaries described earlier in Section IV of this
paper. We also provide the formalized function definitions,
which are used for various functionalities in the proposed
SPPDA scheme. Finally, the construction of the proposed
SPPDA scheme is discussed in four steps, namely, System
Initialization, Health Data Generation, Privacy-Preserving
Data Aggregation, Decryption and Verification. Further,
the utilization of various formalized function definitions
is explained, and correctness proof for these definitions is
included.

A. OVERVIEW OF SPPDA SCHEME
In this subsection, we provide an overview of our proposed
scheme and the basic notations (Refer to Table 1) that are
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TABLE 1. Basic notations used in SPPDA scheme.

Variables Description

Cyclic multiplicative groups of prime order p

The generator of groups — respectively
It is a mapping from

The generator of group

A one-way hash function defined by

The set of sensor nodes on a human body
The set of distinct messages sent by each sensor

The i sensor, where

The i" message, where

Number of sensor nodes in set

Secret key defined by public key cryptosystem

Public key defined by public key cryptosystem
Secret key defined by aggregate signature scheme
Public key defined by aggregate signature scheme
The i ciphertext computed by , given by

The i" signature computed by

The bilinear group

to be used throughout the paper. Like many pairing-based
cryptographic schemes, our scheme uses a special form of
the bilinear map called a symmetric pairing where G| = Go.
In the rest of the paper, all the bilinear pairings are symmetric,
and we denote G| = G, by G.

The proposed SPPDA scheme is constructed by consider-
ing a security parameter A and runs a common setup (CSetup)
function to generate the symmetric bilinear pairing group.
Further, the proposed scheme calls for a common key gener-
ation (CKey generation) function for generating the key pairs
that can be used for encryption (Encryption) and signature
(Sign) generation in the next steps. The Encryption, Sign,
SigVerify, AggSign, AggVerification functions are the sym-
metric variants of the functions from Bilinear ElIGamal Cryp-
tosystem and the BGLS aggregate signature scheme [Refer
to Section IV.C and Section IV.D of this paper]. We build
the CipherProd function based on the homomorphic prop-
erty of the Bilinear ElGamal Cryptosystem. The CipherProd
function is used to calculate the aggregate product of the
ciphertexts obtained from the encryption function. Finally,
an AggDecryption function is defined based on Decryption
from Section IV.C.

The formalized function definitions of all the nine func-
tions used in our proposed SPPDA scheme are discussed as
follows:

1) CSetup (1*): On input of a security parameter A, outputs
a symmetric bilinear group gk = (n, g1, 82, G, Gr, e, H),
where e:G x G — G the bilinearmapand H : {0, 1}* — G
is a one-way hash function.

2) CKeygeneration(gk): On input of gk, for each sen-
sor node s; € § random variables x;,u; € Z, where
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i = 1,2,3...,k, outputs key pairs for encryption and
signature generation as (Ep, Eg) = (e(g1,£2),g]) and
(Spx» Ssk) = (g3, x), respectively.

3) Encryption (m;, Ep;): To encrypt a message m; € Gr
under Ejy;, select a random r; € Z, and output the cipher text
as CT; = (C1, o) = (g3, Eyj. - my) = [g3, e(g1, 82)""1 - m;]
where computation of CT; is based on Encryption (m, Ep) as
described in Section IV.C.

4) Sign(m;, Ss;): Let u; = C, where C; is the part of the
i ciphertext CT;. To sign an encrypted message u;, under
the secret key Sg;, = x;, compute o; = [H(u;)||TST*, where
TS is the current time stamp, which can resist potential replay
attacks.

5) SigVerify(u;, 0;): Given Sy, a message u; and
a signature o;, compute h = H(u;)h = H(d;) and accept
if

e(oj, g2) = e(H(u), Spr;) = e(hi, Spr;)

6) CipherProd (CT;, k): Since the underlying encryption
scheme used for obtaining the ciphertext C7; is homomor-
phic in multiplication, therefore on input of CT;, for i =
1,2, 3, ..., k outputs the aggregated cipher text by computing
the product of all encrypted data as CT = I—[f-;l CT;.

7) AggSign(u;, o;): For computing aggregate signatures, each
sensing node s; € SN, input signature o; on each distinct
message u; € {0, 1}*, outputs 0 = ]_[le o;, where o € G.
8) AggVerification(i;, 0): Ensure that the messages u; are
distinct. Compute H(u;) for 1 < i < k = |SN| and accept if
e(o, g2) = [Ty e(hi, Spk;)

9) AggDecryption(Eg,, e): To decrypt the ciphertext, for

CT = (C,¢) = ]_[le CT;, Compute AggDe-

cryption (Eg;,e) = Ca/e(gy,C) [T, mi, where
k

U= Zi:l u.

FIGURE 3. Proposed secure privacy-preserving data aggregation
scheme (SPPDA).

B. PROPOSED SPPDA SCHEME

In this section, we propose the secure privacy-preserving data
aggregation scheme (SPPDA) for the remote health moni-
toring system, which mainly consists of the following four
parts (as shown in Fig. 3): System initialization, Health data
generation, Privacy-preserving data aggregation, Decryption
and Verification.

12608

1) SYSTEM INITIALIZATION

During the initialization phase, the remote medical server is
able to bootstrap the whole system. In particular, the medi-
cal server runs a common setup CSetup (1*) to acquire the
initial parameters. Subsequently, the medical server utilizes
the Bilinear ElGamal cryptosystem to generate the public and
private key pairs through the CKeygeneration (gk) function.
The detailed steps of the initial public parameter generation
are as follows:

Step 1: Based on the input of security parameter A,
the common setup function given by CSetup(1%)
generates the tuple gk = (p, g1, 82, G, Gr, e, H),
where G and Gr are finite cyclic groups of prime
order p; e:G x G — Gr is the bilinear map; g;
and g; are two random generators of group G and
H :{0, 1}*—Gj is a one way hash function.

Step 2: For each sensing node s; € SN, the medical
server calls the CKeygeneration(gk) function and
randomly selects variables x;, u; € Z, where
i = 1,2,3,.., k. Finally, outputs a public and
private key pair for encryption as (Epy;, Eg,) =
(e(g1, 82), g'fi) and a public and private key pair
for signature generation as (Spx;, Ssk;) = (g)zc", Xi),
respectively.

The public and private key pairs (Epy;, Eg;) and (Spk;, Ssk;)
are used for encryption and signature generation and are
computed as described in Section IV.C and Section IV.D,
respectively. These parameters have to be preloaded in the
medical sensor nodes and aggregator node (LPU) before
implanting them on the human body.

2) HEALTH DATA GENERATION

We assume that the health data from the medical sensor nodes
are reported simultaneously to the LPU after a given epoch
of time. Specifically, when the LPU calls for data collection
from the sensor nodes, each sensor node s; € SN collects
the datum in the form of messages m; € Gr and performs
encryption and signature generation as follows:

Step 1: To encrypt a message m;, the sensor node s; € SN
first calls the Encryption(m;, Epy,) function.

Step 2: Given a public key Ejy; for encryption, the sensor
node s; € SN randomly selects variable r; € Z,
and calculates the ciphertext CT; = (Cq, C3) as:

CT; = (C1, Cy) = (g5, E,:}C, - m;)
= (g5, e(g1, )" - m;] (1)

where computation of CT; is based on Encryption
(m, Epy) as described in Section IV.C.

Step 3: In order to achieve the end-to-end data pri-
vacy and not to reveal the message m; at
the LPU, we implement the aggregate sig-
nature scheme on pu; instead of m;, where
wi = C is the part of the i ciphertext from (1).
Itis can be noted that u; = C; contains message m;
in an encrypted format. Hence, if it gets revealed
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at LPU for signature verification still no mali-
cious aggregator or adversary can get the correct
message. Therefore, data privacy is maintained.
To sign the encrypted message u;, the sensor node
s; € SN first calls the Sign(u;, Sg,) function.

Step 4: Given secret key Sg;, the sensor node s; € SN
calculates the signature o; as:

o; = [H(u)||TST" (@)

where TS is the current time stamp.
Step 5: Finally, the sensor nodes send the encrypted health
data and its signature CT;|||7S||o; to the LPU.

The timestamp 7S is used to resist the potential replay
attack.

3) PRIVACY-PRESERVING DATA AGGREGATION
After receiving total k encrypted and signed health data
CT;||TS]|o; for i = 1,2,3, .., k, the LPU first checks the
verification of the signature in the following steps:
Step 1: The LPU first checks the timestamp 7'S and calls
the SigVerify(u;, o;) function.
Step 2: Given the public key Sy, for signing, the LPU
computes hash 2 = H(u;) and verifies the validity
of the signature o; by checking if

e(a,-, g2) = e(H(/‘Li)v Spk,‘) = e(hi, Spk,’) (3)

Step 3: Hence, LPU accepts o;

Step 4: For a given patient, being monitored may have
multiple sensors for remote health monitoring;
hence, it may take time to verify each signature.
Therefore, to make the verification efficient, the
LPU performs batch verification on multiple sig-
natures together by checking if:

o« onen=[]_ehsi) @

Step 5: Finally, LPU accepts Zle oj

Hence, due to the use of the batch verification process,
the time-consuming pairing operations e(., .) can be reduced
from 2k to k 4 1 times.

After the validity check, the LPU performs privacy-
preserving data aggregation by computing the product of
ciphertext and generating the aggregate signature as follows:

Step 1: Fori = 1,2,3,...,k, LPU calls the CipherProd
(CT;, k) function to generate aggregate ciphertext
CT; by homomorphic encryption as:

k
CT = (C1.Cy =[] _, CT;
f‘c—lri Zk uzk 7 k
= (gy"= ', e(g1, go)~=1" &=l ‘-l_L.Zl m;)
)

Step2: For i = 1,2,3,...,k, the LPU calls the
AggSig(u;, o;) function to generate the aggregate
signature on oj.
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Step 3: For each sensing node s; € SN, given an input
signature o; on each distinct message u; € {0, 1}*,
compute the aggregate signature as

k
o= l_[o,- (6)
i=1

Step 4: Finally, the LPU sends the encrypted data and
aggregate signature CT ||o to the remote medical
server.

4) DECRYPTION AND VERIFICATION

AT THE REMOTE SERVER

Upon receiving CT||o, the medical server first verifies the
aggregate signature and finally decrypts the message as
follows:

Step 1: Before decrypting, the message medical server
first calls the AggVerification(u;, o) function for
verifying the aggregate signature.

Step 2: For each distinct values of u;, where 1 < i <
k = |SN|, the medical server computes hash h =
H(u;) and verifies the validity of the aggregate
signature o by checking if

0,92 =[], elhi i) ™

Step 3: Hence, the medical server accepts o
Step 4: To decrypt the ciphertext CT, the medical server
calls the AggDecryption(Eg;, e) function
Step 5: For given private key Eg, = g'fi to decrypt
the ciphertext CT, the LPU computes aggregate
decryption as:
k
1% — .
Cofe(si . Cy =TT, mi,
k
where U = Zi:l u; 8)

Therefore, the aggregatedkhealth data can be obtained by
i

just usingk one parameter g

Since g1~ “is not a large number and hence the computation
of product of the all Ey, will be sufficient to perform the
decryption.

" as described in equation (8).

C. COMPUTATION OF AVERAGES

1) Arithmetic Mean: Given a data set containing the elements
ai, ar, as, .., ap, the arithmetic mean is defined by the for-
mula AM = 1/n(3"1, ai),.

2) Geometric Mean: Given a data set containing the elements
ai, az, as, .., ay,, the geometric mean is defined by the for-
mula GM = ([, a)'/™.

Further, the geometric mean can also be expressed as
the exponential of the arithmetic mean of logarithms as
(T, ad'/" = exp(1/n(3 " Ina;)). The inequality rela-
tionship between the geometric mean and arithmetic mean is
given by AM > GM [31].

Therefore, the trusted authorities who have access to the
medical server can directly compute the statistical average
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like geometric mean (GM) on the aggregated data M =
[T, mi as GM = ([T, m)/*. Since data sensed by the
sensors is not always drawn from the normal distribution, and
there are more chances of outliers in the data [32]. Hence, in
this case, based on the above discussion and the inequality
AM > GM, GM are considered to be the better statistical
average [33].

VI. SECURITY ANALYSIS

In this section, we analyze the correctness and security of
the proposed SPPDA scheme based on the security theorems.
Additionally, by following the security requirements dis-
cussed earlier, our analysis will show how the proposed
SPPDA scheme achieves confidentiality, authenticity and
end-to-end privacy on patient’s medical health data in remote
health monitoring systems.

A. SECURITY THEOREMS

Theorem 1: The proposed SPPDA scheme is semantically
secure under Decisional Bilinear Diffie-Hellman assumption.
More precisely, any adversary that can break the standard
security of this scheme with probability (1/2 + &)can break
the DBDH problem in (G, GT) with probability (1/2 + ¢/2).

Proof: Suppose A distinguishes the ciphertexts with non-

negligible probability, we simulate an adversary S that
decides DBDH as follows:

1. On input (y, ¥, y”, ¢, e(y, y)?), the simulator sets up
an encryption system for the adversary A with the goal
of using A to decide if d = abc or not.

2. In the beginning, the simulator outputs the global
parameters for the system (g, Z). Here, the simulator
sets g =y, Z = e(g, g) = e(y, y)‘“z. Further, the simu-
lator sends to adversary A the target public key E,; =
e(y, y)"2 = Z and the secret key Eg; = g', where t is
randomly selected from Z,, by the simulator.

3. Eventually, A must output a challenge (mg, m, 1),
where my # m; € M and t is its internal state
information. The simulator randomly selects a message
and computes the ciphertext C; = (¥, mge(y, y)?) =
(g%¢, mge(g, g)d/"z), sends (Cs, 7) to A, and waits for
Ato outputs/ €{0,1}.

4. If s = s, then S guesses “d = abc”; otherwise,

S guesses “d # abc”.
We observe that if d = abc, then the simulation is

perfect; that is, the ciphertext output is of the proper form
(89/¢, mpZ @O/ — 1y, ZP@/O) However, if d # abc,
then my is information-theoretically hidden from A, since
d was chosen independently of a, b, c. Thus, if A succeeds
with probability (1/2 + ¢), then S succeeds with probability
(1/2 4+ ¢) (when d = abc) and probability exactly
15 (when d # abc), for an overall success probability of
(1/2 + &/2). This contradicts the DBDH assumption when
¢ is non-negligible. |

Remark: The above proof 1is based on the
Ateniese et al.’s [29] proxy re-encryption scheme. The
authors proved their re-encryption scheme to be semantically
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secure under extended DBDH assumption. Since our pro-
posed encryption function is a variant of the ElGamal cryp-
tosystem [30]; therefore, only DBDH assumption is enough
to prove it.

Theorem 2: If all the sensing nodes (SN’s) are honest,
i.e. not tampered by any adversary and follow the pro-
posed procedures, then any sensed medical health data
can pass verification at the aggregator (LPU); i.e., the
SigVerify(u;, 0;) satisfies correctness.

Proof: Since (Sign (wi, Ssk;), SigVerify(ui, 0;)) is a
secure signature verification algorithm [34] and all the
signatures are verified at the aggregator using batch verifica-
tion, CT;||TS||o; can pass the verification. Hence, according
to the phases of Sign, SigVerify and Batch verification, the
following formulas hold:

e((H(willTS))™, g2)
e(H(uilITS), g2)"
= e(his Spki)

Y ong) =Y (HGuIITS)", &)
= [T, eH@uars). g
= [T, et uilTs). s
= ]_[f:l e(hi, Spi,)

e(oj, 82)

|

Theorem 3: If the sensing nodes (SNs), aggregator (LPU)
and medical server (MS) are honest and follow the proposed
procedures, then any aggregated sensed medical health data
can pass a data authenticity check at the medical server (MS);
i.e., the AggVerification(u;, o) satisfies correctness.

Proof: Since (AggSig(ui, 0i),AggVerification (i, 07)) is a
secure aggregate signature verification algorithm [24], and all
the signatures are verified before computation of aggregate
signatures using batch verification e(oj, g2) = e(hi, Sp;)
(Refer to Theorem 2); thus, CT||oc can pass verification.
Hence, according to the phases of AggSig(u;, ;) and AggVer-
ification (u;, o;) functions, the following formulas hold:

e0.92) = e[ ],_ 1.2)
= ]_[le e(0i, g2)
= [T, eHuars)®. g
= [T, eHuiITs). g2)"

k
= Hi:] e(hiv S]Jk,‘)

|

Theorem 4: If the sensing nodes (SNs), aggregator (LPU)

and medical server (MS) are honest and follow the proposed

procedures, then the aggregated medical health data can be

decrypted by the trusted authority at the medical server (MS);
i.e., the AggDecryption (m;, o) satisfies correctness.
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Proof: The (Encryption (m, Epi), Decryption (Eg, e)) is
semantically secure under the DBDH assumption (Refer to
Theorem 1). We consider, in a given epoch of time, each
sensing node s; € SN with the key pair for encryption
(Epiy Ev) = (e(g1.82). 81, where 1 < i < k = |SN],
generates a distinct message m;.

In this case, we apply the homomorphic property as

E(my, r) - E(m, r) = E(my - mp; r| +12)
=[5, e(g1, £2)"1"2"2 - (my -mp)]

where m; stands for the message generated by the i sens-
ing node belonging to SN = {s1, 52, ..., ¢} and gﬁ”' is the
secret key for that particular i/ sensing node. More precisely,
'i’" indicates the no. of sensing nodes in WBAN, but not
the no. of messages stands generated by a particular sensing
node.

Hence, by the homomorphic property of bilinear ElIGamal
Encryption Scheme as stated above, we aggregate the cipher-
text using CipherProd(CT;, k) as

CT = (C1, )
k
= CT;

i=1
k : .
=[1._, & ete1. 820" mi)
ko k
_ i=1"1i Zf: u; Zf: i .
= (g (g1, g2)==! : 'l—L=1 m;)
where CT; stands for the i ciphertext computed by i”* sens-
ing node.

Therefore, to decrypt the ciphertext of the for CT =
(C1,Cy) = ]_[i.‘:l CT;, we useAggDecryption (Eg,;, e) func-
tion (described in Section V. A), and compute AggDecryption
(Egr ) = Ca/e(gY, C1)

k k

Youidri
G egg)= T loymi gk
=>e(UC)_ P X _l_[izlm“
81- 1 Sui Y
i=1 i=1
e(gy & )
where U = Y% u;. |

B. ANALYSIS OF SECURITY REQUIREMENTS

1) THE PROPOSED SPPDA SCHEME CAN ACHIEVE
CONFIDENTIAL PERSONAL MEDICAL HEALTH DATA

In the proposed scheme, the individual sensor’s data are
encrypted using the Bilinear ElGamal cryptosystem, which
is IND-CPA (indistinguishable under the chosen ciphertext
attack) secure under the DBDH assumption [29]. It is diffi-
cult for any time-bounded adversary to solve the aggregate
decryption without the knowledge of the secret key, which
is known only to the medical server and the sensor. On the
other hand, the sensor makes use of random value r; € Z,
each time it encrypts the data, and hence, any adversary who
tries to eavesdrop on the channel will not be able to compare
between two ciphertexts. Hence, our scheme is also secure
against passive eavesdropping.
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2) THE AUTHENTICATION OF THE PERSONAL HEALTH DATA
IS ACHIEVED IN THE PROPOSED SPPDA SCHEME

In the proposed SPPDA scheme, the personal health data
from wearable medical sensors and the aggregated data
from the LPU are signed by the BGLS aggregate signa-
ture (named after the initials of the authors Boneh, Gentry,
Lynn and Shacham) [24]. Since the BGLS signature is prov-
ably secure under the CDH problem in the random oracle
model, the source and aggregator’s authentication can be
guaranteed. Specifically, the medical health data from the
sensors is signed by computing o; = [H(u;)||TST" , where
TS is the current time stamp to resist a potential replay
attack and Sy, = x; is sensor node SN’s secret key to
make sure only the sensor can make the signature. After
receiving the signed data item, the aggregator checks whether
e(oj, g2) = e(H (i), Spr;) = e(hi, Spi;) to verify the source
of the signature. Eventually, after the verification the aggre-
gator computes 0 = ]_[f»‘=1 o; as the aggregate signature.
Further, on receiving the aggregated data item, the medi-
cal server checks whether e(o, g2) = H{'(:l e(h;, Spi;) to
verify the source of the signature. Therefore, any adver-
sary’s malicious behavior can be detected in the proposed
scheme.

3) THE END-TO-END DATA PRIVACY IS ACHIEVED IN THE
PROPOSED SPPDA SCHEME

In the proposed SPPDA scheme, the patient’s data
{m1, my, ...my}, sensed by the on-body medical sensor is
encrypted using the Bilinear ElGamal cryptosystem, are
formed as {CT;, CT», ...CT}}. Since the Bilinear El1Gamal
cryptosystem is homomorphic in multiplication, the aggre-
gator simply computes a product on cipher text for data
aggregation as follows:

k
CT = (C1.Cy =[] _, CT;

ko k k k

= (& " elgr, g X [T m)
Let ]_[;;1 m; = M, Zlle u; = U;, and Zle r, = R;;
this implies CT = (g5', e(g1. g2)VRi.M;) is still a valid
cipher text of the Bilinear ElIGamal Cryptosystem [29]. Since
the Bilinear ElGamal Cryptosystem is a semantic secure by
Theorem. 1, the data {mi, my, ...m;} in M; are also seman-
tic secure and privacy-preserving. Therefore, the adversary
who intrudes into the LPU cannot get the individual sen-
sor readings as they are stored as the aggregate of the
encrypted values, and hence, data privacy is achieved during
transmission.

VIl. PERFORMANCE EVALUATION

This section evaluates the performance of the proposed
SPPDA scheme based on simulation results and computa-
tional complexity. In the following subsections of the simula-
tion setup, we provide details of the simulation variables and
settings about the simulation software used. We also include
the detailed simulation results regarding various network
scales. Further in the subsection of computational complexity,
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we compute the computational cost involved and compare
the proposed SPPDA scheme with its variant non-aggregate
scheme and other related schemes from the literature.

4) SIMULATION SETUP

In this subsection, initially, we discuss the simulation
variables and settings used for the implementation of the pro-
posed SPPDA scheme. Later, the simulation results are dis-
cussed based on a comparison between the implementation of
the proposed SPPDA scheme and its Non-Aggregate Variant
scheme. We focus on the comparison of the computational
cost at each processing level (i.e., Sensors, LPU and Medical
Server (refer to Fig. 2)) for various network scales, in the
remote health monitoring system.

5) SIMULATION VARIABLES AND SETTINGS

The proposed SPPDA scheme is implemented based on the
charm framework (version 0.43) [35]. The charm framework
facilitates the rapid prototyping of cryptographic schemes
and protocols. In our experiment, we combine the public key
encryption scheme and the aggregate signature scheme based
on symmetric pairing group settings.

Namely, we have two groups G, Gr, and e is a pairing
function from G x G — Gr. In a generic way, the assump-
tions and security can be translated to the symmetric settings.
We use python language (version 3.4.3) to write the code.
For efficient performance of the code, the routines imple-
ment the group operations using C math libraries such as
PBC (version 0.5.14) [36], OpenSSL (version 1.0.0) [37] and
GMP (version 6.1.0) [38]. All our simulation experiments
and benchmark testing were executed using a virtual machine
with 2.0 GB RAM running an Ubuntu 64bit Operating system
build using Oracle VM Virtual Box manager.

Additionally, we consider that the wearable medical sensor
nodes (SN’s) are deployed on the patient’s body according to
their respective functionalities. For example, the sensor used
to record the pulse of a patient is worn on the wrist of the
patient. After the network is organized into an aggregation
tree, we implement our proposed SPPDA scheme for vari-
ous networking scales. Since the number of in-body/on-body
medical sensors in remote health monitoring system has to
be limited, therefore in our simulation, we considered the
network size to be 1 < k < 10, (where k is the allowable
number of sensors on a patient’s body).

We list out the following basic facts about the methodology
used in the simulation: (i) All the operations are measured in
an average running time of milliseconds. (ii) Scalar Multipli-
cation, Exponentiation and pairing reading gives the details
of the # of scalar multiplication, # of exponentiation and # of
pairing operations performed at each respective group, and
(iv) the Real-time and CPU-time are the benchmark flags
from the charm framework, which calculates the reading in
milliseconds for various network scales.

6) SIMULATION RESULTS
In our implementation, we consider three main routines:
Data generation, Data Aggregation and Data decryption
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TABLE 2. Computational cost of operations in SPPDA scheme.

SPPDA Scheme
SN SM £ P RT CPU-T
G GGt T G G T
2 2 7 9 12 9 21 10 0.11151 0.07
4 6 15 21 20 15 35 16 0.174521 0.11
6 10 23 33 28 21 49 22 0.232108 0.18
14 31 45 36 27 63 28 0.332535 0.23
10 18 39 57 44 33 77 34 0.324443 0.27

SN: No. Sensing Nodes, SM: Scalar Multiplication, E: Exponentiation, P:
Pairing, RT: Real Time (ms), CPU-T: CPU Time (ms)

TABLE 3. Computational cost of operations in non-aggregate scheme.

Non-Aggregate Scheme

SM E
SN G G T G G T P RT CPU-T
2 0 4 4 10 9 19 8 0.103457 0.06
4 0 8 8 18 17 35 14 0.116313 0.1
6 0 12 12 26 25 5l 20 0.170028 0.11
0 16 16 34 33 67 26 0.239049 0.15
10 0 20 20 42 41 83 32 0.24686 0.18

SN: No. Sensing Nodes, SM: Scalar Multiplication, E: Exponentiation, P:
Pairing, RT: Real Time, CPU-T: CPU Time

and verifications. These main routines further call for the
subroutines for data encryption, signature generation, sig-
nature verification, cipher product, aggregate signature gen-
eration, aggregate signature verification and aggregate data
decryption. Similarly, we build a Non-Aggregate scheme as
a variant of the proposed SPPDA scheme by excluding the
data aggregation algorithms at LPU.

In this subsection, we provide a comparison of computa-
tional cost between the SPPDA and Non-Aggregate scheme
by (i) changing the network scale (as k = 2, 4, 6, 8, 10)
for each repetition of the experiment and (ii) keeping the
network size fixed as k = 5. The simulation results, as listed
in Table 2 and 3, depict the computational costs in terms
of the no. of scalar multiplications, no. of exponentiations,
no. of pairing operations, real-time computation and CPU
time computation, involved during the runtime of our pro-
posed SPPDA scheme and its variant Non-Aggregate scheme,
respectively.

First, we analyze the computational efficiency of our pro-
posed SPPDA scheme in comparison with its variant Non-
Aggregate scheme by changing the network scale. We use
Matlab to plot line graphs (refer to Fig. 4, Fig. 5, and Fig. 6) to
compare the computational cost involved in operations such
as exponentiations, pairing operations and scalar multiplica-
tion, respectively. From Fig. 4, it is observed that for increas-
ing scale of sensors in the network, the proposed SPPDA
scheme performs better than the Non-Aggregate scheme.
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FIGURE 4. Comparison of computational costs for exponentiation
operations.

FIGURE 5. Comparison of computational cost for pairing operations.

FIGURE 6. Comparison of computational costs for scalar multiplications.

Further, in Fig. 7, and Fig. 8, the comparisons between
the SPPDA and Non-aggregate scheme are shown on Real
Time and CPU Time flags of benchmark testing, respectively.

VOLUME 5, 2017

FIGURE 7. Comparison of computational costs for real time.

FIGURE 8. Comparison of computational costs for cpu time.

It can be observed from the graphs plotted in Fig. 4,
Fig. 5, and Fig. 6 that except for scalar multiplications,
the proposed SPPDA scheme performs almost similar to its
Non-Aggregate variant scheme. It can be noted that scalar
multiplications do not require a large amount of CPU time
as that of pairing operations. We can further decrease the
overall computational cost due to scalar multiplications by
limiting the product of ciphertext at the aggregator to a
threshold value. It can be noted that by small additional cost,
a much efficient end-to-end secure privacy-preserving data
aggregation scheme (SPPDA) can be constructed for the
remote health monitoring system.

Secondly, we compare the computational cost between
the SPPDA and Non-Aggregate scheme by keeping a fixed
network size (as k = 5) for each repetition of the experiment.
In Table 4, the computational costs regarding scalar multi-
plication, exponentiation and pairing operations are listed for
a fixed network size at each sensor. In Table 5, the overall
computational costs of the SPPDA scheme compared with
the Non-Aggregate scheme regarding scalar multiplication,
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TABLE 4. Computational cost of operations at each sensor.

At the Sensors

SN SM E P
G GT G GT

1 0 1 4 3 1

2 0 1 4 3 0

3 0 1 4 3 0

4 0 1 4 3 0

5 0 1 4 3 0
Average 0 1 4 3 0.2

SN: No. Sensing Nodes, SM: Scalar Multiplication, E: Exponentiation,
P: Pairing

TABLE 5. Computational cost of operations at each level.

SPPDA Non-Aggregate Scheme
L SM E SM E
P G P
G GT G GT G o G GT
1 o 1 4 3 0 0 1 4 3 1
2 8 13 22 16 1 - - - - -
3 0 0 0 1 7 0 10 22 23 17

L=I(sensors), L=2 (LPU) and L=3 (Medical Server) SN: No. Sensing
Nodes, SM: Scalar Multiplication, E: Exponentiation,
P: Pairing

exponentiation and pairing operations is listed at Level 1:
At the sensors, Level 2: At the LPU, and Level 3: At the
medical server, respectively.

In Fig. 9, comparisons of the computational cost between
the SPPDA scheme and its variant Non-Aggregate scheme are
shown with respect to Real-Time and CPU-Time benchmark
flags. It can be observed that the data aggregation process
in the proposed SPPDA scheme increases the cost of com-
putation only at the PDA. Consequently, the computational
time decreases at the server. It can be noted that in the
Non-Aggregate scheme, due to the absence of an aggregator,
there is no computation cost involved at the PDA, whereas
we observe that there is a huge computational cost required
at the medical server.

FIGURE 9. Comparison of computational costs at individual levels of
network. RT1 - real time (SPPDA), RT2 - real time (non-aggregate scheme,
CT1 - CPU time (SPPDA), CT2 - CPU time (non-aggregate scheme).

Therefore, from the simulation results, it can be concluded
that, when efficient techniques like pre-processing are used,
the additional computational cost incurred at the PDA can
be further reduced. Additionally, in Table 6, we perform a
comparison between some of the related data aggregation
schemes in WBAN. From this comparison, it is evident that
the proposed SPPDA scheme satisfies most of the secu-
rity properties unlike other related data aggregation schemes
in WBAN.

7) COMPUTATIONAL COMPLEXITY

The computation cost of the proposed SPPDA scheme can
be calculated as three parts; (i) at the medical sensor of
the patient; (ii) at the LPU of the patient; and (iii) at the
medical server respectively. During health data generation at
the medical sensor, each sensor generates a ciphertext CTj;,
which involves a 1 point multiplication in G, 2 exponentiation
operations in G and 1 pairing operation for Bilinear ElIGamal
encryption. For signing, the sensor needs 1 hashing operation
and 1 exponentiation operation. After receiving all the cipher-
text and corresponding signatures, the LPU first performs
batch verification, which involves k + 1 pairing operations.

TABLE 6. Comparison between some of the related data aggregation schemes in wban.

Security Properties [9] [41] [15] [42] [10] [14] [43] Proposed SPPDA
Confidentiality v v v v v v v v
Data Integrity v v x x v v
Data Authenticity v v x v v x x v
Privacy -Preserving v v x x v v v v
Batch Verification x x x x x x x v
Support statistical < < < < < v v v
averages
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TABLE 7. Cryptographic operations execution time.

Denotations Time (ms)
A multiplication in 0.0204
An exponentiation in 3.7503
A pairing operation 3.9723
0.4844

An exponentiation in

TABLE 8. comparison of computational cost at individual sensor,
Aggregator and server.

Individual Aggregator

Sensor (LPU) Server

Schemes

EPPA

MDPA -
ADA -

Non- -
Aggregate
Scheme

Proposed
SPPDA

It also generates an aggregated cipher text and signature,
which involves 2k point multiplication operations. Finally, all
the aggregated results are transmitted to the remote medical
server, which involves 2 pairing operations for aggregate
signature verification in Gy and it needs 1 exponentiation
in G, 1 point multiplication operations and 1 pairing opera-
tion in G for computing decryption of aggregated ciphertext.

Table 7 lists out the denotations and execution time (ms)
of cryptographic operations based on average-runtime (ms),
calculated using the benchmark of charm framework [39].
We denote C, as the exponentiation operation, C,; as the
exponentiation operation, C,, as the point multiplication
operation and C, as the pairing operation. We present
the computational complexity comparison of the proposed
SPPDA scheme with its non-aggregate variant scheme and
other similar aggregate schemes such as EPPA (efficient
and privacy-preserving aggregation) [12] MDPA (multidi-
mensional privacy-preserving aggregation) [13] and ADA
(Anonymous data aggregation)) [40] in Table 8. The null
value with respect to MDPA and ADA, in Table 8 indicates
that aggregation and decryption are combined and performed
by the server. The null value under the non-aggregate scheme
indicates the absence of the aggregator.

Furthermore, with the exact operations costs from Table 7,
we depict the variation of computation costs at the aggregator
and server, in terms of ‘k’ in Fig. 10 and Fig. 11, respectively.
From Fig. 10 and Fig 11, it can be obviously shown that the
proposed SPPDA scheme largely reduces the computational
complexity at the aggregator and also at the server.

VOLUME 5, 2017

FIGURE 10. comparison of computational costs at the aggregator
(PDA/LPU). SPPDA (secure privacy-preserving data Aggregation),
EPPA (efficient and privacy-preserving Aggregation).

FIGURE 11. Comparison of computational costs at the server. SPPDA
(secure privacy-preserving data aggregation), EPPA (efficient and
privacy-preserving aggregation), MDPA (multidimensional
privacy-preserving aggregation), ADA (anonymous data aggregation).

From the above analysis, the proposed SPPDA scheme is
indeed efficient in terms of simulation results and compu-
tational complexity, which is suitable for privacy-preserving
data aggregation in remote health monitoring systems.

VIil. CONCLUSION AND FUTURE WORK

In this paper, we have proposed a Secure Privacy-Preserving
Data Aggregation (SPPDA) scheme based on bilinear pairing
for remote health monitoring systems to improve aggregation
efficiency and preserve data privacy. This paper formalizes
the system model and security model for the remote health
monitoring system. Based on the combination of a Bilinear
ElGamal cryptosystem and aggregate signature, a concrete
SPPDA scheme is designed. Security analysis demonstrates
that our proposed scheme can preserve data confidentiality,
data authenticity, and data privacy, while it also resists passive
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eavesdropping and replay attacks from malicious adversaries.
We have proven that the proposed SPPDA scheme is semanti-
cally secure against IND-CPA attacks in the standard model.
The performance of the SPPDA scheme is tested using the
charm framework [35] on the Ubuntu 64bit Operating System
with 2 GB memory. The performance evaluation shows that
our proposed SPPDA scheme is efficient and reduces commu-
nication complexity due to the use of data aggregation in the
WBAN. The utilization of privacy homomorphism makes this
scheme feasible for applicability in a cloud-assisted WBAN.
In the future, we consider implementing a light weighted
homomorphic aggregation scheme with more efficient Ate
pairings [8] to further reduce communication and computa-
tional overhead and improve the efficiency of the proposed
scheme.
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