Received March 28, 2017, accepted May 11, 2017, date of publication June 19, 2017, date of current version July 7, 2017.

Digital Object Identifier 10.1109/ACCESS.2017.2710421

Multilingual Source Code Analysis:
A Systematic Literature Review

ZAIGHAM MUSHTAQ, GHULAM RASOOL, AND BALAWAL SHEHZAD

COMSATS Institute of Information Technology, Lahore Campus, Lahore 54000, Pakistan
Corresponding author: Zaigham Mushtaq (zmqazi @ gmail.com)

ABSTRACT Contemporary software applications are developed using cross-language artifacts, which are
interdependent with each other. The source code analysis of these applications requires the extraction
and examination of artifacts, which are build using multiple programming languages along with their
dependencies. A large number of studies presented on multilingual source code analysis and its applications
in the last one and half decade. The objective of this systematic literature review (SLR) is to summarize
state of the art and prominent areas for future research. This SLR is based on different techniques, tools, and
methodologies to analyze multilingual source code applications. We finalized 56 multi-discipline published
papers relevant to multilingual source code analysis and its applications out of 3820 papers, filtered through
multi-stage search criterion. Based on our findings, we highlight research gaps and challenges in the
field of multilingual applications. The research findings are presented in the form of research problems,
research contributions, challenges, and future prospects. We identified 46 research issues and requirements
for analyzing multilingual applications and grouped them in 13 different software engineering domains.
We examined the research contributions and mapped them with individual research problems. We presented
the research contributions in the form of tools techniques and approaches that are presented in the form
of research models, platforms, frameworks, prototype models, and case studies. Every research has its
limitations or prospects for future research. We highlighted the limitations and future perspectives and
grouped them in various software engineering domains. Most of the research trends and potential research
areas are identified in static source code analysis, program comprehension, refactoring, reverse engineering,
detection, and traceability of cross-language links, code coverage, security analysis, cross-language parsing,
and abstraction of source code models.

INDEX TERMS Software engineering, reverse engineering, software design, software architecture, software

maintenance.

I. INTRODUCTION

Source code analysis provides valuable information for archi-
tectural extraction, reverse engineering and reengineering of
software applications. It helps in program understanding,
software optimization, maintenance, and reuse. It is estimated
that size of software in 2025 will be more than 1 trillion lines
of code [11] that reflect the importance of source code anal-
ysis and manipulation in future. More than 29 applications
of source code analysis for different domains of software
engineering are highlighted by Kitchenham ef al. [11]. The
source code can be analyzed statically, dynamically or with a
combination of both (Hybrid analysis) [5], [6].

Modern software applications are moving from homoge-
nous single source code applications towards the heteroge-
neous multilingual environment. The applications of these
heterogeneous multiple source code systems can be seen

in web applications, enterprise applications (like J2EE) and
complex embedded systems. The development paradigm is
shifting from single language and technology to multiple
languages and technologies. A number of applications and
components developed in multiple language environments
[19]. Various technologies are found in multiple languages
in the form of heterogeneous applications (e.g., Java, XML,
SQL etc.) [14], [15]. The source code analysis of these appli-
cations is an important task and is necessarily required in
application optimization, reuse and in reverse engineering. In
this paper, we identified and discussed different multilingual
applications and analysis of these applications through a
systematic literature review.

The focus of this paper is to present a comprehensive
systematic literature review in the domain of multilingual
source code analysis and its applications. A large number of

2169-3536 © 2017 IEEE. Translations and content mining are permitted for academic research only.

VOLUME 5, 2017

Personal use is also permitted, but republication/redistribution requires IEEE permission. 11307

See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Z. Mushtaq et al.: Multilingual Source Code Analysis: A Systematic Literature Review

TABLE 1. Research questions.

Research Questions

Motivation

What are the key research issues for multilingual

Ql source code analysis (MLSCA)? domai
omains.

To understand the requirements and concerns in the current state of the art for the
analysis of multilingual applications with respect to different software engineering

What are the research contributions to address the
problems of multilingual source code analysis?

Q2

To identify different approaches for the successful analysis of multilingual
applications. The contributions are categorized in the form of analysis mechanism, the
role of the study, type of evaluation and model representation etc.

What are the shortcomings and future of current
Q3 research in multilingual source code analysis
(MLSCA)?

To identify the research challenges and future prospects in the current state of the art
focus for the analysis of multilingual applications.

studies presented on this topic before the last decade. It is
important to collect, analyze, classify and summarize state of
the art research. To the best of our knowledge, there is still no
systematic review on multilingual source code analysis and
applications of multilingual source code in the literature. This
SLR highlights different features of the research in the field of
multilingual source code analysis and applications developed
with multiple technologies. To conduct an effective review
study, we formalized basic search string to collect relevant
research available in the domain of multilingual applications.
We devised the assessment criteria, besides quality assess-
ment criteria prescribed in [13]. We focused on different
publications from renowned journals, conferences, and work-
shops. Based on the systematic review criteria, we finalized
56 research papers for further review and analysis, out of
3820 total papers. The selected papers are empirically and
qualitatively evaluated through multiple aspects and pre-
sented in the form of different views. We found rising trends
towards the development and analysis of multilingual appli-
cations, still, there is a need for a generic and extendable
solution for analysis of multilingual applications.

We subdivided the study into four main sections. In Section
II, we present research methodology for conducting system-
atic literature review by defining research questions, domain
for literature review, source of information, search criteria,
search string, information extraction procedure and study
selection/assessment criteria. In Section III, we synthesize the
selected papers and present the results of systematic literature
review in the form of multiple summarized Tables (1-25).
In the end, we present the conclusion of the whole study
in Section IV.

Il. RESEARCH METHODOLOGY

The goal of conducting this systematic review is to recognize
and categorize the best available procedures, models, tech-
niques and tools used to analyze multilingual applications.
The process of systematic literature review helps in discov-
ery and analysis of research available with the concerned
domain of studies [10]. The existing research is empirically
evaluated in accordance with predefined criteria. The results
of the review provide scientific evidence by classifying the
relevant studies. The systematic search procedure is provided
by Kitchenham et al. [9] and the selection of primary studies
method followed in [10]. We also selected guidelines for
writing a literature review from Pautasso [41]. The population

11308

is composed of publications found in the selected sources
which apply procedures or strategies related to analyzing
multilingual applications.

A. REVIEW PROTOCOL

The development of review protocol is the 1st step towards
systematic literature review. The SLR protocol helps to des-
ignate the search plan in the form of search strategies for
the extraction of relevant literature. This process includes
research questions, research scope, source of information,
inclusion & exclusion criteria and literature assessment crite-
ria. The process of conducting the systematic literature review
follows the steps mentioned in Fig 1.

« Identification of research questions.

* Define search strategy.
SLR Planning . . . R
(Step1) * Define Data extraction criteria.

a1 N
+ Define Selection Process.
Data Shection| * Data extraction.
& st | * Data analysis and evaluation.
\

* Research findings and discussion.
« Conclusion.

Data
Representation|
(Step 3)

FIGURE 1. Systematic literature review process.

1) RESEARCH QUESTIONS

In order to conduct a systematic review, it is essential to
formulate the primary research questions. After specifying
the research questions, the review procedure involves build-
ing the search strategies to recognize and extract relevant
studies [8]. The answers to these research questions are
searched in the published literature using the procedures of
systematic literature reviews as proposed by Kitchenham [10]
and DARE/CDR criteria [13]. The basic intent of this review
is to summarize the current state of the art research in
MLSCA (Multilingual Source Code Analysis) domain and to
identify efficient techniques used for MLSCA. We searched
for MLSCA techniques that were empirically evaluated to
identify needs for future research. The research questions
are developed to evaluate the significance of multilingual
applications as mentioned in Table 1.

VOLUME 5, 2017

Z. Mushtaq et al.: Multilingual Source Code Analysis: A Systematic Literature Review

TABLE 2. Keywords for the search term.

Terms Keywords and Alternate keywords

Multi* Multi, Multiple, Multilanguage, Multilingual, etc.

Cross* Cross Language, Cross Lingual, Cross Links, Cross Source Code etc.
Hetero* Heterogeneous, Heterogeneity, Heterogeneously, Heterogeneousness.
Hybrid* Hybrid System, Hybrid Components, Hybrid Languages, Hybrid Software, Hybrid Source Code etc.
Inter* Inter System, Interoperability, Interoperability links, Inter dependencies.
depend* Dependencies, depend, dependent etc.

Language Programming language, Languages, Domain-specific Languages etc.
Artifacts Cross-language Artifacts, Multilingual Artifacts

Analy* Analysis, Analyzing, Analyze etc.

Recover* Recovery, Recovering, Recover etc.

Revers* Reverse, Reverse Engineering, Reversing etc.

Invest* The investigation, Investigate etc.

Synthes* Synthesis, Synthesizes etc.

Detec* Detection, Detect, Detected etc.

Discov* Discovery, Discover, Discovered etc.

Software* Software tools, Software Systems, Software Code etc.

Source* Source Code, Source Code Files, Source Code Links, Source Code Analysis etc.
Application Software Applications, Multilanguage Application, Multilingual Application
Program* Programs, Programming, Programmed etc.

Pars* Parsers, Parsing, Parsed etc.

2) SEARCH STRATEGY

A well-organized research is required for extracting appropri-
ate information and filtering irrelevant studies from focused
research areas.

The planning and formulation of effective search is an
important step to finding out the meaningful research avail-
able in the respective domain. We followed both automatic
and manual search mechanism for the exploration of the
search term. At first, we performed automatic search followed
by the manual search is executed. The automatic search is
based on search string and is performed on search engines of
relevant electronic data repositories. The purpose of the man-
ual search is to gather more literature relevant to multilingual
source code analysis domain. The manual search includes
reference lists of relevant primary studies and gray literature.
In order to ensure the extraction of relevant information, we
limit our search terms on following conditions.

« Identification of major search keywords, based on for-
mulated research questions. -

o Search for alternate words and synonyms for major
keywords.

« Developing a search string by combining keywords with
Boolean operator “AND”, and alternate keyword with
Boolean operator “OR”.

Search Term: The search term is the combination of key-
words that precisely returns the relevant literature from a large
number of studies. In order to ensure the reliability of search
term, we analyzed the main concepts and terminologies in the
domain of multilingual source code analysis. We recognized
keywords used in the literature that is related to research
questions. The meta-sentence for this literature review con-
tains “Analysis of Software Systems developed using
the source code ofMultiple Programming Languages”.
We finalized initial keywords in Table 2 mentioned below
required to be incorporated in search term relevant to research
questions.

VOLUME 5, 2017

After describing the keywords, we considered synonyms,
alternatives, and hypernyms for each keyword. The result-
ing data was discussed with local researcher’s community.
In order to formulate an effective search string aligned with
the Metasearch sentence, the finalized keywords were con-
catenated with Boolean operators (‘AND’ and ‘OR’) and
wildcard character (‘**). The synonyms were combined with
the help of ‘OR ‘operator. The use of wildcard allows the
consideration of multiple alphanumeric characters as an alter-
native of keywords. The use of OR operator provides an
additional search space, whereas, the AND operator reduces
the search space to be more specific with the relevant papers.
For example, the first pair of ORs combines several key-
words for querying all the literature that refers to aspect
“Many/Multiple” in the domain of source code analysis.

The search term is subdivided into three components. The
first part of the search term is related to the population for
Multilingual or Multilanguage applications, the second part
is related to their analysis and the third part corresponds to
the source code of applications. For the effective query, we
need to ensure the existence of all three components in a
search term, therefore we applied AND operators among the
components. In order to ensure that completeness of search
results we applied OR operator in synonyms and relevant
key terms. Finally, the search string with the combination of
Boolean operators and the wildcard is mentioned as.

((Multi*) OR (Cross*) OR (Hetero*) OR (Hybrid*) OR
(Inter*) OR (*operability*) OR (*depend*) OR (*Lingual)
OR (*Language*) OR (Artifact)) AND ((Analy*) OR
(Recover®) OR (Revers®) OR (Invest®) OR (Synthes*) OR
(Detect®)) AND ((Software*) OR (Source®) OR (Applica-
tion) OR (Program*) OR (Pars*)).

3) LITERATURE RESOURCES
We conducted the primary search from online research
databases and search engines (IEEE explore, Springer, ACM

11309

Z. Mushtaq et al.: Multilingual Source Code Analysis: A Systematic Literature Review

TABLE 3. Attributes of the research study.

Attributes Sub-Attributes

Description

Paper #, Publication type, Title, Authors, Publication Year,

General Detail

Type, Institute, Country, Proposed Technique/ Model/Tool,
Research Domain, Environment, Website/email,
Implementation, Languages, Case Study

Describe the corresponding details related
to the research publications.

Research Publications &
Proceedings

Paper #, Research Title, Publisher, Publication Type, Proceeding Provide complete information about the
Year, Origin, Research Domain, Brief, Focus of study

selected research proceedings.

Multilingual Applications

Paper #, Technique, Tool, Model, Analysis mechanism,
Tools Language Support, Experimental Case Study

Provide complete information about tool
support of multilingual applications.

Assessment Criteria

Paper #, Problem definition, Proposed Solution, Findings/
Benefits/ Contributions, Weakness/ Future work

The selected papers are evaluated on the
basis of research purpose, importance,
contribution and shortcomings.

Conference & Workshop
Proceedings

S. #, Acronyms, Conference/Workshop Name

Describe the type of the research
proceedings along with the abbreviations.

Detail of Publications with

Papers #, Country, Publishers, References, Papers, Publisher
name, References, Total Papers, Journals, Conferences, Books,

Describe the details of the selected

the Origins Workshops research papers.
Status of Selected Papers Selected on Search Criteria, Papers After Step-I Criteria, sse}i(e)z:z(;h;ftr:rn:belr ?rf ri;zazjleg ggflrs
Publications Papers After Step-1I Criteria, Papers After Step-III Criteria pplyme

criteria.

Selected Publications

Total papers, Journals, Conferences, Workshops, Books

Represents number of publications

Digital Library, Science Direct and Web of knowledge),
journal publications and conference proceedings. We also
used Google and Google Scholar, however, the extracted
results were also identified by the existing databases. There-
fore, the results were not accumulated to overall count.

4) DOMAINS FOR SYSTEMATIC REVIEW

This systematic review focuses on the three domains, includ-
ing Web-based Applications, Embedded Applications, and
Enterprise Applications. The rationale to select these domains
was to categorize the huge literature fetched during an initial
search with the help of peer reviews. The factors to select
these applications include trends of software development,
domains with more extensive work and relevancy of the
domain with cross-language analysis.

5) THE FOCUS OF THE STUDY

This process includes the extraction of related information
by considering the type of study, important ideas, key factors
and significant strategies in each study which is essentially
required to establish objective and subjective results [41].
The study methodology is followed in [9]; these categories
contains case studies, literature reviews, experiments, simu-
lations, and surveys.

6) KEY RESEARCH ATTRIBUTES

The information is extracted for further analysis from each
research paper in the form of specified template. Table 3
presents the attribute specified for the extraction of informa-
tion from primary studies.

7) STUDY INCLUSION/EXCLUSION CRITERIA

The initial search criterion is set to extract maximum publica-
tions in MLSCA domain. To ensure most relevant research,
the publication period from January 2001 to January 2016

11310

is considered. The database fields of title and abstract
are searched from previously mentioned resources.
Kitchenham [10] recommended that exclusion based on lan-
guages should be avoided [19]. However, only papers written
in English are included. Following criterion is determined to
evaluate and select the research publications.
o The valid range of the research publication years must
be from January 2001 to January 2016.
o The research papers must be of full-length papers.
o The selected papers must be relevant to the specified
search string.
« Research papers must be written in English.
o The research must address the assessment criteria.

B. SELECTION PROCESS

Pautasso [41] proposed the research inclusion criteria. This
criterion corresponds to the relevancy of the study with
the research domain. After analyzing inclusion criteria, the
exclusion criterion is applied by removing the studies which
discuss the domain of MLSCA but do not provide any signif-
icant research contribution. The search procedure produced
3820 initial studies. Out of these studies, 163 are selected
as being relevant, and 56 are selected as primary stud-
ies (the complete list of primary studies is shown in
Table 20 (Appendix). Table 4 shows the distribution of stud-
ies found according to the sources used. In order to obtain
independent assessments, three steps selection process is con-
ducted, as illustrated in Fig 2.

1) TITLE BASED SEARCH

In the first stage, duplicates and irrelevant papers are excluded
manually based on titles. In our case, the share of irrele-
vant papers was extremely large because research related to
MLSCA cannot be distinguished from papers in the database
search. After the first stage, only 163 papers remained for next
phase.

VOLUME 5, 2017

Z. Mushtaq et al.: Multilingual Source Code Analysis: A Systematic Literature Review

Stage 1

Primary search

Stage 2

» Abstract based search

+ Data extraction
criteria

+ Based on search
string

* Secondary search
* Title based search

3820 Papers

163 Papers

85 Papers

FIGURE 2. Selection process.

TABLE 4. Selection process.
Stages Selection Criteria Description
String based Search from relevant
Pre- . .
Primary search journals, conferences, and workshops
Stage
etc.
Stage 1 Title based search Select potential primary studies.
Stage 2 Abstract based search ~ Extract primary studies.
Stage 3 Full text-based search Critical empirical evaluation.

2) ABSTRACT BASED SEARCH

In the second stage, information in abstracts is analyzed and
the papers are classified along with research approach for the
analysis of multilingual applications. Research approaches
include experiments, case studies, surveys, reviews, theories,
and simulations. At this stage, we do not judge the quality of
the empirical data. After this stage, 85 papers remained in the
list.

3) FULL TEXT-BASED ANALYSIS

The empirical quality of the papers is completely evalu-
ated at this stage. A full text based analysis is executed
on the remaining 85 papers. The evaluation criteria involve
DARE (Database of Abstracts of Reviews of Effects) and
CDR (Centre for Reviews and Dissemination) criteria [13].
In order to conduct final data extraction following research
questions are defined.

Are the review’s inclusion and exclusion criteria
described and appropriate?

Is the literature search likely to have covered all relevant
studies?

Did the reviewers assess the quality/validity of the
included studies?

Were the basic data/studies adequately described?

All the questions are assessed and scored on the following
criteria prescribed in [8]: Y (yes): the criteria clearly defined
in the research, P (Partly), the criteria partially defined;
N (no) the criteria not defined in the research. Each ques-
tioned is scored as Y = 1, P = 0.5, N = 0. The trend of the
selection process is generally more inclusive. Only irrelevant
papers are barred.

Snow Ball Tracking: After applying all these filters, we
applied snowball tracking by searching through reference
list of each finalized study and ensured that no important

VOLUME 5, 2017

Stage 3 Snowball Tracking

Total Papers
Finalized : 56

* Full text based search

* Primary studies
Finalized

* Searching Reference
List of Stage 3

51 Papers

study was missed. It is important to mention that we finalized
these papers after assessing the exclusion/inclusion criteria
and quality assessment criteria. After applying the snowball
tracking we identified 5 more studies and totally added up
to 56 primary studies. The result of 56 finalized papers are
presented in Table 20 (appendix).

IIl. DATA ANALYSIS AND RESULTS

This section summarizes the results and provides the descrip-
tive evaluation of each study in a tabular format. This
section discusses the problem definition, proposed solution,
strengths and weaknesses of the included studies. Based on
research evidence results, conclusion and recommendations
are drawn.

A. EVALUATION OF QUALITY ASSESSMENT CRITERIA

This is the most important section as prescribed in Section
I for a full text-based search that determines the quality of
research papers and relevancy with the research topic. The
Q1 is about inclusion and exclusion criteria and the results
show that 80.2% described criteria is appropriate. The Q2 is
about the relevancy of literature with the selected papers, the
result shows that 55.7% of presented literature is appropriate
to the subject. The result of Q3 shows 61.3% relevancy of
quality and validity of the included studies. The result of Q4
highlights 64.2% adequacy of the selected papers with the
research topic. The overall quality assessment of the selected
papers is 65.4% which is quite healthy. The overall quality
assessment score of primary studies finalized is mentioned
in Fig 3, whereas the individual quality assessment result of
finalized studies is shown in Table 18 (appendix).

B. SEARCH RESULTS

We finalized 56 papers in stage-III out of 3820 searched
papers (shown in Table 20 appendix), published during 2001
to 2016. The publications in the form of different conferences,
workshops and journals from renowned (publishers) digital
libraries are considered for consultation, as mentioned in
the research criteria. The selection ratio of finalized papers
includes 60% from IEEE explore, 15% from Springer, 15%
from ACM, 6% from Science Direct and 4% from IET and
JUSC Journals. All the stage-III papers are evaluated rigor-
ously through assessment criteria and quality assessment cri-
teria formulated in the form of research questions. The status
of the papers along with the ratio of selection is mentioned
in Table 5.

11311

Z. Mushtaq et al.: Multilingual Source Code Analysis: A Systematic Literature Review

B0.2

e 61.3

al a2 a3 04 Tota

FIGURE 3. Quality assessment score (Percentage).

TABLE 5. Status of publications.

S;. E?[;f;; of Digital S[:;eg-e Stagel Stage2 Stage 3 Sn;;)vb Rua/:m
1 IEEE Explore 375 88 36 32 2 61
2 Springer 1457 28 18 8 - 14
3 ACM 822 22 17 8 - 14
4 Science Direct 1166 25 14 3 5
5 IET Journal - - - - 2 4
6 JUCS Journal - - - - 1 2
Total 3820 163 85 21 5 100
TABLE 6. Selected publications and proceedings.
Sr. # Type Total Journals Conferences Workshops
1 IEEE 34 1 30 3
2 ACM 8 0 6 2
3 Springer 8 1 7 0
4 Elsevier 3 3 0 0
5 IET 2 2 0 0
6 JUCS 1 1
Total 56 8 43 5
Ratio % 14 77 9

The detail of the papers after final selection is listed in
Table 6. Most of the selected papers (34) are from IEEE
Explore i.e. 61 %, whereas most the papers (43) are from
conference proceedings i.e. 77%.

The Table 19 (appendix) elaborates the selected papers in
the form of their origin, publishers, and type of research pro-
ceedings. The multiple research publications are also shown.
Moreover, the categories (i.e. journal, conference, book or
workshop) of the research publications are also mentioned in
Table 19 (appendix).

Fig 4 represents the number of publications w.r.t. year of
publication. It is observed that majority of the publications
i.e. 42 out of 56 starts from 2010 (75%) and out of these
publications, 30 are from 2012 onwards, in which most of
the proceedings published during 2013 to January 2016 i.e.
25/56, 45%.

The detail information of each research publications and
proceedings is provided in Table 20 (appendix) in the form
of Paper ID, Reference Number, Title of Selected Research

11312

FIGURE 4. Year-wise distribution of papers.

XLL Detection

Static analysis:

Source code Reusability

Source Code Refactoring:
Software maintenance:

[~

Semantic Analysis:

Quality Assurance

Program Understanding & RE
Pattern Analysis

MLDEs

Dynamic Analysis

Cross language Security:

Cross language code detection:
Change Impact Analysis:
Analysis of EAs

I

FIGURE 5. Domain wise detail of research issues & requirements.

Publications and Proceedings, topics/domain of the research
study and Publication Venue. Each paper supports different
and multiple domain and topic of study with respective plat-
form and environment.

C. ASSESSMENT AND DISCUSSION

OF RESEARCH QUESTIONS

Contemporary software applications are composed of mul-
tiple programming languages. The analysis of these appli-
cations is a key challenge for the software community. The
importance of source code analysis in modern applications
cannot be ignored [11]. Its significance is proved and demand
is increasing with the increase in the size of the source
code [21], [48]. In this section, we analyzed the finalized
56 primary studies based on our research questions. After
the analysis of selected studies, we extracted the facts from
diverse research domains of MLSCA. We discuss question
wise assessment of the extracted information in this section.

1) ASSESSMENT OF Q1: WHAT ARE THE RESEARCH
PROBLEMS/REQUIREMENTS FOR MLSCAs?
In this section, an insightful knowledge of the issues and
requirements for the analysis of multilingual applications
(MLAs) is presented. There are 46 different problems and
requirements reported which are categorized in 13 software
engineering domains. Each problem or requirement is marked
by PR # (Problem/Requirement number). Table 7 provides
the complete information about the concerns of multilingual
source code analysis. We also mapped problems and require-
ments with their respective domains in Table 7.

Detail of issues and requirement for multilingual source
code analysis (MLSCA):

In this subsection, domain-wise detail of issues and
requirements are presented. Fig 5 represents the percentage

VOLUME 5, 2017

Z. Mushtaq et al.: Multilingual Source Code Analysis: A Systematic Literature Review

TABLE 7. Problems and requirements for multilanguage source code analysis.

Domains

Problems and Requirements (PR)

Source code Reusability

Quality Assurance

Change Impact Analysis

XLL Detection

Software maintenance

Static analysis

Source Code Refactoring

Cross language Security
Program Understanding & RE
Multiple Language Development
Environments

Analysis of Enterprise Applications
Semantic Analysis

— |Dynamic Analysis

Inter System Interaction]| PR1

Extrarction and Analysis of Trace Links | PR2

[
S
W
=3

,47

(33
=3

Detection, Analysis and Managing code clones| PR3 66

Integration of Cross Language Artifacts (XLA) | PR4

wn
o

11 46

Homogeneous Analysis Techniques| PRS 2

4 36,49 2

Concurrency Issues in MLAs | PR6 30

Cross-language bug localization| PR7 62

Complex Nature of MLAs| PR8 62 | 11

21 22 21,31,33] 54 |42,50

Searching Relevant Source-code Snipp PRY 3

Analyze behavior & static verification | PR10 64

42,50

CIAin MLAs| PRI1

429,31 31

Context Awareness Across MLAs | PR12

4

Language independent change prediction & propagation| PR13

1 1 1

Generic Approach for XLL specification| PR14

34,49

Cross Language Artifacts binding| PR15

35

Identification & Refactoring XLLs| PR16

36 36 36

Hidden Dependencies in XL Artifacts| PR17

4“4 4 |44

Analyzing XLR in IDEs | PRI§

46 61 45

Cross Language Dependencies in MLAs| PR19|

44,50

Developing XLL Rules and spec| PR20| 58

58

58 | 65 37

Low Productivity, Quality, Robustness & Scalability| PR21 30

High maintenance cost of MLAs| PR22 68

65 68 65

Low dev. Cost & short time to market| PR23 20

20

Intermingled source code & syntax| PR24| 32

55

Analysis of Large ML SW corpora| PR25

12

Robust/ Multi [Parser| PR26

25,55, 68

it -)

Automatic analysis, visualization| PR27

56

SW Metrics| PR28

56

Analysis of Web applications| PR29| 39

20 60 16,26 | 24

XL support for DSLs| PR30

53

Analysis & transf. of MLAs| PR31

40

Automated MLR| PR32

51,57

DB Schema Modification in MLAs| PR33

52 52

Cross Language refactoring | PR34

57 61

XL Vulnerabilities & Information Leaks| PR35

16,26

Automated RE of MLAs| PR36)

33 31

RE of Legacy Applications| PR37

2

Understanding Topology of the Web Aggregates| PR38|

24

Analysis of MLAs at Arbitrary Level of Granularity| PR39

17

Support of ML in IDEs| PR40

54

Portability Concerns of MLAs| PR41

27

Insufficient Support of EAs| PR42

31

Incorrect Transactional Scope| PR43

42

Hidden Inconsistencies across ML Artifacts| PR44

43

Analysis of multi commit mixed source code HAs| PR45|

63

XL code Identification and classification | PR46

67,18

of research issues and requirements of MLSCA which are
alienated with software engineering domains. Most discussed
issues include Static Analysis 17%, Program Understand-
ing & Reverse Engineering 15%, Cross Language Link
Detection 15%, Dynamic Analysis 11%, Analysis of EAs 9%,

VOLUME 5, 2017

Multiple Language IDEs 11%, Refactoring 9%, Source Code
Reusability 8%, CIA 8%, Quality Assurance 9%, SW Mainte-
nance 9%, Cross Language Security 4% and Semantic Anal-
ysis 4%. Following domains comprehensively describe the
problem and requirements from selected research.

11313

Z. Mushtaq et al.: Multilingual Source Code Analysis: A Systematic Literature Review

a: DYNAMIC ANALYSIS OF MLAs

Complex heterogeneous systems are composed of multiple
subsystems that are interdependent and interact with each
other. The analysis of these applications is quite helpful
in better program understanding, re-engineering and reverse
engineering. The overall behavior of the system cannot be
studied unless we understand about how these components
interact with each other [1].

Due to complex and dynamic nature, the analysis of
multilingual applications has become difficult and chal-
lenging [32]. Understanding interaction of multiple lan-
guages is difficult because of a large number of artifacts
without integration and tool support [59]. The approaches
at present can only extract and develop views only for
the execution of the single system. The tool supports to
recover views of application-level interaction behavior in
complex heterogeneous systems is not available [1]. Dynamic
WAs (web applications) are composed of intermingled source
code of multiple programming languages (e.g., HTML, PHP,
JavaScript, and CSS), which makes them complex and diffi-
cult to analyze and manage clones [39].

Traceability across multilingual artifices is another hot
issue. Tractability analysis helps to spot the affected artifacts
in the form of trace links. Traditional techniques are deficient
to support MLAs. Automatic tracking of object relations
is required to support co-evolution of multi-language soft-
ware systems [47]. The execution traces of heterogeneous
applications like Ajax based applications are difficult to
analyze [32].

b: QUALITY ASSURANCE OF MLAs

Quality assurance and debugging is an essential requirement
for software applications. The testing and debugging of dis-
tributed MLAs are challenging [2]. The existing software
observational methods only support homogeneous applica-
tions and are less scalable to support ML As. These techniques
suffer from concurrency issues. An effective tool support
is required to ensure the quality of cross-language software
applications [30]. At present, the heterogeneous applica-
tions (HAs) suffer from cross-language bug localization prob-
lem. Current bug fixing techniques support homogeneous
applications and in the existing research, the bug reports do
not appear in the source code of HAs [62].

¢: SOURCE CODE REUSABILITY

Modern software paradigm is focused towards cross language
applications. Due to the complex nature of these applica-
tions, analyses, modifications, and reusability have become
difficult and challenging [11]. A little support is available to
analyze behavior and static verification of these systems [64].
These applications require multi-language reusable com-
ponents, tied though different types of files. All possi-
ble instances of source code are required to be detected
for reusability across MLAs. Moreover, the reusability of
cross-language source code requires compiler support [66].

11314

Searching relevant source-code snippets is another challenge,
which is required for software reusability [3]. Existing sys-
tems necessitate an existing repository of relevant code sam-
ples. However, for many libraries, such a repository does not
exist. Source code recommendation mechanism is required
because many libraries lack API documentation of reusable
components.

d: CROSS-LANGUAGE CHANGE IMPACT ANALYSIS (CIA)
Change propagation & impact analysis across the multi-
lingual artifacts is an essential requirement to understand
MLAs [31]. Predicting change propagation in the source code
is a key challenge in analysis and maintenance of multi-
lingual enterprise applications [7]. A language-independent
technique is required for evaluating the impact of change,
maintaining code history and preventing errors [7]. The exist-
ing CIA techniques only support single languages and lack
context awareness [4]. These approaches cannot fully analyze
the heterogeneous artifacts of different languages [29].

e: CROSS-LANGUAGE LINK DETECTION

The cross-language links (XLLs) are helpful in better pro-
gram understanding, maintenance, error handling and refac-
toring of MLAs. Modern software applications, for example
in Java Enterprise Applications (JEAs), are composed of
cross-language artifacts which are interdependent to each
other. These artifacts are referred through semantic links.
However, the relationships among these artifacts are not orga-
nized and accustomed with hidden dependencies [44].

The detection and managing dependencies in large MLAs
is quite hard and challenging due to their complex and het-
erogeneous nature [50]. There is no scalable, robust, general
approach available for cross-language dependency detection.
The existing techniques focused on single source code appli-
cations [49]. A generic approach is required to specify cross-
language links (XLL) [34].

The available analysis tools are language specific. It is
difficult to identify and refactor the cross-language links
among the artifacts developed in a heterogeneous applica-
tion [36]. A slight change in the code may affect the behavior
of the application. Developing XLL rules and specification is
a major challenge for research community [58]. Moreover,
there is no standard approach available for binding multi-
language artifacts [35]. The deficiency of XLLs across MLAs
damages productivity & stability of the software [58]. Cross-
language references and relationships are also a key issue
in the development of cross-language development environ-
ments (IDEs). Existing IDEs are deficient to completely
analyze cross-language relations [46].

f: SOFTWARE MAINTENANCE

Modern web applications (WAs) are composed of hetero-
geneous components. Due to low cost and a short time to
market trends in software development, the maintenance and
reusability have become challenging [20]. Another aspect
of MLAs is the maintenance cost. As the size of the

VOLUME 5, 2017

Z. Mushtaq et al.: Multilingual Source Code Analysis: A Systematic Literature Review

application is increased the cost of maintenance is also
increased, decreasing the quality & life of SW. There-
fore, tools are required for efficiently understanding MLAs
globally [65].

g: STATIC ANALYSIS

As the software applications have become more diverse and
heterogeneous, their static analysis is more demanding and
difficult [11], [12], [22], [67], [68]. A multilingual application
is composed of multiple languages that exhibit diverse func-
tionalities. Therefore, monitoring quality during software
development and maintaining consistency in these applica-
tions is quite critical [68]. At present cross-language analy-
sis, support is available only for homogeneous applications.
Analyzing large software corpora [12] and clone detection
of MLAs is difficult [22]. The analysis, visualization, and
generation of software metrics of MLAs can only be cost
effective by using automatic analysis tools that support the
generation of source code metrics, dependency graphs, and
software evolution analysis [56].

The analysis of MLAs at a high level of integration is
challenging [11]. The existing tool support for source code
analysis is insufficient. They support few revisions and defi-
cient to address large scale multi-language applications [63].
The available tools either focus analysis or transformation.
A combination of both analysis and transformation tech-
niques is required [40].

The available cross-language code detection approa-
ches [18] are compiler dependent and only support monolin-
gual comparison. The major challenge in analyzing MLAs is
to build a separate parser for each language participating in an
application [25]. For example, web applications contain inter-
mingled syntax of multiple source code languages. Therefore,
it is difficult to parse source code of these languages. A robust
multilingual parser is required to concurrently handle the
source of multilingual applications [55].

The modern web application contains multi-language
dynamic pages, jumbled with each other. Static analysis of
web applications (WAs) is hard & challenging due to the
presence of dynamic HTML code & interaction of multiple
languages in an application [60].

Sugar libraries are a unique approach that extends the syn-
tax of a programming language within the language. Extend-
ing syntax of programming language to support multiple
domains with sugar libraries is quite hard because they cannot
be used as the main extension mechanism of the programming
language [53]. The support of a large number of DSLs within
a host language is required.

Source Code Language Identification (SLI) techniques are
used to identify multi-language and embedded code appli-
cations. These techniques use meta-information for source
code identification and classification. However, using meta-
information is not always precise enough. Moreover, SLI
techniques require a parser for each language that affects
the correctness, performance and increase the maintenance
cost [67].

VOLUME 5, 2017

h: SOURCE CODE REFACTORING

Modern software applications are composed of multiple
language artifacts that interact with each other. The auto-
mated multi-language refactoring (MLR) is not possible due
to the different artifact types and modified definition of
semantics [51]. The present refactoring tools are language-
dependent that resist the smooth integration of development
environments [57].

Database refactoring or simple schema modification in
MLAs is challenging. SQL modifications are made manu-
ally to adapt their applications [52]. The cross-language link
frameworks do not support object oriented code refactoring
when DB schema changed [52]. Cross-language refactor-
ing (XLR) support is required in modern multi-language
development environments (MLIDEs) because the existing
IDEs only support refactoring of single languages [61].

iz CROSS-LANGUAGE SECURITY

As the size and complexity of the web applications are
increased, the vulnerabilities across the applications are also
increased. There is a need of an automated source code
reviewer to deal security vulnerabilities as the manual solu-
tions are slow, expensive and insufficient [26]. In [16], the
challenge of language-based security is discussed. A precise
algorithm for language-based security is required that checks
programs for information leaks.

Jj: PROGRAM UNDERSTANDING & REVERSE

ENGINEERING (RE)

SW development trends require more efforts in understanding
legacy applications that promote re-engineering & reverse
engineering. Extracting software change information of dif-
ferent multilingual contents is essentially required in order
to understand MLAs [31]. It is difficult to analyze HAs
at an arbitrary level of granularity [17], which is essential
for program understanding, re-engineering and reverse engi-
neering. It is challenging for the software community to
reverse engineer existing the legacy applications for source
code improvement, evolution and modernization software
applications [23]. The understanding topology of the web
aggregates in WAs is another issue. A tool support is required
for extraction, analysis, and visualization of aggregates for
large hypertext web applications [24]. There is a desperate
need for a framework or tool for automatic reverse engineer-
ing of complex heterogeneous applications. The available
techniques to reverse engineer object-oriented applications
cannot reverse engineer modern Enterprise applications [33].

k: MULTIPLE LANGUAGE DEVELOPMENT

ENVIRONMENTS (MLDEs)

The present Integrated Development Environments (IDEs)
do not support the development of multi-language systems.
Their support for multiple languages is weak because they are
language specific and cannot process cross-language applica-
tions [54]. Modern languages broadly use platform specific

11315

Z. Mushtaq et al.: Multilingual Source Code Analysis: A Systematic Literature Review

APIs, causing interoperability concerns. They need to support
portability of multiple languages across the platforms [27].

Existing development environment do not completely sup-
port relation across multi-language artifacts [46]. They do
not visualize cross-language relations, deficient in static
checking for consistency of cross-language and cannot
offer refactoring of artifacts in different languages [45].
Moreover, modern IDEs do not support database refactor-
ing or simple schema alteration [52]. A true multilingual
IDE must cater Cross-language refactoring (XLR), multi-
language meta information and interlanguage containment.
A system is required that integrates IDE support across lan-
guage boundaries. Common IDEs only support single lan-
guage features [61].

I: ANALYSIS OF ENTERPRISE APPLICATIONS (EAs)

The information in large EAs is distributed across various
components and their relationships. The analysis and reverse
engineering of large EAs has become hard & challenging for
the research community. The existing object-oriented reverse
engineering techniques cannot support EAs [31]. The het-
erogeneous nature of EAs is difficult to analyze and verify
desirable properties and architectural constraints [42], [50].
They may leave confusion in the form of conceptual errors in
source code and particularly may conceal incorrect declara-
tions of transaction scope. The developer’s loose overview of
the system and hide inconsistencies in the system [43].

m: SEMANTIC ANALYSIS

The clustering techniques for Semantic Analysis of MLAs
uses similar feature types for estimating the distance between
source code elements. The available techniques do not pro-
duce good quality results in absence of adequate inputs [37].

2) ASSESSMENT OF Q2: WHICH ARE RESEARCH
CONTRIBUTIONS TO ADDRESS THE PROBLEMS

OF MULTILINGUAL SOURCE CODE ANALYSIS?

This section is an important part of the literature review.
In order to answer the research question, we conduct an
in-depth analysis of each selected paper and extracted the
proposed solutions and benefits of each research problem
for MLSCAs. The research findings are presented in a more
concrete way in the form of tool support, approaches, and
surveys for analyzing ML As. Moreover, language support for
analyzing MLAs and domains of MLSCA are also presented.

a: SOURCE CODE LANGUAGES

In this subsection, we recognized 40 different kinds of
languages including General Purpose Languages (GPLs),
Domain Specific Languages (DSLs), Meta Programming
Languages (MPLs) and Intermediate Language Represen-
tations (ILRs) (as mentioned in Fig: 6). The number of
languages varies from 2 to 9 languages per research publi-
cation. Most commonly supported languages in the research
publications include OOPLs (30 occurrences, 57%), Java/J#
(28 occurrences, 53%), HTML/Applets (14 occurrences,
26%), Domain Specific Languages (11 occurrences, 21%),

11316

A

ILRs 2

DSLs/MPLs EE |]
GPLs | 64 |I

FIGURE 6. Distribution of languages (Percentage).

FIGURE 7. Distribution of MLSCA domains (Percentage).

C/C++/C# (9 occurrences, 17%), Jscript (9 occurrences,
17%), JEA/EIB (6 occurrences, 11%), SQL/RDBMS
(7 occurrences, 13%) and XML (7 occurrences, 13%) etc.
The ratio of remaining language representation is less
than 10 %. The detail of source code languages is given
in Table 9 (appendix).

b: DOMAINS FOR SOURCE CODE ANALYSIS

Multilingual source code analysis (MLSCA) is a quite diverse
domain and its importance is realized in almost every domain
of software engineering. In order to specify the research
trends and contributions, we separately discuss research
domains in multilingual source code analysis (MLSCA).
The research contributions are grouped and categorized
into 34 software engineering domains. Each model prof-
fers separate analysis mechanism and support platform to
accomplish their requirements. It is found that the research
trends among all these domains, 62.3% (33 occurrences)
of the population of the selected research studies relate
to cross-language linking, dependency analysis, integration,

VOLUME 5, 2017

Z. Mushtaq et al.: Multilingual Source Code Analysis: A Systematic Literature Review

traceability, change analysis and interoperability. Some
of the most important domains include Dynamic Anal-
ysis 15%, Language Integration/ Interoperability 17%,
Meta-model 11%, Multilanguage development environment/
IDE 17 %, Pattern Analysis 6%, Program Understanding 9%,
Re-engineering 6%, SW Refactoring 19%, Reuse 6%,
Reverse Engineering 13%, Static Analysis 25%, SW Com-
prehension 11%, SW Evolution 11%, SW Maintenance 15%,
SW Modeling 11%, Traceability/Dependency Analysis 19%
and Cross-Language Analysis (XLL) 17% etc. Figure 7
shows the distribution of Multilanguage source code analysis
domain (MLSCA), whereas the detail of domains is provided
in Table 10 (appendix).

Surveys: @

s 7
Techniques: '
Tools and | 38 D
approaches:

FIGURE 8. Segregation of selected research population.

Detail of Research Findings: In this section comprehensive
review of research contribution is presented (marked with
CN #). This research incorporates 56 multilingual source
code analysis tools and approaches, including 38 tools,
14 techniques, and 4 survey/review papers. Research contri-
butions of each research study in this SLR describe research
aspect, analysis mechanism, research domain, representation,
languages, evaluation and pros of the study. Figure 8 repre-
sents the division of selected research. This study is subdi-
vided into tool support, technique and surveys & reviews for
multilingual source code analysis.

c: TOOL SUPPORT

The tool support for Multilingual Source Code Analy-
sis (MLSCA) is described in the form of the model,
analysis mechanism, and experimental case studies. The
complete detail about MLCSA tools is provided in
Table 23 (Appendix). This section is comprised of differ-
ent multilingual source code analysis tools, subdivided into
dynamic analysis tools, static analysis tools, semantic anal-
ysis tools and hybrid analysis tools. It is observed through
literature review, that multilingual source code analysis tools
are more focused towards static analysis (shown in Fig: 9).
Out of these 38 tools, 68% (26) of the studies focused
towards static analysis of multilingual applications, whereas
the contribution of dynamic analysis tools is 21% (8) and
semantic & hybrid analysis tools are 11% (4).

VOLUME 5, 2017

Semantic & Hybrid @
Analysis:

(8 |
26|

Dynamic Analysis:

Static Analysis:

0 10 20 30

FIGURE 9. Type of tool support.

(i) DYNAMIC ANALYSIS TOOLS

In order to analyze MLAs, different dynamic analysis tools
are presented that covers intermediate representations, Ajax
based applications, web applications (WAs) and enterprise
applications (EAs). The attributes for the dynamic analysis
tools are presented in Tables 9 and 10 in the form of tool
name, analysis mechanism, model representation, type of the
tool, language support, experimental evaluation, focus of the
problem, domain of study and research outcome.

The analysis mechanism includes holistic debugging [2],
aspect weaving mechanism [28], trace link analysis [28],
code clone detection [39], dependency analysis [44], [47],
aspect-oriented programming [50], and evaluation of
dynamic web contents [60]. These tools support analysis
of general purpose languages (GPLs) including, Java, PHP,
HTML, CORBA, J Script, EJBs etc. and domain-specific
languages (DSLs) XML, Extend, Groovy, and UML etc.
The tool support is also available for intermediate rep-
resentation [2]. All of these tools are evaluated on the
basis of different industrial environments [32], [39], [60],
case studies [28], [44], simulated environments [2], proto-
type/standalone tools [47], [SO] and plugins [28], [44].

Representation aspects of dynamic analysis tools is pre-
sented in the form of intermediate/ bytecode represen-
tation [2], [47], program transformation to JVM [28],
GUI based FSM [32], high level language independent
inter-component dependency & trace model [44], [47]
and reverse engineering the interceptors to sequence dia-
grams (UML) [50].

The dynamic analysis tools show Robustness/ scalability
[2], interoperability [28], effectiveness in model recovery
[32], [47] and analysis of lightweight multilingual applica-
tion [47]. In Table 8, the information of dynamic analysis
tools is presented in the form of tool name, contribution #,
analysis mechanism, model representation, language support
and experimental evaluation.

Table 9 provides the information about how dynamic
analysis tools addresses the issues raised in Question # 1.
In this Table, problems and requirements are mapped to
the contributions for better understanding about dynamic

11317

Z. Mushtaq et al.:

Multilingual Source Code Analysis: A Systematic Literature Review

TABLE 8. Dynamic analysis tools.

S# Cn. # Tool Analysis Mechanism Model Type Language Support Evaluation
. .. . Intermediate model, Dynamic Simulation Simics: Instruction set
1 CN2 Normir [2] Holistic Debugging, el model Byte Code Simulator
AOP for Language Aspect Weaving . . Stratego (Eclipse Plugin),
2 CNI8 Portability [27] Mechanism. Program transformation Plugin Java, DSL, C, JIVM Case study
. . DOM GUI-based, State Models . HTML, CSS, JScript, http://pafm.source.net,
3 CN22 REAJAX[32] Trace Link Analysis. (FSM) Industrial app PHP, XML T m—
Near-miss Clone . Patterns to exact near-miss code . HTML, PHP, Clone detectors VisCad,
4 N2 Patterns in WAs [39] Code Clone Detection clones. Indusrial app JavaScript, CSS, MVC NiCad. Industrial Was
Explicit Dependency High-level inter-component Plugin Eclipse plug-in, Case
5 ONGEY GG R Analysis. dependency model Ve & IDRILS Study: OFBiz.
. Dependency Analysis ~ Language independent traceability Extend, Java, and Autonomous trace links
6 CN36 Lissig[47] and Modeling model Prototype Groovy modeling framework.
7 CN39 128D [50] Reverse Engineering. Interceptors to sequence diagrams. Standalone EJB, JSP, HTML, Net Beans IDE,
AOP. Modular pipe filter architecture. tool CORBA, UML DataPortal, WasabiBeans
Dynamic Extraction & s
8 CN48 Analysis of WAs [60] SW Evolution analysis. UML-based explicit state model Industrial app Web Applications ReWeb: Spider
TABLE 9. Dynamic analysis tools and support.
S# Tool Issue # Cnt. # Domain (short) Support
1 Normir [2] PR1 CN2 LIO, LIN, SWE, SWM, SWD Robust/ scalable platform, Inspect distributed SW
2 AOP for Language Portability [27] PR41 CN18 REU Support aspects of interoperability in MLAs
3 REAJAX [32] PR2, PR24 CN22 TRA The results validate the effectiveness of recovering models.
4 Near-miss Clone Patterns in WAs PR2, PR3, CN29 CCD Confirms patterns for cloning & tool Manage tangled code dynamic
[39] PR29 WAs
5 GenDeMoG [44] PRI7, PRI9 CN33 DPA Vglldate'the presence of unknown dependencies across language
artifacts in HAs.
6 Lissig [47] PR2 CN36 DPA, SWM Effective, lightweight, low-cost tool. automatic, comprehensive
trace models.
7 128D [50] PR8, PR10, CN39 REV, AOP. UML representation of JEE interceptors. Usable with Net Beans or
PR19 as a stand-alone tool.
3 Dynamic Extraction & Analysis of PR29 CN48 SWE Statistically, test & analyze navigational traits, identify inconsistent

WASs [60]

behaviors of WAs.

analysis tools. This Table contains problem/ requirement #
(mentioned in Table 7), contribution #, Domain of study
(mentioned in appendix Table 22) and outcome of the study.

(i) STATIC ANALYSIS TOOLS

In this section intuitive knowledge about static analysis
tools for analysis of multi-language applications is pre-
sented. These analysis tools help to analyze structure and
intent of the software applications. These tools are used in
Statistical/Empirical Analysis [12], Change Impact Analy-
sis [22], [29], Content Analysis [24], Complexity Analy-
sis [30], Object Relational Mapping [33], Software Visual-
ization [42], [46], [57], Transactional Analysis [43], Analysis
and modeling MLDE [45], [46], SQL Schema comparison
[52], Refactoring [36], [S51], [57], [65], Maintenance [42],
[43], [64], Static low-level analysis [54], Lexical Analy-
sis [55], Parsing source code metrics [56], Comprehension
[62], Program Slicing [16], [64], Syntax Analysis [26], [53],
multi commit software evolution analysis [63] and Pattern
Analysis [65].

All of these tools are evaluated on the basis of different
prototype tools, case studies, frameworks, multi-language
development environments and plug-ins. These tools support
both General purpose languages (GPLs) and Domain-specific
languages (DSLs). General purpose languages include

11318

C/C++, C#, Java, J#, JSP, PHP, Java Beans, JavaScript,
HTML, VB ,Net, SQL, Python, Smalltalk, and Ruby. The
domain specific languages include SCRO, OWL, RDF,
RDFS, XML, Groovy, Coral, UML, URN, J-unit, Prolog,
Hibernate, Haskell, and Rascal. The analysis mechanism of
these tools support statistical evaluation of meta-model [12],
object sensitive analysis using program slicing and chop-
ping [16], source code parsing based on graph-queries [17],
[28], extended algorithm for analyzing structural change [22],
MVC based navigational model for static analysis [23], [38],
modular framework for content/ authority graph analysis of
web documents [24], context and flow sensitive analysis tool
for detection of cross-site & taint-style scripting vulnerabil-
ities in web applications [26], multi-perspective rule based
change impact analysis [29], complexity analysis by pars-
ing .net languages [30], object-relational mapping (ORM)
meta model for enterprise applications [33], [51], generalized
approach for cross-language binding and refactoring [36],
transactional analysis of enterprise applications [42], [43],
analysis and integration of multi-language development envi-
ronment [45], [46], schema comparison library for detection
of changes in SQL schemes [52], Sugar], a unique parsing
mechanism for Java-based extensible language [53], lan-
guage independent meta-model for low level static analy-
sis [54] and refactoring [57], concurrent & robust parsing of

VOLUME 5, 2017

Z. Mushtaq et al.: Multilingual Source Code Analysis: A Systematic Literature Review

TABLE 10. Static analysis tools.
S# Cnt. # Tool Analysis Mechanism Model Languages Support Experimental Evaluation
1 CN7 Pangea[12] Statistical & Empirical evaluation. Language independent meta-model Java, Smalltalk, C/C# Famix Analyzer, Verveinel
2 CN8 JOANA [16] Program Slicing/ Chopping Java Object-sensitive analysis Java based languages Eclipse Plug-in Dependency graph
Source Code parsing based on graph- . COBOL, CSP, Ada, C
3 CN9 GUPRO [17,28]. e Source Code Parsing MVS/ICL, PSB, SQL. GEOS, XFIG, COBOL etc
4 CNI3 Diff/TS [22] Structural change /Fine-grained Analysis. Extend string differentiating algorithm Python, Java, C/C++ Emacs editor
s ONI4) 10DISCO [23,38] Static Analysis on MVC Frameworks ~ Navigational model. HTML, JSP, XML, Java Lclipse Plug-in - Mia-Software
CN28 (Sodifrance)
6 CNIS TARENTe [24] Conten? Analysis. Authority Graph Adhoc modular framework. Java, My-SQL Open-source code WAs. Extract,
Analysis. explore web docs
7 CNI17 Pixy [26] Context /Flow Sensitive Analysis. Detects cross-site, taint-style PHP, XSS, HTML Open source tool tested on PHP
Vulnerabilities scripts
Change Impact Analysis. Dependency . . Java, J-Unit cases, UML, .
8 CN19 EMFTrace [29] Skt Multi-perspective rule based CIA. URN, OWL. EMFTrace, Eclipse Framework
9 CN20 MMT [30] Complexity analysis of MLAs. Parsing Microsoft Intermediate Net based languages Nﬂlbernate, MMT, Timecard C3
Language Client
Recover relational/ object oriented . Tested on 3 studies KITTA, TRS,
10 CN23 DATES [33] ontihont DATES (meta model) Third party API Java, SQL SALARY
XLL & Refactoring o, . . Java, HTML, DSLs Jtrac support Spring, Hibernate,
11 CN26 [36] XLL Analysis, Binding & Refactoring Generalized approach (HQL, HBM) Wicket
12 CN31 FAMIX [42] Stat‘lstlcal Analysis, SW Visualization, Expose and analyze transaction scope EJB, JSP, HTML, FAMIX, Moose, Eclipse: Plugin.
Maintenance in EAs Applets
13 CN32 MooseJEE [43] Mamtgnance & Modeling, Transactional Cod§ browser, \{lsuallzatlon& Analyze Java Beans/ Script, JSP, FAMIX platform
analysis architectural variants HTML, Servlet
MLDE’s Design . . . Integration of MLDEs. Search based Java, JScript, HTML,
14 CN34 [45] Analysis & Multi-modeling of MLDEs. relation. Track XLLs XML. Groovy, Coral TexMo, Coral
15 CN35 TexMo [46] Static Analysis, Visualization Analyze MLDEs by explicit R-Model. Java/Script, HTML, XML JTrac
16 CN40 Eeltiactormg ILAs I\R/Ieuf:;%;[;iuage it A & Object-relational mapping (ORM) Java, Hibernate, SQL Hibernate Application (HRM)
SQL Schema . . Schema compare library detect changes . .
17 CN41 Comparison [52] Database Analysis & Refactoring MLAs. & validate SQL schemes SQL DBMS Eclipse plug-in
18 CN42 SugarJ [53] Syntax Analysls, Random Context Free & Java:based extepmble language. Unique DSLs, JavaScript, Prolog St b DTS, e @ase windkias
Layout Sensitive. parsing mechanism and Haskell
19 CN43 X-Develop [54] Static low-level analysis, Language Independent Meta-Model C#, J#, VB IText, .Net
20 CN44 Elsa]n & G Lexical Analysis, CFG. Concurrent & robust parsing of MLAs ~ VB,HTML,Jscript, Rascal McCabe-complexity
21 CN45 Analizo [56] SW Evplutlon, Visualization, Dependency Layered Style, Doxygen Par‘sen C, Ct++, Java VLC project, Analizo
Analysis Generates source code metrics.
22 CN46 MOOSE [57] Refactgrmg, Visualization, Type related Language independent Meta model & Java, Smalltalk FAMIX model, Prototype ool
Analysis Refactoring.
. Bug localization algorithm to rank .
23 CNS50 CrosLocator [62] Program Comprehension source code files in MLAS. Ruby Ruby-China
. . . . Language independent parsing. . -
24 CNS51 LISA [63] Static Analysis, SW Evolution Analysis. Tyl AST it & e S, Java based languages JGit repositories
Program Slicing/ Maintenance, N . Code Surfer plugin. Prototype tool
25 CN52 KDM [64] Knowledge Engineerin, Knowledge discovery Metamodel C/CH, Java evaluated on the large industrial code.
26 CN53 DeP [65] Static analysis, Pattern Analysis, Deprogramming. Pattern analysis & Java DeP tool

Refactoring,

recognition.

MLAs using lexical analysis and CFG [55], layered approach
for the generation of source code metrics [56], bug localiza-
tion and ranking source code files in MLAs [62], analysis
of mixed code heterogeneous source code at an arbitrary
number of revisions [63], knowledge discovery and reverse
engineering heterogeneous artifacts [64] and deprogramming
by patterns recognition [65].

In Table 11, the information about static analysis tools
is provided with another aspect in which the problems and
requirements are mapped with the contributions for better
understanding. The contents of Table 11 include tool name,
problem number (detailed domain based problems are men-
tioned in Table 7), contribution number, the domain of study
(mentioned in Appendix Table # 22) and tool support.

(iii) SEMANTIC AND HYBRID ANALYSIS TOOLS

In addition to the above-mentioned tools, some hybrid
tools are also proposed that support both static and
dynamic analysis mechanism. These tools perform Seman-
tic Analysis [3], [25], Static & Semantic Analysis [25],

VOLUME 5, 2017

Static & Dynamic Analysis [20] and Static, Semantic and
Dynamic Analysis [40].

The analysis mechanism in RECOS [3] provides explicit
ontological model representations by using semantic knowl-
edge base & point to analysis techniques. WARE [20] is
used in program understanding and reverse engineer of web
applications. This tool is used for extraction of source code
in the form of graph repository. Authors in [25] provide
Syntax and semantic analysis based parser for generation
of abstract syntax tree (AST) and metrics of MLAs [25].
A meta-modeling tool is presented in [40] that is used
to analyze heterogeneous applications at the high level of
integration [40].

In Table 13 the issues raised in Q1 are mapped with
the solutions (shown as CN #) in their respective domains.
The semantic and hybrid analysis tools address four issues
and requirements for analyzing ML As. This Table highlights
problem/ requirement # (mentioned in Table 7), contribu-
tion #, Domain of study (mentioned in appendix Table 22)
and outcome of the study.

11319

Z. Mushtaq et al.: Multilingual Source Code Analysis: A Systematic Literature Review

TABLE 11. Static analysis tools and support.

S# Tool PR # Cnt. # Type Domains Support
1 Pangea[i2] PR25 CN7 st STA Analyzp large MLAs. Reduces effort and cost of analysis. Comparative
analysis of XLAs.
2 JOANA[16] PR29,35 CN8 Plugin CGP, PSC, LIN, LIO Performs program IFC, integrity and confidentiality.
3 GUPRO[17, 28] PR 39 CNO Plugin CGP ll—ii,i, sglif; querying & graph algorithms extract source code into a graph
. CIA, CCD, REU, STA, Structural analysis, identify patterns for managing clones in jumbled
4 DiffiITS [22] PR5,8 CN13 Case Study TMA dynamic MLAS.
5 MoDISCO [23,38] PR37 CN14, Plugin KEG, MM, PRU, REV, Simple model based solution to reverse engineer legacy systems.
28 STA, SWC
6 TARENTe [24] PR2938 CNIS Prototype CAN, TRA/DPA Sir:l:;lﬁ;glglrlltlple services i.e web crawling, mining, network analysis &
7 Pixy [26] PR2935 CNI7 Prototype DFA, STA, VLD ?;?ildates detection of unknown vulnerabilities with the low false positive
Framework, CIA, DPA, REG, SWE, Determine impact propagation more reliably than distance-based
e PRI S Plugin SMN, TRA dependency analysis.
Prototype, .
9 MMT [30] PR6,21 CN20 Case Study CGP, BCA, PTA Helps to develop language independent parsers.
Prototype, L. . . .
10 DATES [33] PR8,36 CN23 Case Study MM, REV Recovers design information & design quality of EAs.
11 XLL &Refactoring [36] PRS5,16 CN26 g?s?ts}tlsg; XLL, RFT Support better code understanding, reducing errors & maintain XLAs.
12 FAMIX [42] PRS.10.43 CN31 g{al;iwork, SVS, STA, SMN, TMA fgzztlvely analyze & expose structural/ behavioral conflicts of transactional
13 MooscJEE [43] PR44 CN32 Framework REV, SVS Pr0v1d.es software visualizations for the recovery and analysis of transaction
scope in JEAs.
14 MLDE’s Design [45] PR18 CN34 gg;g]E S]S“gjl(/lf O, LAHDE, Tool support validated multi-modeling & tool building to analyze MLAs.
15 TexMo [46] PRIS CN35 MLDE Case MLDE, SMN Analy51§, visualization & refactoring XLL of artifacts across language
study boundaries.
. Prototype Object-oriented & DB refactoring using Rename Method and Push Down
16 Refactoring MLAs [51] PR32 CN40 F. work RFT Method for MLAs.
17 SQL Schema PR33 CN41 Plugin MLDE, RFT, XLL This library is uspd for database analysis and refactoring modern multi-
Comparison [52] language applications
MLDE MM., MLDE, REU, . ;
18 Sugarl [53] PR30 CN42 T STA Supports syntax change in five language extensions of a source code file.
BCA, MM, MLDE, The proposed Meta-model has the ability to accommodate new
19 X-Develop [54] PR8,40 CN43 Case study PRU. RET, XLL programming languages
20 Island Grammar [55] PR2426 CNA44 Tool LXA, SWC Support adaptable parsing by extracting multiple, dissimilar & parser
unfriendly features.
21 Analizo [56] PR27,28 CN45 Prototype CGP, SVS, SWE Identify problems or source code enhancements.
22 MOOSE [57] PR32,34 CN46 Prototype DYA, LXA, RFT, SVS, Evaluated the approach, reduce language dependency of tools.
23 CrosLocator [62] PR7,8 CN50 Prototype SWC Support bug localization in MLAs
24 LISA [63] PR 45 CN51 Tool SWE, TMA i&eré?sliyoz;smlxed code heterogeneous applications at an arbitrary number of
25 KDM [64] PRIO CN52 Plugin CMD, PSXC, KEG, Recovgr mpdels from CBS, track information flow. Shows linear growth in
Prototype SMN execution time & size
DEP,DYA, BCA, PTA, Identify/fix design problems, DP identification, copy-paste detection
25 IDEP(Ie] D22 CNES IHimisifine RFT, STA, DPA refactoring, fingerprint recognition & automated code documentation.
TABLE 12. Semantic and hybrid analysis tools.
. . Experimental
S# Cnt.# Tool Analysis Mechanism Model Languages Support Type Evaluation
1 CN3 RECOS [3] Semantic Analysis Ontological model & knowledge base. SCRO, OWL, RDF/S Plugin Eclipse tool.
2 CNII WARE [20] Static & Dynamic Analysis MDWE, Meta-Model HTML JScript, XML Tool General Examples
MLAs SW Syntactic/Semantic Analysis. . . MLDE .
3 CNIl6 Metrics [25] Extract AST Open Source/ Extend Eclipse CDT Parser C/C++, Java, JScript Mlizin Eclipse IDE
Syntax Analysis. Dynamic DSLs ASF, SDF, RScript, . Meta Model.
4 CN30 Rascal [40] Analysis, Semantic Links. Analysis at high level of integration. Java Plugin Eclipse IDE

d: TECHNIQUES FOR MULTILINGUAL

SOURCE CODE ANALYSIS

In this subsection different techniques to analyze multilin-
gual applications are presented in the form of the mathe-
matical model, high-level model, graphical relational model,

semantic model, UML model, framework, and algorithm.
The analysis mechanism contains dynamic analysis, static
analysis, semantic analysis, change propagation/impact anal-
ysis, data flow analysis, complexity analysis, fine-grained
analysis, interoperability analysis, dependency graph, content

11320 VOLUME 5, 2017

Z. Mushtaq et al.: Multilingual Source Code Analysis: A Systematic Literature Review

TABLE 13. Semantic and hybrid analysis tools and support.

S# Cnt. # Issues # Domains Model/Representation Outcome
Semantic knowledge base & point to analysis technique. Effectively evaluate multiple code libraries. Comprehensive
1 CN3 PRI REU
Explicit ontological code representations. program understanding & knowledge reuse
DYA, MLDE, Use graph querying & graph algorithms, extracts source code Integrated querying and browsing Promote Program
2 CNIl PR23,PR29 . . . L
STA into a graph repository. understanding, re/reverse engineering of MLAs.
3 CNI6 PR26 TMA, AST, CGR c/?:chsoc modular framework. Extract, explore, analyze web
4 CN30 PR3I DYA, MM, DOM GUI-based, Build Finite State Models (FSM) The re§ults of case studies validate the effectiveness of
MLDE recovering models.

TABLE 14. Techniques for multilingual source code analysis.

Source Code

S# Cat# Description Technique Mechanism Experimental Evaluation
Languages
Recovering Inter-System Mathematical Model. Extracts UML . . L .
1 CN1 Interaction [1] model of WAs. Dynamic Analysis Web Applications FSM algorithm.
Conditional system dependence granhs Variability-Aware Program Case Study: Industrial
2 CN4 CIA of SPLs[4] for Multi-lan yua o SPllis grap Analysis, Change Impact NM automation(www.keba.cm),
guag i Analysis Prototype for CSDGs
3 CN5 Domain Based CPA [7] A mathematical model, Mining version Domain Based Chaqge NM Case Study: BEMIS, evaluated
history. Propagation Analysis on code coupling
Detection of cross-language source C++, Java and
4 CNI10 Detection of XL Reuse [18] code reuse, character n- grams Static Analysis Python Case Study
comparison.
AST Based JAVA SW Improved tree matching algorithm, Change Impact Analysis. Case study: medium sized
5 CN21] . . ; . . NM .
Evolution Analysis [31] program change classification. Evolution Analysis. projects.
. Ruby on Rail, . .
6 CN24 XLA & Refactoring [34] Generlc_ MLSCA approach using Dynamlc Ar1_a1y51s, Semantic Android Three_ case studies. Eclipse
semantic XLLs. Link Analysis L plug-in
application.
ML Artifact Binding & DIt et amf.aas, ek Structural Analysis, Source code Uy 6L, DAL Case study Spring, Hibernate,
7 CN25 . language for their bindings & . . (HBM, HQL, .
Refactoring [35] 8 Refactoring, XLL Analysis B 5 and Wicket,
refactoring. Spring, Wicket).
8 CN27 Software clustering [37] Extend }nformatlon bottleneck theory. AfchltectuAral & Componept NM Case study (Code Clustering)
Semantic features Discovery; Syntax Analysis
XL Parsing, Dependency Generic algorithm. Cross-language . S . Java, JServer Faces, Spring web flow framework
9 G finding [49] dependency detection it AU AlFii Spring, XML. (SWF)
. Extract Cross-Language Patterns in . . . Java Beans, Spring,
10 CN46 Patterns of XLL in Java Java & generalize them with 3 case Static Analysus, Dynamlc HOL, XML, case Study JTrac
Frameworks [58] . Analysis, Refactoring. .
studies. Apache Meetings
Seamless language integration using Dynamic Analysis, XLL
11 CN47 A Wi e Approach LY MPS. Cross-language constraints & Analysis, Refactoring, Java MPS Eclipse Platform
Language Integration [59] . .
error checking. Comprehension.
Cross Language Source Code Cross language similarity & reusability Static analysis, Source code Rosetta code repository, Java
12 CN54 suag detection using latent semantic analysis Ana‘ysis, Python, C, Java o rep R
Reuse Detection [66] reusability. Converter, java2python
(LSA) approach.
SLI with Natural Language Source code classification techniques SW code identification, C/C++, Jscript, . .
13 Ces Classifiers [67] and unstructured code optimization. interaction & optimization, HTML, PHP, CSS Gl Kooy
14 CN56 Identifying source code multiple language identification and E;i?g:def?m:ﬁ: l;l;ie C, C++, PHP, GitHub repositor
programming using NLP [68] categorization YeS, -grams, SKip- HTML P y

grams etc.

& authority graph, abstract syntax tree, navigational models,
comparative analysis and future guidelines. The techniques
are presented in the form of algorithms [1], [31], [49], mathe-
matical model [7], case studies [4], [7], [18], [31], [34], [35],
[37], [58], frameworks/platforms [49], [58], [59]. Table 14
provides brief of each contribution in the form of analysis
technique, analysis mechanism, language support and exper-
imental evaluation.

In Table 15 each approach is described with their prob-
lems with their solution, enhanced with research domains
and research support. In this Table, the problems (PR #) are
mapped to the solutions (CN #).

VOLUME 5, 2017

e: SURVEYS AND REVIEWS FOR MLSCA

In this subsection, the importance of source code analysis in
MLAS is presented in terms of history, basics, development
environments, and applications. The study is presented in the
form of surveys and empirical evaluations. Table 16 presents
the summarized information.

3) ASSESSMENT OF Q3: WHAT ARE THE SHORTCOMINGS
AND PROSPECTS OF CURRENT RESEARCH IN
MULTILINGUAL SOURCE CODE ANALYSIS (MLSCA)?

Each research has its limitations or future guidelines
for conducting further investigation and improvement.

11321

Z. Mushtaq et al.: Multilingual Source Code Analysis: A Systematic Literature Review

TABLE 15. Techniques for multilingual source code analysis and support.

S# Description PR # Cnt # Domains Support

1 Recovering Inter-System Interaction [1] PR 1 CN1 DYA, LIN, REV_ Dynamic Analysis of HAs. No source code modification required

2 CIA of SPLs[4] PR S CN4 CIA, DPA ivg%l]ie the impact of changes in XLAs. Identify cross-language patterns
3 Domain Based CPA [7] PR13 CNS5 gl{?ﬁSWC, e Change impact estimation, maintain code history, helps to prevent errors.
4 Detection of XL Reuse [18] PR S CN10 CCD, REU Inspegt comments, variables & reserve words in XLAs. Plagiarism

detection of XLAs.
5 AST Based JAVA SW Evolution Analysis [31] PR 8, 36,42 CN21 SWE, TMA Validate performance, average change error less than 5.38%.
6 XLA & Refactoring [34] PRI4 CN24 PRU, RET Detepts related artifacts & their bindings. Refactor bound artifacts in
multiple languages.

7 ML Artifact Binding & Refactoring [35] PR15 CON25 RTF, XLL aR[:js;th; validate discovery, binding & refactoring of cross language
8 Software clustering [37] PR CN27 gg\? ’ g\IJ\V/I(]JJ ’ Helps in improving information quality and reducing noise

9 XL Parsing, Dependency finding [49] PR14 CN38 SMN, REG, DEP Validated SWF accurate, extendable algorithm for dependency detection.
10 Patterns of XLL in Java Frameworks [58] PR20,21 CN46 ES)\?‘]RCU’ RFT, Common patterns of XLL of Java frameworks with DSLs are identified

11 A MOdél-BaSEd AT 9 LRI PR4 CN47 LIN, RFT Independent creation of specific editors for any peculiar language.

Integration [59]
12 Cross-Language Source Code Reuse Detection PR3 CN54 REU, NLP, STA LSA apprf)ach efﬁmenﬂy differentiates re-used and associated codes
[66] without using compilers.
: : NLP, REg, STA, . ——
13 SLI with Natural Language Classifiers [67] PR46 CNSS SWE. RE Support multiple language identifications and embedded software.
14 Identifying source code programming using PR22 CNS56 NLP, STA,RE Identification of source code language using NLP classfixation techniques

NLP [68]

TABLE 16. Surveys and reviews for MLSCA.

S# Description Representation Case Study Purpose

1 XL Analysis & Refactoring [11] Source code analysis trends, Survey paper Studies NM Provide baseline studies for source code analysis.
» Importance of Sourse Code Provide istory aad fouadation of soutse M Presented importance & future trends.
e ot LA o8] Byt it LA 00 PG e 13 et e

4 Towards MLDEs [61] United source code models & NM High level fabricated model. Diverse IDE for high-

metaprogramming as MLIDE.

quality SW.

In this subsection, limitations and future work of different
approaches are presented. The recent research comprehen-
sively describes the trends and approaches for source code
analysis of multilingual applications. There are a number of
recent and future directions presented to analyze multilingual
applications but their scope is limited [11].

In this paper, 56 issues are recognized individually from
selected research contributions which are marked with LF #.
These limitations or future work are separated into 13 soft-
ware engineering domains. The comprehensive detail is men-
tioned in Table 17.

Detail of issues and requirements for multilingual source
code analysis (MLSCA): In this subsection, domain-wise
detail of shortcoming and research prospects are presented
for further study. The percentage of research findings. These
results include, Static Analysis 25%, Program Understanding
& RE 22%, XLL Detection 16%, Dynamic Analysis 15%,
Source Code Refactoring 11%, Change Impact Analysis 9%,
Multiple Language IDEs 9%, Analysis of EAs 7%, Quality
Assurance 5%, Code Reusability 4%, SW maintenance 4%,
Cross-language Security 4% and Semantic Analysis 4%.

The following domains comprehensively describe the
problem and requirements from selected research.

11322

a: DYNAMIC ANALYSIS

In [1], recovery of Interaction across heterogeneous applica-
tions (HAs) is discussed. This approach is exclusively used
for extraction and recovery of intersystem interaction behav-
ior to analyze HAs. A graphical visualization and analysis of
the concurrent behavior of generated views are required for
effective analysis.

In [32], dynamic analysis and reverse engineering of
Ajax applications (ReAjax) are performed by building FSM
through execution traces. The proposed tool can be used for
test case generation and reliability is required to be tested on a
case study. Traceability across multilingual artifices is deter-
mined by a generic traceability modeling tool, Lassig [47].
This tool performs model-to-text transformations and mark
affected artifacts in the form of trace links. However, in the
complex transformation of different type objects this tool
returns only a single trace link [47].

In [59], an effective approach for integration of multi-
ple languages is presented using Meta Programming Sys-
tem (MPS) on Eclipse Platform. This approach needs empir-
ical assessment and further improvements for persistence
& categorization in cross-language constraints. In [60],
a dynamic analysis of web applications (Was) is presented

VOLUME 5, 2017

Z. Mushtaq et al.: Multilingual Source Code Analysis: A Systematic Literature Review

TABLE 17. Limitations and future work for multilanguage source code applications.

Limitations and Future Work (LF)

Domains

Quality Assurance

Source code Reusability

Change Impact Analysis

XLL Detection

Software maintenance

Static analysis

Source Code Refactoring

Cross language Security
Program Understanding & RE
Multiple Language Development
Environments

Analysis of Enterprise Applications
Semantic Analysis

Analysis of concurrent behavior of HAs.| LF1

= [Dynamic Analysis

Tated .
envir

Holistic debugging technique to be tested in sii

t| LF2

Semantic analysis approach require improvement recovery of multiple source code| LF3 3
Accuracy for extraction of XLLs & CIA require improvement in CSDG| LF4

IS
S

CIA methods in EAs support fewer UICs & require empiricle evaluation| LF5 7 7
General guidelines to analyze MLAs is limited| LF6| 11 11

limited OO repository for large MLAs| LF7 12

LF8 16

Prevention of XL information leaks is required other then Java based I:

Integerated tool support is required fo MLAs| LF9 17

Cross language

t based similarity analysis is future prospect| LF10 18

Automatic & OO support required for WAs.| LF11 20 20
The study provides general understanding of MLSCA| LF12| 21 21

Improvement in performance required in XILA & clone detection.| LF13 22
Existing MDRE techniques in MoDISCO are suitable for small & medium projects| LF14 23

Tool support for analysis & visualization of aggregates is avallable for WAs only.| LF15 24

Enahance capability of parser to new |

LF16 25

Automated cross site vulnerability detection is required in large MLAs LF17 26 |26

Portablllty of SPLs across ML platforms is required.| LF18 27

Q d d T 1

Sy 'y ism is required| LF19 29

MSIL tool is_supports only.NET based I

LF20 30

Change classification & evolution analysis in MLAs is limited.| LF21 31 31

Relaibility testing of Ajax applications.| LF22| 32 32

Recovery of design information in Eas only support java based EAs| LF23 33 33

Generic approach for refactiring XLLs is not complete| LF24 34 34

Cross language artifact binding & refactoring in large MLAs is challanging| LF25 35

Enhancement in clustering at multiple hierarchical levels is required| LF26 37

Support for the intergration of legacy system is required| LF27 39
Evalaution & L. support needs improvement for RASCAL DSL| LF28 40

Identification of desirable properties & architectural constraints of JEAs is hard.| LF29 42

Generic and extensible representation to analyze JEAs.| LF30 43

Algorithm for mining cross language dependencies is not generalized| LF31 44
MLDE provides limited representation of XLRs| LF32 45

A d detection of XLRs is required MLDEs.| LF33 45

Tracibility analysis & modeling of complex applications| LF34| 47

Assessment of DSLs and quahtanve analysns is requirent.| LF35 48

Accuracy & classfifcation for cross | dencies is weak| LF36 49

Extension & validation of IZSD tool is required.| LF37| 50 50

Generic d refactoring in MLAs is hard| LF38 51

Adapting DB schema in SQL schema comparer library is future concern| LF39 52
Extending syntax of PLs & desugring sometime create confilicts.| LF40 53 53

Generaluzed language independent approach is required for detection MLAs.| LF41 54

Multilingual parsing using Island grammars is not generalized for MLAs.| LF42 55

Doxygen parser in Analizo needs to parse WAs| LF43 56

FAMIX require extension torefactor lang other then OOPLs| LF44 57

Support for the intergration of GPLs & DSLs is required| LF45 58

Persistence & categorization in cross-lang constraints.| LF46] 59

I nplete UML model of Dynamic Was| LF47| 60

Scalability analysis across multi-language

is required in MLIDEs.| LF48 61

Query refor ions required for improving bug localization algorith| LF49 62

XLLs need to be resolved for legacy applications.| LF50 36

Static analysis of large MLAs requires indpendent parserfor each la;

LF51 63

Knowledge discovery met: del tobe extended for more la

LF52 64 64

Dep requiredmai & of code rep

ies| LF53 65 65

P

LSA approach needs to be explored on other XL code resuablity scenarios.| LF54 66 66

NLP based SLI technique requires universal IDE support| LF55 67 67 | 67

Source code Identification using NLP approach needs precise classification. | LF56 68 68

that recover UML model by analyzing the multi-language
code during program execution. This approach has certain
limitations. The comprehensive behavior of the applications
resulted in incomplete UML model also needs empirical
evaluation. Moreover, this technique does not support Java
platform.

VOLUME 5, 2017

b: QUALITYASSURANCE OF MLAs

In [2], a holistic debugging tool for quality assurance of dis-
tributed MLAs is presented. The proposed approach is limited
to examine few properties of source code. Testing software
applications in a simulated environment are the future work
of this tool.

11323

Z. Mushtaq et al.: Multilingual Source Code Analysis: A Systematic Literature Review

The technique presented in the form of MSIL tool [30],
support complexity analysis of MLAs & development of
language independent parsers by using intermediate repre-
sentation. However, this tool only supports languages of.Net
development environment.

In [62], a cross-language bug localization algorithm &
language translation tool (CrosLocator) is presented. The
performance of tool needs further testing & improvement
in bug localization and query reformulations methods to re-
originate the terms of bug reports is the future prospects of
the research.

¢: SOURCE CODE REUSABILITY

In [64], analysis, reverse engineering, and reusability of het-
erogeneous multi-language artifacts are presented by build-
ing knowledge discovery meta-model [64]. In future, more
source languages and component composition/configuration
languages are needed to be incorporated in the analysis
model.

A simple approach for cross-language source code inves-
tigation and reusability is presented in [18]. The proposed
model utilize sliding windows for source code comparison.
Cross-language similarity analysis is the future work of this
approach.

d: CROSS-LANGUAGE CHANGE IMPACT ANALYSIS (CIA)
Domain-based change propagation and impact analysis
approach [7] is helpful in evaluating the impact of change,
maintaining code history and preventing errors in enterprise
applications (EAs). This approach uses variability-aware CIA
methods in multi-language software product lines (SPLs).
However, this approach is insufficient for systems which
throw functionality with few user interface components.
The empirical assessment is also required to evaluate these
systems.

Cross-language links (XLLs) help to understand change
propagation & impact analysis across the multilingual arti-
facts. XLLs are built dynamically, therefore a combination
of static and dynamic analysis techniques are required. The
existing CIA techniques only support single languages and
lack context awareness to improve the accuracy of condi-
tional system dependency graph (CSDG) [4]. In order to
analyze the heterogeneous artifacts of different languages a
systematic and refined dependency detection mechanism is
required [29].

e: CROSS-LANGUAGE LINK DETECTION
Dependency analysis / Cross-language links (XLL) can be
helpful in better program understanding, analysis, mainte-
nance, error handling and refactoring MLAs. There are a
number of approaches presented to handle cross-language
dependencies across MLAs. The detection and managing of
dependencies in large MLAs are quite hard and challenging
due to their complex and heterogeneous nature.

GenDeMoG [44] is a tool that determines cross-language
dependency across various multi-language artifacts. This tool

11324

identifies explicit inter-component dependency across a
multi-language enterprise system. But this tool is not gener-
alized for all enterprise applications. The algorithm of Gen-
DeMoG is not complete and only mines cross-component
dependencies [44].

In [49], a simple, generic and extendable algorithm is pro-
posed for cross-language dependency detection. The system
needs classification according to language and its size. The
behavior of the system needs to be examined at the compo-
nent level. The accuracy of the system needs improvement.

Cross-language links are analyzed in Java and Domain
Specific Languages (DSLs) [36], [58]. In [36], a multilingual
platform is proposed for the discovery, management, and
refactoring XLLs in Java & DSLs. However, the tool support
for XLLs in DSLs and integration with legacy applications
is required. Moreover, identification of cross-language links
is also required in between two general-purpose languages or
in two declarative DSLs [58]. Cross-language artifact binding
and refactoring in another challenge in MLAs [35].

A generic approach is presented in [34] to analyze and
refactor cross-language code by explicitly specifying and
exploiting semantic links. However, the tool support is lim-
ited for refactoring languages and needs to support more
languages and sample link specifications in future.

f: SOFTWARE MAINTENANCE

Analysis and reverse engineering of heterogeneous compo-
nents of web applications are carried by WARE tool [20].
This tool is helpful for understanding, maintenance and evo-
lution of heterogeneous web applications. However, the qual-
ity assessment of the tool needs empirical evaluation. The
automatic, dynamic & object oriented support is also missing
in this tool [20].

Deprogramming is a reverse process that converts source
code into concept, designs, and patterns. The proposed tool,
Dep (deprogramming) abstracts source code into dependency
graph and then mines to design patterns. The Dep tool
is needed to be commonly employed in managing source
code repositories, SW optimizations, and recommendation of
refactoring targets [65].

g: STATIC ANALYSIS

Static analysis of large multilingual software is carried out
by Pangea [12]. The presented tool provides a data reposi-
tory for more systems & allows empirical investigation and
helps in comparative statistical analyses across programming
languages. Pangea has limited data repository and requires
a diverse data repository to accommodate more Object
Oriented languages [12].

Cross-language analysis & clone detection is supported
by Diff/TS tool. This tool performs fine-grained analysis of
structural changes in the form of control flow graphs during
virtual execution. However, the whole process is time con-
suming & inflexible. Future work includes accumulation of
more compound and performance enhancement operations
on large trees [22].

VOLUME 5, 2017

Z. Mushtaq et al.: Multilingual Source Code Analysis: A Systematic Literature Review

In the case of multi-language source code applications,
the key challenge is to create a parser for each source code
language [25]. This paper recommends parsers containing a
modern multi-language feature that support complete infor-
mation about source code and provide abstract syntax tree of
multi-language applications. The proposed parser is limited
to C/C++ languages. Future work is to use a systematic
approach to analyzing the maturity of parsers using Open
Maturity Model or to device some contemporary measure-
ment techniques [25].

RASCAL is a Domain-specific language (DSL) that is
used for analysis & transformation of complex heterogeneous
applications (HAs) [40]. The problem with RASCAL is that
it generally supports Object Oriented Languages. Moreover,
its performance has not been completely evaluated in terms
of its design and implementation.

Sugar libraries present a unique concept to extend the
syntax of a programming language within the language.
In [53], presented a Sugar] library, embedded with DSLs
which is useful in artifacts reusability and handling soft-
ware complexity. However, the composition of grammar and
applying desugaring rules may cause conflicts in some case
studies.

A lightweight robust multilingual parsing approach is pre-
sented in [55] using Island grammars for concurrent parsing
of MLAs in the form of the parse tree. This approach is
generalized only for JSP and other dynamic web content
paradigms.

The analysis, visualization, and generation of software
metrics of MLAs can only be cost effective by using auto-
matic analysis tools that support the generation of source code
metrics, dependency graphs, and software evolution analy-
sis [56]. In [56], Analizo toolkit is presented that supports
analysis and visualization of MLAs in the form of source code
metrics, dependency graphs, and evolution analysis. This tool
is based on Doxygen parser which cannot parse the source
code completely. Moreover, this tool does not support web
applications and a web-based version is the future work of
Analizo toolkit.

An open source static analysis tool LISA is presented
[63] to analyze language independent online source code
repositories. This tool efficiently computes code metrics with
multiple revisions. However, this tool requires an independent
parser for each language. It lacks understanding of the global
structure of software applications. Improvement in parsing
speed is another issue.

h: SOURCE CODE REFACTORING
In [51], automated multi-language refactoring (MLR) is pre-
sented using object-relational mapping (Hibernate ORM)
with the database. It is difficult to build a generic approach
for automatic refactoring in MLAs. Preserving wide range of
useful semantic modifications of single artifact types is quite
hard.

In [54], a language independent meta-modeling tool
X-DEVELOP is presented that support analysis and

VOLUME 5, 2017

refactoring of multiple languages. However, this tool has
weak recognition of multi-language components. More-
over, X-DEVELOP lacks support in generalization, dynamic
language contents, upcoming languages and low-level
languages [54].

In [57], a language-independent meta-model FAMIX
(on a refactoring engine) is presented to refactor source code
of object oriented programming languages (OOPLs). How-
ever, this tool requires evaluation on more case studies. The
future work is required to extend the tool with more languages
like C++4-, Ada & COBOL.

In [52], SQL schema compare library is presented to
adapt SQL modifications for database analysis and refac-
toring of modern multi-language applications. To support
database access with JDBC and Java Persistence API (JPA),
the SQL schema compare library is needed to be inte-
grated with Eclipse plug-in. The future aim is to highlight
those SQL statements and JPA entities which mismatch with
SQL schema.

i: CROSS-LANGUAGE SECURITY

Detection of cross-site scripting vulnerabilities in scripting
languages is determined by an open source static source code
analysis tool “Pixy”. The process of vulnerability detection
is manual, therefore an automated mechanism is required in
developing web applications especially for large and complex
applications [26].

Language-based security is important for prevention in
cross-language information leaks. JAONA [16] uses security
algorithms to check information leaks. However, this model
only support Java based languages.

J: PROGRAM UNDERSTANDING, RE-ENGINEERING,

AND REVERSE ENGINEERING IN MLAs

Understanding legacy applications require more effort for
refactoring, re-engineering & reverse engineering. Generic &
extensible solutions are required for evolution/modernization
of existing systems.

GUPRO supports multiple program analysis techniques
using graph technology that helps in program understand-
ing, re-engineering and reverse engineering of multilingual
software applications [17]. In future, this tool is needed to be
integrated with other reengineering tools via GXL-interfaces.

MoDISCO [23] is an open source model that reverse engi-
neer legacy artifacts into relevant model based reviews. The
proposed solution is suitable for small & medium projects and
requires empirical evaluation on industrial projects.

The topology of the web applications is provided by
TARENT that helps in extraction, analysis, and visualization
of aggregates for large hypertext web applications [24]. The
available tool focuses on the analysis of web documents only.
There is a need to formalize a general theory of aggregates
(mathematically), including different kinds of topological
models.

Extracting change information from source code helps
in better understanding MLAs. In [31], an improved tree

11325

Z. Mushtaq et al.: Multilingual Source Code Analysis:

A Systematic Literature Review

TABLE 18. Quality assessment criteria.

Score Total Score Total AC
S#|P# Ql Q2 Q3 Q4| Score QAC (%)| S#| P# Ql | Q2 | Q3 | Q4 | Score ?%)
1 1 1 05 05 05 2.5 625 29 40 1 05 05 05 2.5 625
2 2 05 05 05 05 2 50 30 42 1 05 1 05 3 75
3 3 0 0 05 05 1 25 31 43 1 1 05 05 3 75
4 4 1 05 1 05 3 75 32 44 1 05 05 1 3 75
5 7 05 05 05 05 2 50 33 45 1 05 1 1 35 875
6 11 05 1 05 1 3 75 34 46 1 05 1 1 3.5 875
7 12 1 05 1 1 35 875 35 47 1 05 1 1 3.5 875
8 16 05 05 05 1 2.5 625 36 48 05 05 05 05 2 50
9 17 1 1 1 05 35 875 37 49 1 05 1 05 3 75
10 18 1 05 05 1 3 75 38 50 05 05 05 05 2 50
11 20 1 1 1 1 4 100 39 51 1 05 05 05 2.5 625
12 21 05 05 05 0 1.5 375 40 52 1 05 05 05 2.5 62.5
13 22 05 05 05 05 2 50 41 53 1 1 1 05 3.5 875
14 23 1 1 05 1 35 875 42 54 1 05 1 1 35 875
15 24 05 0o 0 0 0.5 125 43 55 1 1 1 1 4 100
16 25 1 05 1 1 35 875 44 56 1 05 0 05 2 50
17 26 1 05 05 1 3 75 45 57 05 05 05 05 2 50
18 27 05 05 05 05 2 50 46 58 1 05 1 1 3.5 875
19 29 1 05 1 05 3 75 47 59 1 05 05 1 3 75
20 30 1 1 05 05 3 75 48 60 0.5 05 0 05 1.5 375
21 31 05 05 05 05 2 50 49 6l 0.5 1 0 0 1.5 375
22 32 1 1 05 1 2.5 875 50 62 05 05 05 05 2 50
23 33 1 05 1 05 3 75 51 63 0.5 0 0 0 0.5 125
24 34 1 05 05 1 3 75 52 64 1 05 05 05 2.5 625
25 35 1 05 1 1 35 875 53 65 05 05 05 05 2 50
26 36 1 05 1 1 35 875 54 66 1 05 05 1 3 75
27 37 05 0o 0 0 05 125 55 67 1 1 1 05 3.5 875
28 38 05 05 05 05 2 50 56 68 1 05 05 05 2.5 625
Total Score 425 29.5 325 34 138.5
Average Score 080 0.56 0.61 0.64 2.61
Percentage 80.2 55.7 613 642 54

matching algorithm is presented. However, this algorithm has
limited support for small and average projects only.

A reverse engineering tool I2SD is discussed in [50]. This
tool visually represents sequence diagrams of the interceptor
model. However, the 12SD tool is needed to be extended
with recent extensions & validation is required through case
studies.

Jiang et al. [33] presented a meta-modeling tool, DATES
for reverse engineering of modern enterprise applica-
tions (EAs). The proposed tool recovers design information
and design quality of object-oriented enterprise applications.
However, DATES is limited for java based applications and
requires more evaluation on other enterprise applications.

k: MULTIPLE LANGUAGE DEVELOPMENT
ENVIRONMENTS (MLDE)
Automated cross-language references and relationship are
key issues in the development of multi-language software
systems for Integrated Development Environments (IDEs).
The existing development environment does not completely
support relations across multi-language artifacts.

The tool supporting MLDE provides a limited represen-
tation of cross-language relationships. Moreover, language

11326

representation needs to be extended for visual languages like
UML languages [45].

In [46], a prototype tool, TexMo is presented for static
analysis, refactoring and visualization of cross-language rela-
tions. However, this tool is manual and requires automatic
detection of cross-language relations. The establishment of
fixed and string transformation relations is the future work of
this tool.

In [61], a high-level research design and model are pre-
sented that support Multilingual Integrated Development
Environments (MLIDE). Analyzing scalability across multi-
language components is required for the proposed model.

Portability across multiple language platforms is handled
by an aspect weaving mechanism [27]. This paper pro-
poses aspect-oriented programming to address portability
with regard to languages that target multiple platforms. The
future work in [27] is highlighted to address portability
concerns of software product lines by adding aspects and
addressing dependencies to multiple platforms.

I: ANALYSIS OF ENTERPRISE APPLICATIONS
In large applications like Java Enterprise Applications
(JEA’s), the information is distributed across various

VOLUME 5, 2017

Z. Mushtaq et al.: Multilingual Source Code Analysis: A Systematic Literature Review

TABLE 19. Distribution of research papers.

Sr # Origin Publishers Papers Journals Conferences Workshops
1 Australia IEEE 1 1 0 0
2 Austria IEEE/ ACM/Elsevier 1 0 1 0
3 Brazil IEEE, ACM 4 1 3 0
4 Canada IEEE, ACM/Elsevier 3 0 3 0
5 China IEEE/IEEE Transactions, ACM, 1 2 0
6 Denmark IEEE, ACM 3 0 3 0
7 France IEEE, Elsevier 2 1 1 0
8 Germany IEEE, ACM, Springer, Elsevier 12 2 9 1
9 Italy IEEE, ACM, Springer, IET 1 1 2
10 Japan IEEE/ACM 1 0 1 0
11 Netherlands IET /IEEE SCAM./ACM/ Elsevier 5 1 4 0
12 Norway IEEE/ACM/Elsevier 1 0 1 0
13 Romania IEEE 1 0 1
14 Singapore ACM/IEEE 1 0 1 0
15 Spain Springer/ ACM 1 0 1 0
16 Sweden IEEE/ACM 1 0 1 0
17 Switzerland IEEE /ACM 5 0 4 1
18 UK IEEE/ACM 1 0 1 0
19 USA IEEE/ACM 6 0 5 1

Total 56 8 43 5
Ratio % 14 77 9

components and their relationships. It is hard to analyze the
heterogeneous nature of JEAs and verify desirable properties
& architectural constraints [42]. In [43], a tool MooseJEE
is presented as an extension of Moose to analyze the trans-
actional scope of JEAs. This tool visualizes structural and
behavioral anomalies of transaction scope. MooseJEE is lim-
ited in terms of quality & requires a generic and extensible
representation to analyze JEAs. Moreover, the tool is focused
only for Java EnterpriseAapplications.

m: SEMANTIC ANALYSIS

Semantic analysis approach is presented in [3] and [37].
The research in [3] investigated the semantic annotations and
domain ontologies for searching and recovery of source code
snippets on multiple source code libraries. This approach
needs improvement in search precision and ranking. It also
requires a repository of relevant code samples.

The proposed approach in [37] combines multiple fea-
tures types and applies automated weighing on features to
improve information quality and to reduce noise. However,
this approach requires enhancement for clustering at multiple
hierarchical levels.

D. POTENTIAL AREAS FOR FUTURE RESEARCH

Before completing our discussion and proceeding towards
conclusion section, it is pertinent to discuss some of the
key areas that require improvement and has the potential for
further research. We identified key areas after in-depth

VOLUME 5, 2017

analysis and peer review of all the finalized studies. The out-
come of multilingual source code analysis requires, visual-
ization of cross-language source code artifacts [1], [45], [56],
extraction and generalization of cross-language components
and their relationships [44], [46], [54], [64], performance
and accuracy of analysis mechanism [44], [49], scalability of
cross-language analysis techniques [44], [61], code coverage
of multilingual components [7], similarity analysis and clone
detection [18], [22], advanced parsing techniques to ana-
lyze range of multilingual applications [25], [55], [56], [63],
context awareness of multilingual applications [4], gener-
ation of complete source code documentation [60], com-
pleteness of approach for change impact and dependency
analysis by examining the cross-language artifacts and their
links [4], [7], [29], optimization and maintenance of multi-
lingual source code repositories [65], generalized approach
for vulnerability detection and prevention of information
leaks [16], [26], program understanding, reverse engineer-
ing and refactoring support for medium and large scale
multilingual applications [23], [31], [33], [34], [50], [51],
change classification and evolution analysis [56] and porta-
bility across multiple language platforms by addressing
dependencies [27].

IV. CONCLUSION

The basic purpose of conducting this research is to pro-
vide state of the art research available for Multilingual
Source Code Analysis (MLSCA). This research provides

11327

Literature Review

IC

A Systemati

IS:

Z. Mushtaq et al.: Multilingual Source Code Analysi

TABLE 20. Finalized list of primary studies.

SULIOOUISUI-03/0SIOAY

'$s01d V1DV (67€-tg dd) suonesrjddy pue SurosurSug a1emijos uo 99UIIJU0))

oouaIJu0D ‘asnay] ‘eduruLjUIEW ‘FUIPURISIOPUN M S [euoneuIolu] ALSVI Y11 Y} JO s3UIpasdol uf ‘d1emijos afenue|-1njnu 10J [00) SOLIOW V “(JQUISAON] ‘£00T) "H ‘IOIBIN % S ‘SIOAIA “ A\ ‘seonT “{ ‘sour ce| T
souUBIIU0) VIO S AHIqeadel], 841 (812-607 "dd) uo douaigjuo) uradoing WL €10 “RIASD) SuroauIBuN |
3 [eIu0ZLIOH Sul[opoA 2Andadsodnny PUE QOURUJUIRIA] 21BM)JOS U] "SIOBJIIIE 9I1BM}JOS SN0dUF019)aY 10 sisA[eue joeduil paseq-a[ny “(YoIey ‘€107) " ‘Yosiqary 2 <O ‘booreq ©'s grouyay I 4
SoUAIBIO ‘uLojie[d snoaudSoraoq HAAI (9ST1-L+1 "dd) uo aduazeyuo) Sunyiop 9491 WOI 0102 ‘AVDS) uonendiuejy pue sisK[euyy apo)) 291n0g uj “Ajjiqeyod
Ju0 Jo Ainiqerddorou] ‘INVOS o3en3uey 10§ syoadse Suisn ur Apnys oseo y :Jurwrer3ord pajusrio-joadse £q a130] uuopreld aremyyos Sunensdeouq “(1oquiaidas ‘0107) “H TOSSIA % D T ‘S1ed 6C| 0¢
QOURIAJUO, uonoa1ep Ajiqeraurna 3duog ssor, 831 *(dd-9 dd) uo wnisoduis
Jued H9919p ANIQEISUINA JELOS & T 9007 ‘AoeAlld pue AJInoag Uy ‘sanijiqerouna uonesrdde qgom Sunosjop 10 1003 sisAjeue ones y AX1d (KB ‘9007) ‘g ‘@pIry 2 D ‘[oSonr3 N ‘OIA0UBAO[8¢ 6l
- ‘suonedrddy ‘S10qropioH urpieg Jo3urids ‘(0Lz-$97 "dd) uoneosyuwA KAiend)
Jued 9po)) 291n0g J[dNNIA JO LSV | :91eMIJ0S 991n0S uad(Q uj ‘s1osred 9o1nos uado Suisn soSenSue] ojdnnur 10J SOLOW 2IEMJOS A)B[NI[RD 0) MOH “(€]0T) "D 199NS % “V ‘DI[IS “°(‘A0jel] “Y ‘Soue[Ley 8l
20ULIOJU0) uone[nofe) “HAAI (e1-€11 "dd) uo douaiajuo) Suntom WeT 10T (TYIM) SuLeousug ozl 11
sydern Auoyiny ‘sisA[euy JUIUOD| ISIOANY UJ "SAINJBIJ ONULLIS PUe 91oRIUAS SUIAJiun :3uLIsn[d a1emijos "(1990100 ‘Z107) "D ‘S, 2 S ‘edn3uag “A ‘pndney] “ "M ‘Zealouuy N ‘Uepleue(
- ‘uorsuoyarduio)) ‘Surpuejsiopun INDV “(FL1-€L1 dd) Suroour3us a1emijos pajetwione uo d9UIIJUO0D [RUONBUINUI NDV/ITH] 93 JO S3uIpasoold uf
I L werdold ‘SuLourSus 9s10Ay *SULIAUISUD 9SIOARI USALIP [9POW 0] JIOMIWEI) [QISUA)XD PUE JLIdUF © :09SIOIN "(1oquydag ‘0107) " I0IPeIN 2 “* 9nenor “r joqe) “g ‘oSnyq sT| 91
- suoneariddy gopy ‘uonoeeg ‘g4I (882-6.¢ "dd) uo oouarojuo)
Jued QUO[D) 9p0)) ‘FULIAUISUT 9SI0AY| SUIIOM ST ‘80, TUDIM "8007 ‘SuLIoouISuy 9s10A0Y U] ‘sIsAJeue d3ueyo [BINONNS paureId-oulj 10J (0031 Y :SI/AHA (1990190 ‘8007) 'V ‘HON 29 “JA ‘OlowIyse] ve) sl
. UULIOCEEY (fTes . N ‘ AT €
Jeunof SouTuLITEy SmpUEISIApUL) WeiBos (61-L "dd) INVOS T Juepoduwy aq sKemy [[IA tone[ndiuepy pue sisd[enyy opo) 221nos AYAy “(10queidos ‘010T) N ‘UeWEH| €7 | 1
“SuLIooUIS UL 9SIOAY ‘941 "(05Z-1¢¢ "dd) uo eouaiojuo)) ueadonsg XIS "SFUIPIIV0IJ "ZOOT ‘SULIGAUISUIIY PUE OIUBUJUIEIA
90UdIRIOD ‘soueuduIe]y ‘uotsudyardwo)) weiSord| aremyos uj ‘suonesrddy gopy Jo SunpouiSuy 951043y oY) 10 [00) B iTYVAN (T00T) "N ‘TuIIE) o % “d ‘uBjuowel] “J ‘9oed “y 'V ‘ourjose] ‘eoonTIq 'V ‘D) el
U01199)9p STLL
[euwmnop asnar 9pod 221nos agengue| sso1)| -80L1 :(£1)17 2oualoS 10Indwo)) [BSIOAIUN JO [BUINO[*SISA[EUY ONUBWAS Judie] SUISn) U0NI)d(253y 2po)) 201nog a3endue]-sso1), (S107) ‘T8I0 “H ‘seIo[] 0c) i
uonaed ‘S10qopioy urpeg Jogurids (¢5z- -dd) swreysAg uonetmoyu
90UIJUOD wisLeiSeld “SISK[euy 2po) ainog ue 3uIssa001d 98enue] [eInjeN U] ‘9sndl 9Pod 29In0s IFenFUe[-SSOIO JO UOTOIP) SPILMO], o v‘. Idh&om ‘ amomwmummro mmo:o 9 .:Hotmm r@ ,mohw . 611 11
oSenSue]-ss01) ‘asnay apos) 2IMog P ! d 7T [eTEN Ul P 1 Jo uono3op Ay sp. L (1102) 1 W®d Y TV ouopad-uoLreq (£
BUINO S o G ‘96-L¥ ‘(7). 9oudrog 1nduwio)) [Bo1)aI109Y [“MIIAIdA0 ue swierdold Jo Surpueisiopun oLousg-oidno -() "V ‘1ol A “1031pary “d ‘yoeqqny “f 4o
I Ir SuneamSus as10401 ‘SuouISus oy 9S-Ly (T)TL 19§ 1911 D [eoHa103Y], “Mal JO surpueisiopun ol D (T00T) 'V 1IUIM 29 A 195Ipaly g "YoeqINd [“MoqH| 81 | 01
2OUBIOIUO guiddoyo ‘941 (897-,97 "dd) uo aoua10ju0)) SUINIOAN [BUOTIBUIU]
ueIRyueD pue ‘Surors ‘ydeis Aouopuodo| FAAT WYS1g 8007 ‘vonendiuepy pue sisk[euy 9po)) 201n0S uf "YNOV[Sursn sweiSoxd eael o sisf[eue as1oo1q "(Joqueideg ‘g007) "D ‘ToWWEH 2 ‘WIOYHID (] L6
“HAAL "(9L-1L *dd) uo aouaIdfu0) SUBIOA [EUOnEUIN] Yy [AL #10T “(AVIS) uonendiue pue sisk[euy 9po) 391n0g uf
oouaiue) SIVIN Jo stshjeuy oners ‘e10d10)) aremijos o3ensueT-nnjA SuizAfeuy AJ[eone)s 10j YouaqyIoA v :eadued ‘(1oquadag ‘4 107) ‘N ‘nSunTg % “g ‘o1asfosedg <y ‘Siy) “y ‘ojorodere) gL 8
Q0UQIOFUO)) spuaI], INVOS “Kye100g Joyndwo) AT (611-101 "dd) SuresmSuyg aremijos jo axmnyg £00g U "dewr peo1 y :sisk[eue apod 0o1nos “(Ae]N ‘2,007) 'd ‘Aopymg| 21| L
‘uorsusyaidwo) MS oo s . . _ . ¢ o G Gy 1 G G @
Q0OUQIJUOD) ‘sisApuy uoneBedory 23ULY) VIS (6-1 "dd) INSDI U] "Aprys osed woysAs osudiojus uy :siskjeue uonededord a3ueyo paseq-urewo “(Joquiaydes ‘0107) ‘N ‘UoiIeH 29 “[T ‘Oyeod “V ‘uekry| 8 | 9
S sisA[euy 9po)) 991n0g ‘sanbruyod | INDV (906-£06 "dd) SureauI3ud a1em1jos pajeioyne uo ddUIJU0D
Jued (VID) sisATeuy joeduwy oSuey) Teuonewaul FFHI/INDV 6T oY Jo s3urpasoold uf “saury 3onpoid ofen3uel-nnw jo sisAjeue joedwr oSueyd oreme-Ajiqene A (1oqueydes ‘4107) " ‘To108uy I
9ouaIeFu0)) | (IY]) UONEBISOIU] PUL OSNOY UOTJRULIOJU] "g8d] ‘(¢]-L "dd) uo aduaiaguoy vl v
. : TeuoneuIu] FHAT 0107 ‘(T¥1) UoneISaju] pue 9sndy UOHBULIOFU] U] "9Snal pue uonesIAeu [V 9ANIFH (snSny ‘0107) *q ‘uoppog 29 I ‘0ryZ Yy ‘Iresnuy
BUINO Q0ULSI[IU] SUIYIBIA ‘SISA[eUY UINL '§591d AHA] °Z SWNJOA-SUBReUIFuT
L [HIPIIL SUHIOEI SISA[EUY UIoNEd QIEM]JOS U0 2IUAIJUO)) [BUOHBUINU] UILE Y JO SSuIpeasold “sis[eue apod jurwod-pinw ‘esodmd-pinw prdey “(S107) [[BD D “H Pue "A D ‘0Ipuexay €l ¢
95UBIAIUO S\VIN pamquisi “H44I (€01-96 dd) uo wnisodwikg Teuoneuru] FFAT W *9007 SLOOSYIN "900T *SWAISAS UONEIIUNMWI0dd[d] pue 1apnduwo) Jo
U0 Jo uonenuiIg 29 SIsA[euy ‘SUIP[OJA| UOnR[NWIS PUR ‘SISA[RUY ‘SUI[OPOJA U] "ddurInssy A)jend) a1emijos 10j uone[nuwis 10§ uononnsuy surjqeug--3uiddnqa(ousijoy “(1oquaidag ‘900z) 1 ‘Uosuaqry [
SRRRENNO) SVH JO SisAjeuy orureuk(| . 5 « g . ‘ m_mnmm (19-€¢ dd) u._o mo:&&&ow wﬁﬁo? Rl I I
: : 60, TIDIM 6007 ‘SuLouISuF 9S10AY U] “SIOIARYIQ UOTIORIOIUT WA)SAS-IOJUI JO SMIIA FULIDA0IIY (1990190 ‘6007) ¥ ‘PUB[RABS]D 29 “IAl ‘[[BAPUIT D) ‘UURULIDOY
QNUSIA . # | dl
onEonqnd Apms yo1easal o) Jo urewop; sordo], s3UIPa9d0I PUB SUONRIIIqNJ [OIBISAY PAIIAS JO O YL, oy |odeg

VOLUME 5, 2017

11328

ew

A Systematic Literature Rev

IS:

Z. Mushtaq et al.: Multilingual Source Code Analysi

TABLE 20. (Continued.) Finalized list of primary studies.

‘suoneorjdde aremijos oS1e]

‘doioH Uy "swysAg aremijos ag1e SurnuwerSordoq ‘(19qudd(‘800T) "D ‘BIPULR) % *D) UUBYO X

9s

doysszopm Sunuwerdordo(q ‘Kouspuadog mS
Surol[S werdold ‘Suneausuy 4941 "(20Z-€61 "dd) uo souaroyuo)) [euoneuwrnu AT YILZ 10T (WSI1) ddueudIUIRN
Q0URIRJUOD) 98pa[MOUy (OOUBUAIUIBIN A\S| 9I1BMIJOS U] "SWDISAS d1BM1JOS Paseq-jusuoduios snoausforatey SurzA[eue o[Iym saLrepunoq a1y uissor) “(1oquardas ‘1 107) | ‘USUOOIN 29 “Y "V ‘SLUSYSUBPZEA L9] <
TNOV “(8Lz-sLt "dd) votsusyaxdumopf -
90ULIDJUOD) uorsuoyardwo) weSo1d| werSo1d uo 90UIRJUO) [BUONEBUINU] PUZZ) JO SSUIPAS0IJ U] “uonezijedo] Snq afenSuel-sso1) “(dunf ‘4107) "X ‘Suep 2 <O ‘Sueyz “X ‘Suep “q ‘07 “X ‘erx
sanbiuod)
SI1Soy], JdIN SuIsn Uo102)9p 9p0Od I0IN0S "WEPIdISWY JO ANSIOATUN ‘SISAY, J9ISe]Al , Suissaoold aFengue [einyeu ysnoay sagendue] SuruwerSoid apoo 901nos Sulkynuapy, (9107) " [‘Weq UeA 91 €8
sIoyIsse]) HIAL “(JANVS) SULoUISUINY Pue ‘UONN[OAT ‘SISA[EUY
QOURIRJUO) TN Sulsn UoneonUapI 9poo 90IN0S | 2I2MJOS UO 2OUSISJU0)) [BUONRUIANU] PICT AHAT 9107 'SIoyisse]) aSenSue [ermieN yim uoneoynuap] ogenSue aIemijos "(9107) AdSIARZ *A PUE "3 °f ‘WE(UBA ¥
Uruwersold e . ‘ 5 3 di . 3 1501d 3 . -0 nfi PR
Jewmnor “Aniqessdomopuy/Ayondim 23endur 6v1-€p1 ‘L6 ‘SuruuerSord 1emdwo)) Jo 9ouaros A, sjudtuonAud Surtwersoxd fenSurunu spremoy, “(S10g) [T ‘MuIA % “1, ‘w10)g Ip ueA | €9 | I¢
BUeoUBUR oSIASY ONTIOAT MS ||«]] ‘331 (01-¢ *dd) uo wnisodwiAs [euoyewIN] 01 "800Z ASM "800T| o |
QOULIAYUO)) - UONNJOAT O)IS QI UJ "sIeak 9 1oye dn-mofjo,] :suonesrdde qopy JO SISA[euR [201SHEIS PUE UONOBIIXS [OPOW dIUIeUA(] (1990100 ‘8007) “ ‘BN % “d ‘B[[OUO],
Furiojoejoy] oenJuenniy ‘ssa1d 9941 '(18-9, "dd) Suueouiuyg aremyog ur SurjopojAl uo doyssoA| [EuOneUIdU]
QOURIRJUOD) ‘uone1doyuy ogenguel-ssor) S o Jo s3urpasooiq uy ‘uoneidayur ofenJue| 0y yoeordde paseq-jopowt v (KRN ‘€107) "d ‘qION B <IN TINOA “JN ‘OUBIYOIOT, 'Y ‘QIDA ' ‘TNIISSBWO], 191 6v
surped ofenFue-ssor) ‘q941 "(zz1-€11 "dd) uo aouaiejuo)
QouaIRuo)) | *SuL0)oe)y % Sisk[euy ‘Surpuejsiopun)| [euoneusoiu] IS1Z AL €102 (OJOI) uoisuayardwo)) werdoid uf ‘syromawely eael ur Supjur] a5enSue[-sso1d jo sutened (KRN ‘€107) 'V TOP0IYdS 29 “*d JOKBIA 09 8y
sisA[euy q941 " #91-+S1 "dd) uo wnisodwAg [euoneuIdIu] ‘SSUIPII0IJ
Q0URIRJUO) parefar odA [‘Surojoefoy ‘STIO0| 0007 ‘UONN[OAT d1em1jos Jo sajdiourlg uf “Sutojoejer juapuadopur-afensuey 10§ [opow-elow (0007) ‘O ‘ZSLNSIAIN % 'S ‘Tokowa(¢S ‘@sseon(y S ‘Iee[oyor], 65| LY
T T m———— A:o_.wmom S[00]) wuruﬁm n,:w \Qomm_ H ”,Psgom wo u.o._,uh&:ﬁw.u ..E___Nﬁm E .uw_ﬁos :cwWN.:msm?.m:m. sisk[eue ol o
Q0UAIRJUOD) A - 9p09d 901n0s dFenJue[-Ninu AqISUIXA Uk AzATeuy "(JquANAIS ‘0107) " U0 29 T “BPIOWY Y T ‘SOIY “d ‘SO ' “BPUBIIA “[‘BISOD) “'Y ‘OIIdIII],
UOTRULIOJSUET) %9 UOISUayaIdwod 'ssa1J INMI (8L7-997 "dd) yo1easaI 9AIRIOQR][0)) UO SAIPMS PIOUBAPY I10] 91U
20URIOJU0)) ‘SIsAJeuE 9p0Od 90INOS PIJBWOINY 9} JO SOULIAJUOD (T Y} JO SSUIPaavoly uj “steureld puerst Sursn Jursied [enurnnur 1snqoy (1990190 ‘€007) ¥ "L ‘Urdg ¥ Y [‘Ap10) N ‘AAYSIAULS LS| sy
BUIpUEISIOPU() WeIB01d BULI0IORIOY “HHAT (912-L0¢ "dd) U0 doys)ioA [euonEuIAU] HEHT YIXIS "90,AVIS
Q0UIOJUOD) 29 sisk[euy aSenSue -y 900¢ ‘uonendiuejy pue sis[euy 9poy) 90Inog uj ‘Juriojoejal pue sisjeue werdord ofenuel-sso1) “(10quaydag ‘9007) "M ‘OM0T 2 “H ‘Zery [‘uens 9| v
s18a NOV “(90t-16€ "dd 01 ON“9Y| |
20uBIOU0)) asnay ‘SUTPPOIN M S ‘SAlIRIqI] 1eSNng| [0A) SPONON NV IIDIS NIV Ul "ANiqisud)xo aSenJue| onoejuks paseq-Areiqi] :f1esng ‘(1990100 ‘1107) "M ‘UUBUWLINSQ 2 D) ‘IoWse I, ‘[opuy “'q ‘Uenseqos
~ “HAHI (8L1-€L1 "dd) uo aouaIdju0) SUBIOM [euonewIdIU ig] AHAI €10T ‘(INVIS)
Q0UIJUOD) FEOTRTIER 73 ST SRR uone[ndiuejy pue sis[euy 9poy) 991n0S U] "saseqeiep [euone[al s Juriojoejar ofenSuel-nnuw jo uoddng :aredwoos-ewoyss-OS "(10quaidag ‘€107) "H UIYOS vol o
sargojouydd], g ® MS /dOO| (pe1-621 dd) (7) LIOSOI Ul ‘suoneorddy speuroqry jo SuLiojoejoy o5enSue -nny ut s[pINY “(1107) " TOWWET % “D d3ees “ ‘UULWd[yny “H YUIYIS| €6 [I
QOUDIRJUO))
QOUBUSIUIRIN M S ‘T "991-0S1 ‘(€)L ‘aremyjos 1T 's103doo1our (iim sueag
douaIouo) | ‘SurweiSold pajualIQ) 192dsy ‘INVOS eAef osudioug woiy sweserq 2ousanbag Furourus 2519421 :qSZI ((€107) *H ‘BA0SINOY % “D) "JA ‘PUBIF UIP UBA Y TIKOZEIA “Y YIUIQAIS S ‘A0SIqNOY | oy
“doueUAUIEW A\ S ‘sarouspuadop “q941 (ZS€-6%¢ "dd) uo eouatojuo) ueadoing Y121 €107 ‘CIINSD) SULLIUISUITY
90UAIRJUOD) 2 Suisred soSenSue| sso1) ‘gy| pue sourudUIRA d1eMIJOS U] "A[[EOLIDUAL) saroudpuada(aSenSuel-sso1) Sunoea((YoIRA ‘€107) [JOSSIA % “H ‘siomnog g ‘uosuef [9Sey I, ‘sneiuyokjog Is] ot
uoneorjdde DV ‘(¥ "d) SuleouISusy 9IEM1JOS UI JUSWISSISSY PUE UOIEN[BAF] UO 90UIIOJUO)) [BUONBUIU] i |
Q0URIJUOD) 9p09 901n0s [dnnIA Jo uonenjeAq a1 Jo sSurpaasoid uf “s192fo1d 221nos uado ur safenSue] SururerSoxd apdninu jo uonezimn ay jo sisAreue feoundwe uy ‘(judy ‘§107) 'V ‘Ioneq % W ‘diyg 05| 8¢
N [‘Suiysiqny euoneussiu] Joguudg
90UAIOJUOD) VI UL uonodlad A L "(€91-8%1 "dd) suoneorddy pue suonepuno, Surjjopoiy uy "SisseT yim Ajiqesoel], juopuadopur-aSenSueT ($107) "V TISMOSEA 29 [‘UuewIy “H Y ‘103197 d o L€
90ULIOJUO (EQTW) syuouruonAug “B1aq[opIoy ulIog
Jued Surdojoas(q a3enduennjy | 1oSuuds (¢61-8.1 'dd) suoneosrddy pue suonepuno, Sur[[opojA U] JuswUoIIAUS Judstdojossp aFenduel-ninul y :owxa], (Z107) 'V ‘TISMostp 2 “H ¥ ‘1oi1a)d 8% | 9¢
[eunop S, A TN Jo uoneidajuy oenue ‘67-1 ‘SUI[OPOIA SWANSAS 29 SIBMJOS “SIUIWUOIIAUD Juddo[oasp afenguel-ninuw jo soeds uSisap oYL “($107) 'V ‘Dismostpy % “H ¥ ‘RPLId| Ly | S€
QouaIyuo)) |sisAreuy Aouspuada(q jusuodwio)-10iuy| “S19q[opIoy ureg 15unds (8z¢-z1¢ "dd) suonesiddy pue suonepuno, Sulj[opojAu] ‘saFensue| Jo uoisnjuod oy} Surwe] ((1107) 'V ‘DIsmostm 2 “H ¥ ‘TOPRId| 9% | $€
Suropoy e e
QOUDIRJUO) PONIBHO 190190 “UONPZI[ENSIA IEAOS (p-1 "dd) INSDI UI "SVE[JO JUSWISSISSE) 9[qRUD 0} UOISUIIXD IS00W V ‘FH (SO0 “(1oquiaydas ‘0107) “d ‘Uidd| Sy | €€
“agdI (01-1 "dd) uo aduaIeyuo) [euoneurU FHHI 010T “(NSII) 2OUBUSIUIEN SIEMIJOS U]
0uaIJD SOUEURIEIN MS ‘suonesrjdde osudio)uo eAB[U UONRULIOJUT Pa1a)eds woly 2doos uonoesuen Jo sisk[eue pue 104009y “(1oquardas ‘0107) " ZSeNSIAIN % 1, “BqIID) “ ‘UL vy | ce
‘SuLI0oUISUD 21M]JOS AFAIL (LL1-891 "dd) uo souaigjuo) Junjiop [euonewINU] FHAT PUIN “60,JNVIS 600 ‘uonendiuey pue siskjeuy
90UaIofu0D < : . | 1 . - " i “r o e w| 1€
pajewoine ‘soSenSue oyroadg urewoq apo)) do1nog uj ‘uonendiuew pue sisK[eue 9pod 90Inos 10j d5enue| oy10ads urewop v :[easey] (1oquaydag ‘6007) [‘NIUIA % L ‘WIS 19 UBA “d I
T ‘uonavre 941 '(9-1 "dd) uo souareyuo)) uerpeue)] [enUUY Y9z €107 ‘(HDADD) Suweurdug 1ondwo)) pue [edL)II[H U]
114100 QUO[D 3p0)) SV JO JuswaSeury [“Swa)sAs [emsnpur Jo Apnys [eouiduis wy :suoneosrdde qom ur sureyed suo(d ssiu-1e0N (KB ‘€107) M D AOY 29 “'A ‘OjowewR X “ TN ‘URIQIZ], ‘PRLIIRYNIA It | o€
‘K19A09s1(] Juduodwio)) (K10A000y ‘941 "(zz1-€11 "dd) uo oouardjuo) Suriom P61 2102 (AIOM) Sutesurdug
80UaJaJuU0) ; « E . . P 0 - gt “p CTAT P 6¢ | 6T
[eINPIYIY FuLlsn]) opo) OSIOAYU "SAINJEAJ SNULIAS pue onoejuks Suikyiun :Jureisnio oremyos (1090100 ‘710g) "D ‘SmIL, % 'S ‘eidnuog A ‘pndmey| “J "y ‘ZeAlouuy [‘CISI
~ INDV ‘(8-S "dd) sjooy Suriojoejair uo doysyiopy uo doysyiom NV €10T oY
Gloppe || SRR 7 R SR) JO SSuIpa0d01 U ‘SyIoMIWRI] BARL AQ PASN STS(PUB BAB[U2aM)2q SuL10)oBJa1 95enSue[-ss010 pajewojne spIemo], ‘(1990300 ‘€107) 'V TopaoIyds 29 “*d TRl 8¢ | 8C
FuLI0)oRjoy SWRUdY ‘B1aqop1oy urpieg J3uuds (794~ ¢t "dd) Sunmweisold payusti-193[q0—107 00D
oUIRJUOD pue Surpuig 10ejnry ofensueT-nmp uf ‘syIlomowrely eAef Aq pasn sTS(] pue BAe[Uoomloq SuLI0jorjal dWRUaI pue Surpulq joeynIe ofensuel-pnuw pajewony ‘($107) 'V 10Pa0Iyos % ©J ‘10Aey Le| L
SoUAIAIO Sutio)oejoy Tl (€01-+6 "dd) uo aouaIayuo)) FunjIoA [RUOBWIN] Y17]
Jued pue sisA[euy a3ensue] NN g941 2102 ‘(NVDS) uonendiuely pue sisA[euy 9po)) 99In0g U “SuLiojoejal pue siskjeue opod agenSuel-sso1) (1qundag ‘7107) 'V 19paoIyds % “d ‘1oAeIN 9¢ | 9T
Souem 19PON “qAA1 (b61-L81 "dd) uo wisodwiAg revonewn] RS ‘90.ISVYNAS
Juo) ‘ E « E . P e P Se| st
BRIN ‘SYH JO SunoourSug 9S10AY 9007 ‘Sunndwo)) oynusIog 10§ SWILIOS|y ouowNN pue d1joquikg uf ‘suonestjdde asudiojus 1oy [opow-ejow v “(10queydes ‘9007) T ‘BoInf 2 D) ‘NISSULIBIA!
[BUINO. SUTOBUI YE)S SJIH 9 “(1)9 ‘aremyos ‘suonjeorjdde qom xele 10j [00) SuLIEOUISUD 951041 © :XB[oY () “ “edor ©d ‘B[[PUO], “'V ‘OnayoIe
\ r ‘suoneordde qop ‘SuoaurBug asIoAdY 6t-€¢ (1)9 Jos LAl [eorjdde g le Joy LISou} Xeloy (T102) 4 A% “d "B[IPUOL "V UoTeN| € | #T
T SIsA[euy uonnjoAg A8 (€81-081) w0l €10 (VSIM| |

MS “WPLOS[Y SurgdIeN 291, “LSV.

2oua1§u0)) uonesnddy pue woisAS UONBULIOIU] AN U] "SISA[eUY UONNJOAT 21BMIJOS VAV PAaseq LSV "(12quIdAON ‘€107) Z ‘oeyz % “Z ‘Sueyz ‘Suerr ng

pragmatic evidence, we devised review methodology,
focused domains, research questions, sources of informa-

understanding about MLSCA, its applicability, and prospects

h, we pre-

1S researc

. In th

ms

doma
sented a review of the research contributions presented in the

form of models, tools, domains and techniques to analyze

meering

of software eng

10n Cri-

tion from renowned publishers, inclusion & exclus

d

. We searched 3820 research papers

10n criteria an

teria, basic search string, type of informat

1teria

study assessment cr

In order to extract precise

ications.

appl

multilingual

11329

VOLUME 5, 2017

Z. Mushtaq et al.: Multilingual Source Code Analysis: A Systematic Literature Review

TABLE 21. Programming languages.

" |Languages 2(3]12]16]17|18]20(22|23|24|25(26|27(29|30(32|33(34|35

40(42|43(44|45[46|47(49|50(51|52|53|54|55|56|57|58|59(60|61(62|63(65|66| 67 | 68

. Net v

Ada \

/Android App N

Apache Meetings

C/C++/CH VO[N] Y | Y

Cobol y

Coral

CORBA

Ol |w|lala|ls|lw|w|—|w?

DSLs N \ v \

10 | Groovy

11 | HBM

12 | Hibernate

13 |HQL

2 | 2| 2|2

14 | HTML/Applets MR y y

P P P

Intermediate/ Byte
Code v v

16| Javali# VIV WIS VIV T N Y

17 | JEA/EJB

—_
=)

Jscript v Y y

19 | J Servlet

20 | ISP R

2 | 2| =] =

21 | J-Unit \

22 | MPLs

23| OOPLs VIV YV Y] Y] Y

24 | OWL/RDF \ \

25 | PHP V V

26 | Prolog

27 | Python AR

28 | Ruby V

29 [SCRO \

30 | Small Talk V

31 | Spring- N

32 | SQL/RDBMS v N N

33 | Stratego \

34 | UML \

35 | URN N

36| VB

37 | Wicket \

38| XML N[N Y

39 [XSS/CSS N[V Y \

40 | Xtend

from selected research venues during January 2001 to
January 2016. By applying 3 staged rigorous selection cri-
teria, we finalized 56 publications for further evaluation. The
detailed information of these selected publications is pre-
sented in the form of publisher, proceedings, year and country
of publication along with the research topic in Table 6. It is
found that most of the software applications are multilingual
in nature and this trend is creeping day by day. It is observed
that MLSCA domain is quite widespread and most recent for
the research community. We found that maximum research
started from 2010 (i.e. 75%) and this tendency is inclining
with the passage of time as 23.2% of the whole publications
during the last two years. The quality assessment criteria

11330

determine relevance, adequacy, quality and validity of the
research domain appropriate to the selected publications. The
overall assessment with respect to prescribed criteria is 66%
which is quite aligned with the research topic. The results of
assessment criteria are presented in Table 18 (Appendix).

A. RESEARCH PROBLEMS

Identification of research requirements and issues is the
first step to building the research foundation of literature
review findings. In this research, we recognized 46 differ-
ent research problems and requirements to analyze multi-
lingual applications. Each issue is marked with PR #). The
issues and requirements are divided into 13 different software

VOLUME 5, 2017

Z. Mushtaq et al.: Multilingual Source Code Analysis: A Systematic Literature Review

TABLE 22. SW engineering domains.

Domains/References ABV |1|2[3]4]|7(11]|12|16(17|18[20(21]|22|23|24/|25[26(27|29(30(31|32 35|36|37|39(40(42(43(44(45(46(47|48[49(50(51|52|53|54|55|56|57|58]59]|60|61|62|63|64|65|66 |67 | 68
Programming AP \

Change Impact Analysis [CIA VN N N

Code Clone/ Clustering |[CCD B V R

Code/ Graph Parsing CGP RS \ v \/

Component Discovery |[CMD B N

Content Analysis CAN v

Data Flow Analysis DFA B

De-Programming DEP V
Dynamic Analysis DYA || V \/ V| \/ \ \/
Kl{tl:rll;q;;iiate/Bytecode BCA N N N
Knowledge Engineering [KEG V V

Langua, i |
Intergopégrztg?ltietiratmn/ lljg/ Y Y v N NN

Lexical Analysis LXA N[N

Machine Intelligence MIN

Meta-Model MM V \/ «/ SR v
Multilanguage IDEs MLDE V V V V|V V|V R

T T THE
Pattern Analysis PTA V NN
Prograrln Slicing/ psC N N

Chopping

Program Understanding |PRU J V v v v

Re-Engineering REg V i i \/
Refactoring RFT V R N IE N|V|V J

Reuse REU || [V i 2 B
Reverse Engineering REV || VY| v v J v v [N
Software Visualization ~ [SVS V|V \/

Statistical Analysis STA \/ N[V v v R N N R N|VIVY
SW Comprehension SWC |V N[N N N V \

SW Debugging SWD | [V

SW Evolution SWE | [N | NV N[N V v 8 V
SW Maintenance SMN N[V V v V R V

SW Modeling SWM | [0 NEIIE

sy e T - THTMTE {THT {11
Tree matching algorithm

AST/Call Gragh [A MR \ v v
Vulnerability Detection VLD N

Cross Lang Links XLL [XLL N V[V \ NEE V[V N

engineering domains. The majority of the issues include
Static Analysis 26%, Program Understanding & Reverse
Engineering 15%, Cross Language Link Detection 13%,
Dynamic Analysis 11%, Analysis of Enterprise Applica-
tions 11% and Multiple Language Integrated Development
Environments 11%. The remaining portion of issues is less
than 10%. The summary of reported problems and require-
ments of multilingual source code analysis is presented in Fig
5 and the complete detail is mentioned in Table 7.

B. RESEARCH CONTRIBUTIONS

In this research, we identified the support of multilingual
source code applications, languages, and domains in the form
of research models, platforms, frameworks, prototype models
or case studies. The features of selected primary studies
with their strengths and limitations are highlighted in the
respective Tables. Each research contribution is marked with

VOLUME 5, 2017

CN # (contribution number) as a solution of par-
ticular problem or requirement which is mapped by
PR # (problem/requirement number). The contributions are
separated into 38 tools & approaches, 14 techniques, and
4 surveys. They focus general purpose languages, Domain
Specific Languages/ Meta-languages, and intermediate repre-
sentations. Each research offers separate analysis mechanism
and supports to accomplish their requirements. They focus
multiple domains of software engineering. The analysis tools
are further divided into static analysis tools (26), dynamic
analysis tools (8) and semantic/hybrid analysis tools (4).
Each tool represents the model, analysis mechanism, source
code languages and experimental case studies. These tools
are evaluated through frameworks, development environ-
ments, case studies, prototypes, plug-ins, and simulators. The
results show that proposed model and analysis mechanism
of each contribution support different languages and are

11331

Z. Mushtaq et al.:

Multilingual Source Code Analysis: A Systematic Literature Review

TABLE 23. Tools for multilingual source code analysis.

evaluated through their respective case studies. Moreover,
14 different techniques and 4 surveys are presented to ana-
lyze multilingual applications. The analysis techniques are

11332

Sr. | Tool Model/Representation Mechanism Source Code Languages | Experimental Evaluation
#
1 | Normir [2] Holistic Debugging: Analysis Dynamic Analysis Intermediate/ Byte Code | Simics: Instruction set
Modeling and Simulati representation Simulator
2 | RECOS [3] Semantic knowledge base & point to Semantic Analysis SCRO, OWL, RDF, Eclipse tool
analysis technique. Explicit ontological RDFS
code representations.
3 | Pangea[l12] I independ t del Static Analysis Verveinel: Java, Famix (Java, C, C++)
Repository OMS, analyze MLAs. lltalk, C/C++, C#, Analyzer (Smalltalk, C)
4 | JOANA[16] Dependence graph calculation Programming Slicing, Java based languages Eclipse Plug-in
Language security algorithm. Java Program Chopping
Object Sensitive Analysis
5 | GUPRO[17, Use graph querying & graph Source Code Parsing COBOL, CSP, Ada, C GEOS, XFIG, COBOL
28]. algorithms extract source code into a MVS/ICL, PSB, SQL. etc
graph repository.
6 | WARE [20] Reverse engineering MDWE, Meta- Static and Dynamic HTML JavaScript, XML | General Examples
Model Analysis
7 | Diff/TS [22] Analyze structural changes Extend Structural Analysis, Fine- Python, Java, C and C++ | Case Study: Emacs editor
string diffe iating algorithms. grained Analysis.
9 | TARENTe Adhoc modular framework. Extract, Content Analysis. Java, my SQL Open-source code WAs.
[24] explore, analyze web docs Authority Graph Analysis.
10 | Metrics Tool Open Source Parser, extract AST of Syntactic Analysis, C, C++, Java and Eclipse IDE
for MLAs [25] | MLAs. Extend Eclipse CDT Parser. Semantic Analysis JavaScript
11 | Pixy [26] Detects cross-site & taint-style Static Analysis, Context PHP, XSS, HTML Open source Java tool,
scripting vulnerabilities in WAs. /Flow Sensitive Analysis evaluated on PHP scripts
12 | AOP for XL Program transformation tool, provide Dynamic Analysis, Aspect | Java, DSL, C, JVM Tool: Stratego (Eclipse),
Portability [28] | aspects of managing interoperability in | Weaving Mechanism. Case Study
HAs
13 | EMFTrace [29] | Multi-perspective impact analysis to Change Impact Analysis. Java, JUnit test cases, Case study EMFTrace,
analyze CIA in artifacts of MLAs. Dependency Analysis UML, URN, OWL. Eclipse Framework
14 | MMT [30] Parse MSIL (Microsoft Intermediate Complexity analysis of Net based languages NHibernate, MMT,
L) MLAs. Timecard CS Client
15 | REAJAX [32] DOM GUI-based, Build Finite State Dynamic Analysis, Trace HTML, CSS, JScript, http://pafim.source.net,
Models (FSM) Link Analysis. PHP, XML http://tudu.source.net
16 | DATES [33] A meta-model for EAs, Third party Static Analysis Java, SQL Evaluated on 3 case
API. Recover relational/ object- studies KITTA, TRS,
oriented entities. SALARY
17 | XLL & Generalized approach: Cross lang. XLL Analysis, Code Java, HTML, Jtrac support Spring,
Refactoring binding & refactoring Refactoring DSLs(HQL, HBM) Hibernate, and Wicket
[36]
18 | Code Clone Use patterns to exact near-miss code Dynamic Analysis, Code HTML, PHP, JavaScript, | Clone detectors VisCad,
Detection [39] clones in WAs. Clone Detection CSS, MVC NiCad. Industrial Was
19 | Rascal [40] Meta Model. Analyze HAs at a high Syntax Analysis. Dynamic | DSLs ASF, SDF, Eclipse IDE
level of integration. Analysis, Semantic Links. RScript, Java
20 | FAMIX [42] Expose and analyze transaction scope Statistical Analysis, SW EJB, JSP, HTML, FAMIX, Moose, Eclipse:
in EAs. Visualization, Applets Plugin.
21 | MooselEE [43] | Code browser, Visualizations. Analyze | Static Analysis, Java Beans, JSP, FAMIX platform
architectural variants. Maintenance & Modeling, JavaScript, HTML,
Transactional analysis Servlet
22 | GenDeMoG Language independent high level Dynamic Analysis. Java & DSLs Eclipse plug-in, Case
[44] model. Inter component dependency Explicit Dependencies Study: OFBiz.
patterns. Analysis.
23 | MLDE’s Integration of MLDESs. Search based Static Analysis & Multi- Java, JScript, HTML, Tool + Case study
Design Space relation. Track XLLs modeling of MLDEs. XML. Groovy, Coral (TexMo, Coral)
[45]
24 | TexMo [46] Analyze MLDE:s using explicit relation | Static Analysis, Java, JavaScript, HTML | Case study (JTrac)
model. Visualization and XML
25 | Lissig [47] Language independent Integrate Dependency Analysis, SW | Extend, Java, and Autonomous trace links
traceability to modeling frameworks. Modeling Groovy modeling framework.
26 | 12SD [50] EJB i ptors to seq di Dynamic Analysis. EJB, JSP, HTML, NetBeans IDE,
Modular pipe filter architecture. Reverse Engineering. CORBA, UML DataPortal, WasabiBeans,
AOP,
27 | Refactoring ORM bw Java & DB Schema. Rename | Multi-Language Structural | Java, Hibernate, and Hibernate Application
MLAs [51] Method and Push Down Method for Analysis & Refactoring SQL (HRM)
MLAs.
28 | SQL Schema Schema compare library detect changes | Database Analysis & SQL DBMS Eclipse plug-in
Comparer [52] & validate SQL schemes Refactoring MLAs.
29 | Sugar] [53] Java-based extensible language. Syntax Analysis Random DSLs, JavaScript, Prolog | Spoofax-based IDE, five
Unique parsing mechanism Context Free & Layout and Haskell case studies
Sensitive.
30 | X-Develop Language Independent meta model to Static low-level analysis, C#, J#, VB IText, .Net
[54] analyze & refactor MLAs. Intermediate
P ion as AST.
31 | Island Concurrent & robust parsing of MLAs Lexical Analysis, CFG. VB, HTML, Jscript, McCabe-complexity
Grammar [55] in form of a parse tree. Rascal
32 | Analizo [56] Layered Style, Doxygen Parser. SW Evolution, C, C++, Java VLC project, Analyze
Generates source code metrics. Visualization Dependency
Analysis
33 | MOOSE [57] Language independent Meta model & Refactoring, Visualization, | Java, Smalltalk FAMIX model, Prototype
Refactoring OOPLs. Type related Analysis tool
34 | Dynamic Extract UML model of a Web Dynamic Analysis. Static ‘Web Applications ReWeb: Spider (Explicit-
Analysis & application model through its execution | Analysis. SW Evolution. state model of WAs)
Model Extr[60]
35 | CrosLocator Bug localization algorithm to rank Program Comprehension Ruby Ruby-China
[62] source code files in MLAs.
36 | LISA[63] Language independent parsing. Static Analysis, SW Java based languages JGit repositories,
Translate AST into a graph structure. Evolution Aspect]'s
37 | KDM [64] Knowledge discovery Metamodel, RE Static Analysis, Program C/C++, Java Code Surfer Prototype
homogeneous model from Slicing, Maintenance, plugin. Industrial app
heterogeneous artifacts. Knowledge eng. code.
38 | DeP [65] Deprogramming. Analyze code Static analysis, Pattern Java DeP tool

patterns. Patterns recognition.

Analysis, Refactoring,

presented in the form of a models, frameworks or algo-
rithms. The analysis models include mathematical, graphical,
UML, semantic or high-level models. The techniques are

VOLUME 5, 2017

Z. Mushtaq et al.: Multilingual Source Code Analysis: A Systematic Literature Review

TABLE 24. Conference & workshop proceedings.

S.# Acronyms Conference/Workshop Name
1 CBSoft Brazilian Conference on Software: Theory and Practice.
2 CCECE Canadian Conference on Electrical and Computer Engineering
3 CSMR Conference on Software Maintenance and Reengineering
4 ECMFA European Conference on Modeling Foundations and Applications
5 ECOOP European Conference on Object-Oriented Programming
6 FOSE Future of Software Engineering Conference
7 ICANLI International Conference on Applications of Natural Language to Information Systems
8 ICASE International Conference on Automated Software Engineering
9 ICICT International Conference on Information and Communication Technologies
10 ICPC International Conference on Program Comprehension
11 ICSM International Conference on Software Maintenance
12 ICSOFT International Conference on Software and Database Technologies
13 ICSR International Conference on Software Reuse
14 IRI International Conference on Information Reuse and Integration
15 MiSE International Workshop on Modeling in Software Engineering
16 MMAS International Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunication
Systems
17 SCAM International Conference on Source Code Analysis and Manipulation
18 WCRE Working Conference on Reverse Engineering
19 WISA International Conference on Web Information System and Application
20 | WRT Workshop on Refactoring Tools
21 WWSE Workshop on Website Evaluation
S.# | Journal Publications
1 IEEE Transactions on Pattern Analysis and Machine Intelligence
2 Journal of Science of Computer Programming
3 Journal of Software & Systems Modeling

evaluated mathematically, through case studies or by using
some framework/platform. The surveys or reviews highlight
the importance of source code analysis, multi-language IDEs,
cross-language analysis, refactoring and empirical evaluation
of multi-language applications. The detail of research contri-
butions is mentioned in Tables 9-17.

C. SOURCE CODE LANGUAGES

A number of multidiscipline languages are discussed in
this literature review in the form of General Purpose
Languages (GPLs) containing C/C++, Java,Net, HTML
etc, Domain Specific Languages (DSLs) /Meta Program-
ming Languages (MPLs) comprising XML, Spring, Xtend,
RDF etc and Intermediate Representations (Byte Code).
These languages target web based applications, enterprise
applications, heterogeneous applications, integrated devel-
opment environments, cross language applications, embed-
ded applications and legacy applications. The collection
of selected research supports 40 different kinds of pro-
gramming languages. Maximum numbers of languages
discussed are from 9 to 2 languages per publication.
The research trends are more likely towards analysis of
OOP 57%, Java 53%, HTML/Applets 26%, DSLs 21% and
C/C++/C# 17%. The remaining languages have less con-
tribution than 17 %. The summary of source code lan-
guages is mentioned in Fig 6, whereas the detail is provided
in Table 21 (appendix).

VOLUME 5, 2017

D. DOMAINS FOR SOURCE CODE ANALYSIS

The research trends identified to analyze multilingual appli-
cations are grouped into 34 domains, recognize almost from
every field of software engineering. The detail is provided
in Table 22 (appendix). During analysis, it is found that
the research community is inclined towards Static Analysis
25%, Program Understanding & Reverse Engineering 22%,
XLL Detection 16%, Dynamic Analysis 15%, Source Code
Refactoring 11%, Change Impact Analysis 9% and Multi
Language IDEs 9%, whereas the contribution of remaining
domains is less than 9% (summarized in Fig 7).

E. ISSUES AND FUTURE RESEARCH

During the review, it is observed that this research area is
widely spread across various software engineering domains,
continuously growing and has an opportunity for further
improvements and enhancements. Various MLSCA areas are
still open for further research as mentioned in the assessment
of Q3. There are 13 domains that highlight research prospects
for future research. Table 17 describes 56 limitations and
future work associated with their respective domains. These
domains include Static Analysis 25%, Program Understand-
ing & RE 22%, XLL Detection 16%, Dynamic Analysis 15%,
Source Code Refactoring 11%, Change Impact Analysis 9%
and Multiple Language IDEs 9%. Whereas, the rest of the
domains are less than 9% (summarized in Figure 8). The
highlighted domains require advancement in performance

11333

Z. Mushtaq et al.: Multilingual Source Code Analysis: A Systematic Literature Review

TABLE 25. Abbreviations.

Acronym Descriptions Acronym Descriptions
AST Abstract Syntax Tree MLR Multi Language Refactoring
CIA Change Impact Analysis MLSCA Multilingual Source Code Analysis
CLA Cross-Language Applications MPLs Multiple Programming Languages
CLR Cross-Language Refactoring NM Not Mentioned
CNF Conference OO0P Object Oriented Programming
CSDG conditional system dependence graphs OMS Object Model Snapshot
DB Database ORM Object Relation Model
DSLs Domain Specific languages RE Reverse Engineering
FSM Finite State Model SCAM Source Code Analysis & Manipulation
GPLs General Purpose Programming Languages SCRO Source code reference ontology
HAs Heterogeneous Applications SPLs Software Product Lines
ICT Information & Communication Technologies SW Software
IDE Integrated Development Environment SWAs Software Applications
IFC Information Flow Control WAs Web Applications
IRI Information Reuse and Integration WKS Workshop
IS Information Systems XLAs Cross-Language Applications
JEAs Java Enterprise Applications XLL Cross Language Link
Jrnls Journals XSS Cross Site Scripting
MLAs Multi-Language Software Applications
SLI Source Code Language Identification
and accuracy of analysis mechanism, scalability of parsing [9] B.Kitchenham et al., “Systematic literature reviews in software engineer-

techniques, extraction and visualization of cross-language
artifacts, their relationships and dependencies. Completeness
in source code security, coverage, clone detection, similarity
analysis, change impact, classification and evolution analysis
are required in multilingual applications. Moreover, man-
aging source code repositories, portability across multiple
language platforms and document generation from multilin-
gual source code are the areas that need attention for future
research.

APPENDIX
See Tables 18-25.

REFERENCES

(1]

[2]

[3]

[4]

[5]

[6]

[71

[8]

C. Ackermann, M. Lindvall, and R. Cleaveland, ‘“Recovering views
of inter-system interaction behaviors,” in Proc. Reverse Eng. WCRE,
Oct. 2009, pp. 53-61.

L. Albertsson, “Holistic debugging—enabling instruction set simulation
for software quality assurance,” in Proc. 14th IEEE Int. Symp. Modeling,
Anal. Simulation Comput. Telecommun. Syst. (MASCOTS), Sep. 2006,
pp. 96-103.

C. V. Alexandro and H. C. Gall, “Rapid multi-purpose, multi-commit
code analysis,” in Proc. 37th Int. Conf. Softw. Eng., vol. 2. May 2015,
pp. 635-638.

A. Alnusair, T. Zhao, and E. Bodden, “Effective API navigation and
reuse,” in Proc. IEEE Int. Conf. Inf. Reuse Integr. (IRI), Aug. 2010,
pp. 7-12.

F. Angerer, ““Variability-aware change impact analysis of multi-language
product lines,” in Proc. 29th ACM/IEEE Int. Conf. Autom. Softw. Eng.,
Sep. 2004, pp. 903-906.

T. B. C. Arias, P. Avgeriou, and P. America, “Analyzing the actual
execution of a large software-intensive system for determining
dependencies,” in Proc. Reverse Eng. WCRE, Oct. 2008,
pp. 49-58.

A. Aryani, F. Perin, M. Lungu, A. N. Mahmood, and O. Nierstrasz, ““Can
we predict dependencies using domain information?”” in Proc. Reverse
Eng. WCRE, 2011, pp. 55-64.

A. Aryani, I. D. Peake, and M. Hamilton, “Domain-based change propa-
gation analysis: An enterprise system case study,” in Proc. ICSM, 2010,
pp. 1-9.

11334

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

(19]

[20]

(21]

(22]

(23]

(24]

ing - A systematic literature review,” Inf. Softw. Technol., vol. 51, no. 1,
pp. 7-15, 2009.

B. Kitchenham, “Procedures for undertaking systematic reviews: Joint
technical report,” Dept. Comput. Sci., Keele Univ., Keele, UK.,
Tech. Rep. TR/SE-0401, 2004.

B. Kitchenham, T. Dyba, and M. Jorgensen, “Evidence-based software
engineering,” in Proc. 26th Int. Conf. Softw. Eng., May 2004, pp. 273-281.
D. Binkley, “Source code analysis: A road map,” in Proc. Future Softw.
Eng., May 2007, pp. 104-119.

A. Caracciolo, A. Chis, B. Spasojevic, and M. Lungu, ‘‘Pangea: A work-
bench for statically analyzing multi-language software corpora,” in Proc.
IEEE 14th Int. Working Conf. Source Code Anal. Manipulation (SCAM),
Sep. 2014, pp. 71-76.

(2007). Centre for Reviews and Dissemination, what are the Cri-
teria for the Inclusion of Reviews on DARE?. [Online]. Available:
http://www.york.ac.uk/inst/crd/faq4.htm

E. J. Chikofsky and J. H. Cross, “Reverse engineering and design
recovery: A taxonomy,” IEEE Softw., vol. 7, no. 1, pp. 13-17,
Jan. 1990.

A. Cleve, T. Mens, and J. L. Hainaut, “Data-intensive system evolution,”
Computer, vol. 43, no. 8, pp. 110-112, 2010.

D. Giffhorn and C. Hammer, “Precise analysis of java programs using
joana,” in Proc. 8th IEEE Int. Working Conf. Sour. Code Anal. Manipu-
lation, Sep. 2008, pp. 267-268.

J. Ebert, B. Kullbach, V. Riediger, and A. Winter, “Gupro-generic under-
standing of programs an overview,” Electron. Notes Theor. Comput. Sci.,
vol. 72, no. 2, pp. 47-56, 2002.

E. Flores, A. Barrén-Cedefio, P. Rosso, and L. Moreno, “Towards the
detection of cross-language source code reuse,” in Natural Language
Processing and Information Systems. Berlin, Germany: Springer, 2011,
pp. 250-253.

E. Flores, A. Barr6n-Cedefio, P. Rosso, and L. Moreno, ‘“Cross-
Language Source Code Re-Use Detection Using Latent Semantic
Analysis,” J. Univ. Comput. Sci., vol. 21, no. 13, pp. 1708-1725,
2015.

G. CanforaHarman and M. Di Penta, ‘“New frontiers of reverse engineer-
ing,” in Proc. Future Softw. Eng., May 2007, pp. 326-341.

G. A. Di Lucca et al., “WARE: A tool for the reverse engineering of Web
applications,” in Proc. 6th Eur. Conf. Softw. Maintenance Reeng., 2002,
pp. 241-250.

M. Harman, “Why source code analysis and manipulation will always be
important,” in Proc. SCAM, 2010, pp. 7-19.

M. Hashimoto and A. Mori, “Diff/TS: A tool for fine-grained structural
change analysis,” in Proc. 15th Working Conf. Reverse Eng. (WCRE),
Oct. 2008, pp. 279-288.

VOLUME 5, 2017

Z. Mushtaq et al.: Multilingual Source Code Analysis: A Systematic Literature Review

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]
[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

B. Hugo, J. Cabot, F. Jouault, and F. Madiot, “MoDisco: A generic and
extensible framework for model driven reverse engineering,” in Proc.
IEEE/ACM Int. Conf. Autom. Softw. Eng., Sep. 2010, pp. 173-174.

M. Janardan, K. M. Annervaz, V. Kaulgud, S. Sengupta, and G. Titus,
“Software clustering: Unifying syntactic and semantic features,” in Proc.
19th Working Conf. Reverse Eng. (WCRE), Oct. 2012, pp. 113-122.

A. Janes, D. Piatov, A. Sillitti, and G. Succi, “How to calculate soft-
ware metrics for multiple languages using open source parsers,” in Open
Source Software: Quality Verification. Berlin, Germany: Springer, 2013,
pp. 264-270.

N. Jovanovic, C. Kruegel, and E. Kirda, “Pixy: A static analysis tool for
detecting Web application vulnerabilities,” in Proc. IEEE Symp. Secur.
Privacy, May 2006, p. 6.

L. C. Kats and E. Visser, “Encapsulating software platform logic by
aspect-oriented programming: A case study in using aspects for language
portability,” in Proc. 10th IEEE Working Conf. Sour. Code Anal. Manipu-
lation (SCAM), Sep. 2010, pp. 147-156.

B. Kullbach, A. Winter, P. Dahm, and J. Ebert, “Program comprehension
in multi-language systems,” in Proc. 15th Working Conf. Reverse Eng.,
Oct. 1998, pp. 135-143.

S. Lehnert, Q. Farooq, and M. Riebisch, ‘“Rule-based impact analysis
for heterogeneous software artifacts,” in Proc. 17th Eur. Conf. Softw.
Maintenance Reeng. (CSMR), Mar. 2013, pp. 209-218.

P. Linos, W. Lucas, S. Myers, and E. Maier, “A metrics tool for multi-
language software,” in Proc. 11th IASTED Int. Conf. Softw. Eng. Appl.,
Nov. 2007, pp. 324-329.

L. Jiang, Z. Zhang, and Z. Zhao, “AST based JAVA software evolu-
tion analysis,” in Proc. Web Inf. Syst. Appl. Conf. (WISA), Nov. 2013,
pp. 180-183.

A. Marchetto, P. Tonella, and F. Ricca, “ReAjax: A reverse engineering
tool for Ajax Web applications,” IET Softw., vol. 6, no. 1, pp. 33-49, 2012.
C. Marinescu and I. Jurca, “A meta-model for enterprise applications,” in
Proc. 8th Int. Symp. Symbolic Numer. Algorithms Sci. Comput. (SYNASC),
Sep. 2006, pp. 187-194.

P. Mayer and A. Schroeder, ““Cross-language code analysis and refactor-
ing,” in Proc. IEEE 12th Int. Working Conf. Sour. Code Anal. Manipula-
tion (SCAM), Sep. 2012, pp. 94-103.

P. Mayer and A. Schroeder, “Automated multi-language artifact binding
and rename refactoring between Java and DSLs used by Java frameworks,”
in ECOOP Object-Oriented Programming. Berlin, Germany: Springer,
2014, pp. 437-462.

P. Mayer and A. Schroeder, ‘“Towards automated cross-language refac-
toring between Java and DSLs used by Java frameworks,” in Proc. ACM
Workshop Refactoring Tools, Oct. 2013, pp. 5-8.

J. Misra, K. M. Annervaz, V. Kaulgud, S. Sengupta, and G. Titus, ““Soft-
ware clustering: Unifying syntactic and semantic features,” in Proc. 19th
Working Conf. Reverse Eng. (WCRE), 2012, pp. 113-122.

MoDISCO Eclipse. [Online]. Available: http://www.eclipse.org/MoDisco/
T. Muhammad, M. F. Zibran, Y. Yamamoto, and C. K. Roy, “Near-
miss clone patterns in Web applications: An empirical study with indus-
trial systems,” in Proc. 26th Annu. IEEE Can. Conf. Elect. Comput.
Eng. (CCECE), May 2013, pp. 1-6.

P. Klint, T. van Der Storm, and J. Vinju, “Rascal: A domain specific
language for source code analysis and manipulation,” in Proc. 9th IEEE
Int. Working Conf. Sour. Code Anal. Manipulation (SCAM), Sep. 2009,
pp. 168-177.

M. Pautasso, “Ten simple rules for writing a literature review,” PLoS
Comput. Biol., vol. 9, no. 7, p. 1003149, 2013.

F. Perin, T. Girba, and O. Nierstrasz, ‘‘Recovery and analysis of transaction
scope from scattered information in Java enterprise applications,” in Proc.
IEEE Int. Conf. Softw. Maintenance (ICSM), Sep. 2010, pp. 1-10.

F. Perin, “MooseJEE: A moose extension to enable the assessment of
JEAS,” in Proc. ICSM, Sep. 2010, pp. 1-4.

R. H. Pfeiffer and A. Wasowski, ‘“Taming the confusion of languages,”
in Modelling Foundations and Applications. Berlin, Germany: Springer,
2011, pp. 312-328.

R. H. Pfeiffer and A. Wasowski, “The design space of multi-language
development environments,” in Proc. Softw. Syst. Modeling, 2014,
pp. 1-29.

R. H. Pfeiffer and A. Wasowski, “Texmo: A multi-language develop-
ment environment,” in Modelling Foundations and Applications. Berlin,
Germany: Springer, 2012, pp. 178-193.

VOLUME 5, 2017

(49]

[50]

[51]

[52]

(53]

(54]

[55]

[56]

[57]

(58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

R. H. Pfeiffer, J. Reimann, and A. Wasowski, ‘‘Language-Independent
Traceability with Lissig,” in Modelling Foundations and Applications.
Berlin, Germany: Springer, 2014, pp. 148-163.

M. Philip and A. Bauer, “An empirical analysis of the utilization of
multiple programming languages in open source projects,” in Proc. 19th
Int. Conf. Eval. Assessment Softw. Eng., Apr. 2015, p. 4.

T. Polychniatis, J. Hage, S. Jansen, E. Bouwers, and J. Visser, ‘“‘Detecting
cross-language dependencies generically,” in Proc. 17th Eur. Conf. Softw.
Maintenance Reeng. (CSMR), 2013, pp. 349-352.

S. Roubtsov, A. Serebrenik, A. Mazoyer, M. G. van den Brand, and
E. Roubtsova, “I2SD: Reverse engineering sequence diagrams from enter-
prise Java beans with interceptors,” IET Softw., vol. 7, no. 3, pp. 150-166,
2013.

H. Schink, M. Kuhlemann, G. Saake, and R. Lidmmel, ‘“Hurdles in multi-
language refactoring of hibernate applications,” in Proc. ICSOFT, 2011,
pp. 129-134.

H. Schink, “SQL-schema-comparer: Support of multi-language refactor-
ing with relational databases,” in Proc. IEEE 13th Int. Working Conf. Sour.
Code Anal. Manipulation (SCAM), Sep. 2013, pp. 173-178.

E. Sebastian, T. Rendel, C. Kistner, and K. Ostermann, ‘““SugarJ: Library-
based syntactic language extensibility,” ACM SIGPLAN Notices,, vol. 46,
no. 10, pp. 391-406, Oct. 2011.

D. Strein, H. Kratz, and W. Lowe, ““Cross-language program analysis and
refactoring,” in Proc. 6th IEEE Int. Workshop Sour. Code Anal. Manipu-
lation (SCAM), Sep. 2006, pp. 207-216.

N. Synytskyy, J. R. Cordy, and T. R. Dean, ‘“Robust multilingual parsing
using island grammars,” in Proc. Conf. Centre Adv. Stud. Collaborative
Res., 2003, pp. 266-278.

A. Terceiro et al., “‘Analizo: An extensible multi-language source code
analysis and visualization toolkit,” in Proc. Brazilian Conf. Softw., Theory
Practice, Tools Session), Jan. 2010, p. 107.

S. Tichelaar, S. Ducasse, S. Demeyer, and O. Nierstrasz, ‘A meta-model
for language-independent refactoring,” in Proc. Int. Symp. Principles
Softw. Evol., 2000, pp. 154-164.

P. Mayer and A. Schroeder, “Patterns of cross-language linking in
Java frameworks,” in Proc. IEEE 21st Int. Conf. Program Comprehen-
sion (ICPC), May 2013, pp. 113-122.

F. Tomassetti, A. Vetr6, M. Torchiano, M. Voelter, and B. Kolb, “A
model-based approach to language integration,” in Proc. 5th Int. Workshop
Modeling Softw. Eng., May 2013, pp. 76-81.

P. Tonella and F. Ricca, “Dynamic model extraction and statistical analysis
of Web applications: Follow-up after 6 years,” in Proc. 10th Int. Symp. Web
Site Evol. (WSE), Oct. 2008, pp. 3-10.

T. van der Storm and J. J. Vinju, “Towards multilingual programming
environments,” Sci. Comput. Program., vol. 97, pp. 143-149, Jan. 2015.
J. K. van Dam and V. Zaytsev, “Software language identification with
natural language classifiers,” in Proc. IEEE 23rd Int. Conf. Softw. Anal.,
Evol. Reeng. (SANER), Mar. 2016, pp. 624-628.

J. K. van Dam, “‘Identifying source code programming languages through
natural language processing,” M.S. thesis, Faculty Sci., Math. Inform.,
Univ. Amsterdam, Amsterdam, The Netherlands, 2016.

X. Xia, D. Lo, X. Wang, C. Zhang, and X. Wang, “Cross-language bug
localization,” in Proc. 22nd Int. Conf. Program Comprehension, Jun. 2014,
pp. 275-278.

A. R. Yazdanshenas and L. Moonen, “Crossing the boundaries while
analyzing heterogeneous component-based software systems,” in Proc.
27th IEEE Int. Conf. Softw. Maintenance (ICSM), Sep. 2011, pp. 193-202.
C. Yohann and G. Candea, “Deprogramming large software systems,”
in Proc. Workshop Hot Topics Syst. Dependability (HotDep), Dec. 2008,
paper DSLAB-CONF-2008-005.

ZAIGHAM MUSHTAQ received the M.S. degree
in computer science from the COMSATS Insti-
tute of Information Technology, Lahore, in 2010,
where he is currently pursuing the Ph.D. degree
in computer science. He was involved in software
process improvement and semantic Web-based
SQL statements. He is involved in design recov-
ery of multilingual applications through recogni-
tion of J2EE Pattern. His active research areas
include source code analysis especially cross lan-

guage dependence analysis, program comprehension, and source code
documentation.

11335

Z. Mushtaq et al.: Multilingual Source Code Analysis: A Systematic Literature Review

GHULAM RASOOL received the M.Sc. degree in
computer science from BZU, Multan, Pakistan, in
1998, the M.S.C.S. degree from the University of
Lahore, Pakistan, in 2008, and the Ph.D. degree in
reverse engineering from the Technical University
of Ilmenau, Germany, in 2011. In 2006, he joined
the University of Lahore. He has teaching and
research experience of 15 years at national and
international levels. He is currently an Associate
Professor with the COMSATS Institute of Infor-

mation Technology, Lahore, Pakistan. His research interests include reverse
engineering, design pattern recovery, program comprehension, and source

code analysis.

11336

BALAWAL SHEHZAD is currently pursuing the
M.S. degree with the COMSATS Institute of Infor-
mation Technology, Lahore. His research interests
are source code analysis, program comprehension,
and design pattern detection.

VOLUME 5, 2017

