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ABSTRACT Complex wireless transmission systems require multi-dimensional joint statistical techniques
for performance evaluation. Here, we first present the exact closed-form results on order statistics of any
arbitrary partial sums of gamma random variables with the closed-form results of core functions specialized
for independent and identically distributed Nakagami-m fading channels based on a moment generating
function-based unified analytical framework. These both exact closed-form results have never been published
in the literature. In addition, as a feasible application example in which our new offered derived closed-form
results can be applied is presented. In particular, we analyze the outage performance of the finger replacement
schemes over Nakagami fading channels as an application of our method. Note that these analysis results
are directly applicable to several applications, such as millimeter-wave communication systems in which an
antenna diversity scheme operates using a finger replacement schemes-like combining scheme, and other
fading scenarios. Note also that the statistical results can provide potential solutions for ordered statistics in
any other research topics based on gamma distributions or other advanced wireless communications research
topics in the presence of Nakagami fading.

INDEX TERMS Fading channels, outage performance, order statistics, partial sums, Nakagami-m fading.

I. INTRODUCTION
Order statistics have played a critical role in the design
and analysis of many emerging wireless transmission tech-
niques, such as advanced diversity combining, channel adap-
tive transmission, and multiuser scheduling [2]–[17]. Previ-
ous order statistics results in [5]–[9] were obtained based
on conventional or slightly modified statistical theories (e.g.,
simple one or two dimensional joint statistics). Later, with the
advent of complex transmission systems, more complicated
multi-dimensional joint statistical techniques became neces-
sary [10]–[17]. Some previous results have been helpful in
the accurate quantification of performance versus complexity
among different transmission design options. Other results,
however, such as the joint distribution functions of linear
functions of ordered random variables (RVs) are not helpful

due to their high complexity. Comprehensive analysis of how
both conventional and new order statistics results help in
obtaining the desired statistics of the received output signal-
to-noise ratio (SNR) in wireless transmission systems has not
yet been reported.

Recently, [18], [19] introduced new results to determine
the joint statistics of partial sums of ordered exponential RVs.
In [19], a successive conditioning approach was used to con-
vert dependent ordered RVs into independent unordered RVs.
Obtaining distribution functions, including the probability
density function (PDF), the cumulative distribution func-
tion (CDF), and the moment generating function (MGF),
is now possible with this framework and related results.
However, this approach requires some case-specific manip-
ulations, which may not always be generalizable. In [18],
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we introduced a unified analytical framework to determine
the joint statistics of partial sums of ordered RVs using an
MGF-based approach. With our proposed approach, the joint
statistics of any arbitrary partial sums of ordered statistics
in terms of MGF and PDF, especially in the presence of
Rayleigh fading, can be derived systematically.

On another front, the Nakagami-m distribution often gives
the best fit to urban [20] and indoor [21] multipath prop-
agation of wireless transmission. Most importantly, Nak-
agami fading captures a wide range of multipath channels
via the fading parameter, m, including the Rayleigh distri-
bution (m = 1) as a special case [22]. In addition, when
m > 1, the Nakagami-m distribution closely approximates
the Rice distribution [22] by one-to-one mapping between
the Rician factor and the Nakagami fading parameter. Some
analytical results on Nakagami-m fading assumptions based
on order statistics can be found in [6] and [23]–[25]. However,
in most cases, fundamental one- or trivial two-dimensional
joint statistical results are provided. These results do not lend
themselves to more sophisticated performance evaluation.
Thus far, no exact closed-form results, even simplified results,
of complicated multi-dimensional joint statistics under Nak-
agami fading conditions are available in the literature. The
primary goal of this paper is thus to provide new exact closed-
form results on the order statistics of any arbitrary partial
sums of Gamma random variables, we present a feasible per-
formance evaluation example, in which we apply closed-form
results under independent and identically distributed (i.i.d.)
Nakagami-m fading conditions to the MGF-based unified
approach in [18].

A. MAIN CONTRIBUTIONS
The main contributions and points of difference between
the previous works and this work are briefly summarized as
follows:
� In [18], some closed-form results for Rayleigh fad-

ing assumptions were provided using a unified
MGF-based approach. Especially, with the newly pro-
vided MGF-based unified framework and related core
functions specialized for Rayleigh fading, the joint
statistic closed-form results of any arbitrary partial
sums of ordered statistics were derived systematically.
Although [18] provides new useful closed-form results
on ordered statistics, deriving the closed-form results
over Nakagami fading channel is another challenge.
Therefore, in this paper, we provide some new closed-
form results of core functions specialized for Nakagami
fading and then with these results, some exact closed-
form results on ordered statistics of partial sums of
Gamma random variables are newly provided. These
both exact closed-form results have never been pub-
lished in the literature and may stimulate researchers to
find new results in the general order statistics theory.

� As a feasible application example in which our derived
joint statistic closed-form results can be applied, we con-
sider the outage performance analysis of the finger

replacement schemes (FRS) proposed in [26] by extend-
ing channel model to Nakagami-m fading channels.
It is very noticeable that the FRS in [26] can also
apply to the new ‘‘trendy’’ applications such as
millimeter-wave (mmWave) communication systems in
which an antenna diversity scheme operates using an
FRS-like combining scheme. In mmWave systems, with
an increase of the number of Rake fingers, a signif-
icant improvement is expected because the channel
impulse response is completely decayed in a very short
time period compared with the typical RAKE receiver
based systems (i.e., carrier frequencies below 10 GHz)
[27], [28]. Therefore, a larger number of fingers are
required while there exist the limited number of fin-
gers in the mobile unit. This can point to very clear
conclusion that it is more necessary to apply the low
complexity and low power consumption finger man-
agement schemes with a minimal amount of additional
network resources for RAKE reception in the SHO
region with multiple base stations (BSs) to achieve the
required performance. Here, for mmWave communi-
cation systems, Nakagami assumption is more proper
than Rayleigh assumption because it is not always pos-
sible to satisfy Rayleigh criterion [29], [30]. However,
in [26], the author has investigated and analyzed the
performance over i.i.d. Rayleigh fading environments
with multiple BSs based on the statistical derivation
approach used in [19]. In [19], the required joint statis-
tics of ordered RVs were obtained by applying the
conditional PDF based approach proposed. However,
this approach is limited to when assuming Rayleigh
fading from path to path and does not allow for
similar simplifications for Nakagami case. Therefore,
we address this mathematical issue by providing a gen-
eral comprehensive analysis framework for outage per-
formance analysis in the presence of Nakagami fading
by adopting the MGF-based unified approach in [18]
instead of [19]. More specifically, we slightly modify
the performance analysis framework used in [26] to
make it suitable for these newly derived joint statistical
results.

Note that the slightly modified analytical framework suit-
able for the derived statistical results can also be config-
ured to be directly applicable to other various fading scenar-
ios while the analytical framework in [26], the conditional
PDF based approach, and related results were limited only to
i.i.d. Rayleigh fading assumptions. Note also that our derived
statistical results are much simpler than the original multiple-
fold integral forms based on the conventional MGF based
approaches.

II. SYSTEM MODELS AND STATISTICAL ANALYSIS
OF THE OUTAGE PERFORMANCE OF
APPLICATION EXAMPLE
Here, we consider the full scanning method in [26] in the
presence of Nakagami fading. Using the system model
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assumptions in [26], we assume that L base stations (BSs)
are active and that there are a total of N(L) resolvable paths

which is defined as N(L) =
L∑
n=1

Nn where Nn is the number

of resolvable paths from the n-th BS. [26] assumed that in the
soft handover (SHO) region, for RAKE reception, onlyNc out
ofN(n) (1 ≤ n ≤ L) paths are used.Without loss of generality,
N1 is defined as the number of resolvable paths from the serv-
ing BS while N2,N3, · · · ,NL are defined as those from the
target BSs. In the SHO region, the receiver is assumed at first
to rely only on N1 resolvable paths and, as such, to start with
Nc/N1-generalized selection combining (GSC) [5] which
combines the strongest Nc resolvable paths among the N1
available ones. These schemes are based on the compar-
ison of blocks consisting of Ns (< Nc < Nn) paths from
each BS.

If we let Y be the sum of the Nc −Ns strongest paths from

the serving BS, Y =
Nc−Ns∑
i=1

γi:N1 , andWn be the sum of the Ns

smallest paths from the serving BS for n = 1 and be the sum
of theNs strongest paths from the target BS for n = 2, · · · ,L,

Wn =
Nc∑

i=Nc−Ns+1
γi:Nn for n = 1 and Wn =

Ns∑
i=1
γi:Nn for

n = 2, · · · ,L, then after GSC, the received output SNR
becomes Y + W1, where γi:Nn (i = 1, 2, · · · ,Nn) is the i-
th order statistics out of Nn SNRs of paths from the n-th
BS by arranging Nn nonnegative i.i.d. RVs,

{
γj
}Nn
j=1, where

γj is the SNR of the j-th path from the n-th BS, such that
γi:N1 ≥ γi:N2 ≥ · · · ≥ γi:Nn . Based on [26], the receiver
compares the output SNR, Y + W1, with a certain target
SNR at the beginning of every time slot. Then, if the sum
of the Nc − Ns strongest paths from the serving BS and the
Ns smallest paths from the serving BS, Y + W1 is greater
than or equal to the target SNR, a one-way SHO is used
and no finger replacement is needed. On the other hand (i.e.,
Y + W1 falls below the target SNR), the receiver attempts a
two-way SHO by starting to scan additional paths from other
target BSs.

To show the validity of our derivations, we consider outage
performance. We modify the mathematical analysis frame-
work in [26] to make it suitable for our newly derived joint
statistical results. This framework to determine outage per-
formance is configured to be directly applicable to other
fading scenarios with the help of the unified MGF-based
approach in [18] rather than the approaches in [26] and [19].
Based on the mode of operation in [26, Sec. II-B], an over-
all outage probability is declared when the final combined
SNR, γF , falls below a predetermined threshold, x. Based
on it, we can define the outage probability as FγF (x) =
Pr [γF < x], where γF = Y + W1 for Y + W1 ≥ γT and
γF = Y + max {W1,W2, · · · ,WL} for Y +W1 < γT . Then,
by separately considering two cases i) when the combined
SNR falls below the target SNR (i.e., 0 < x < γT ) and
ii) when the combined SNR is greater than or equal to the
target SNR, γT , (i.e., x ≥ γT ), the outage probability can be

rewritten as

FγF (x)

=


Pr [Y +max {W1,W2, · · · ,WL} < x] , 0 < x < γT ;

Pr [γT ≤ Y +W1 < x]
+Pr [Y +W1 < γT , γT ≤ Y
+max {W1,W2, · · · ,WL} < x] , x ≥ γT .

(1)

Here, Y and Wn for n = 1 are correlated while Y and Wn
(n = 2, · · · ,L ) are independent. Thus, by adopting
the proposed mathematical approach in [18] instead of
applying [19], we can evaluate key statistics in (1) as

Pr [γT ≤ Y +W1 < x]

= FY+W1 (x)− FY+W1 (γT ), (2)

Pr [Y +max {W1,W2, · · · ,WL} < x]

=

∫ x

0

∫ x−y

0
fY ,W1 (y,w1)

L∏
n=2

FWn (x − y)dw1dy, (3)

and

Pr [Y +W1 < γT , γT ≤ Y +max {W1,W2, · · · ,WL} < x]

=

∫ γT

0

∫ γT−y

0
fY ,W1 (y,w1)

L∏
n=2

FWn (x − y)dw1dy. (4)

III. JOINT STATISTICS OF PARTIAL SUMS OF ORDERED
RANDOM VARIABLE OVER I.I.D. NAKAGAMI-M FADING
A. MAIN APPROACH
For the Nakagami-m fading case, the instantaneous SNR,
γ , has the PDF given by [2, eq. (2.55)]

p (γ ) =
(
m
γ̄

)m
γm−1

0 (m)
exp

(
−
m
γ̄
γ

)
, γ ≥ 0, (5)

where 0(·) denotes the gamma function [31, eq. (8.310.1)]
and γ̄ is the common average faded SNR. Note that the
major difficulty lies in deriving the required joint statistics of
ordered RVs. In [26], by applying the conditional PDF based
approach proposed in [19], the required joint statistics were
obtained, especially with an assumption of i.i.d. Rayleigh
fading. However, our concern is Nakagami-m fading which
includes a wide range of multipath channels via the fading
parameter, m, [22]. In this setting, we cannot directly adopt
the proposed method in [19]. Hence, we borrow the concept
of the unified MGF-based systematical framework proposed
in [18].

B. COMMON CORE FUNCTIONS AND RELATIONS
For mathematical tractability, let us consider integer-order
fading parameters (i.e.,m takes positive integer values). Even
with integer fading parameter values, closed-form results
of partial sums of ordered RV over Nakagami-m fading
remain an open problem. Many previous studies [32]–[39]
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[c (γ,−si)]n =
(
m
γ̄

)n·m(m
γ̄
+ si

)−n·m n∑
k=0

(
n
k

)
(−1)k exp

(
−

(
m
γ̄
+ si

)
k · γ

)

×

∑
n1,n2,··· ,nm≥0

n1+n2+···+nm=k

(
k

n1, n2, · · · , nm

)
γ N (m)

m−1∏
l=0

(l!)nl+1

N (m)∑
j=0

(
N (m)
j

)(
m
γ̄

)N (m)−j
sij, (6)

[e (γ,−si)]n =
(
m
γ̄

)n·m(m
γ̄
+ si

)−n·m
exp

(
−

(
m
γ̄
+ si

)
n · γ

)
×

∑
n1,n2,··· ,nm≥0
n1+n2+···+nm=n

(
n

n1, n2, · · · , nm

)
γ N (m)

m−1∏
l=0

(l!)nl+1

N (m)∑
j=0

(
N (m)
j

)(
m
γ̄

)N (m)−j
sij, (7)

and

[µ (γa, γb,−si)]n =
(
m
γ̄

)n·m(m
γ̄
+ si

)−n·m
exp

(
−

(
m
γ̄
+ si

)
γa · n

) n∑
h=0

(
n
h

)
(−1)n−h

×

∑
n1,n2,··· ,nm≥0
n1+n2+···+nm=h

∑
n′1,n

′
2,··· ,n

′m≥0
n′1+n

′
2+···+n

′m=n−h

(
h

n1, n1, · · · , nm

)(
n− h

n′1, n′2, · · · , n′m

)

×
γa

N (m)

m−1∏
l=0

(l!)nl+1
·

γb
M(m)

m−1∏
k=0

(k!)n
′
k+1

N (m)∑
j=0

M(m)∑
q=0

(
N (m)
j

)(
M (m)
q

)(
m
γ̄

)N (m)+M(m)−j−q
sij+q, (8)

where N (m) =
∑m−1

l=0 l · nl+1 and M (m) =
∑m−1

k=0 k · mk+1.

focused on performance analysis over Nakagami fading chan-
nels with the integer fading parameter. These works showed
that the integer fading parameter is sufficient to model a
wide range of fading conditions and can cover most cases
of interest in practice (e.g., for many practical channels,
1 ≤ m ≤ 15, [32]).
Here, we first observe three common core functions of

i.i.d. Nakagami distributions: i) a mixture of a CDF and
an MGF, c (γ, λ) =

∫ γ
0 dx p (x) exp (λx), ii) a mixture of

an exceedance distribution function (EDF) and an MGF,
e (γ, λ) =

∫
∞

γ
dx p (x) exp (λx), and iii) an interval MGF,

µ (γ, λ) =
∫ γb
γa
dx p (x) exp (λx), where γ is real and λ can

be complex [18, Sec. III-A]. We further consider the n-th
power of these common core functions for arbitrary n, such
as [c (γ, λ)]n, [e (γ, λ)]n, and [µ (γ, λ)]n. The closed-form
results of these functionswill play a important role to simplify
the derivation of joint MGFs in later sections.

As shown in Appendix A, each function can be expressed
in a finite summation form, enabling us to apply an inverse
Laplace transform (LT) with theMGF expressions in deriving
the closed-form expressions of the final PDF. The resulting
n-th power of common core functions are as shown in top of
this page.

In the special case of the Rayleigh fading channel
(m = 1), the results are given in [18]. With (6)-(8), as
shown at the top of this page, and the unified framework

for Rayleigh fading assumptions in [18], we can obtain the
generic MGF expressions in a compact form as well as
the desired PDF expressions through an inverse LT (see
Appendix B).

In what follows, we show how our results can be greatly

simplified. Let Z1 =
n∑
i=1
γi:N and Z2 =

N∑
i=n+1

γi:N for

example. Then, the original second-order MGF expression of
Z = [Z1,Z2] can be written as an N -fold integral expression

MGFZ (λ1, λ2)
= E {exp (λ1Z1 + λ2Z2)}

=
N !

(N − n)! (n− 1)!

∞∫
0

dγ1:Np (γ1:N ) exp (λ1γ1:N )

· · ·

γn−1:N∫
0

dγn:Np (γn:N ) exp (λ1γn:N )

×

γn:N∫
0

dγn+1:Np (γn+1:N ) exp (λ2γn+1:N )

· · ·

γK−1:N∫
0

dγN :Np (γN :N ) exp (λ2γN :N ). (9)

Following from (9) and simplifying the N -fold integral
expression with the help of the interchange of multiple
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integrals technique and simplified results given
in [18, eqs. (10) and (12)], the 2-dimensional joint PDF
of Z = [Z1,Z2] can be expressed, more specifically by
applying the PDF of the RV of interest, specifically (5), into
the simplified form [18, eq. (25)], as

fZ (z1, z2) = L−1S1,S2 {MGFZ (−S1,−S2)}

=
N !

(N − n)! (n− 1)!

×

∫
∞

0
dγn:N

(
m
γ̄

)m
γn:N

m−1

0 (m)
exp

(
−
m
γ̄
· γn:N

)
×L−1s1

{
exp (−s1γn:N ) [e (γn:N ,−s1)]n−1

}
×L−1s2

{
[c (γn:N ,−s2)]N−n

}
. (10)

Then, adapting (7) to (10) yields the first inverse LT term as

L−1s1
{
exp (−s1γn:N ) [e (γn:N ,−s1)]n−1

}
=

∑
n′1,n

′
2,··· ,n

′m≥0
n′1+n

′
2+···+n

′m=n−1

(
n− 1

n′1, n′2, · · · , n′m

)(
m
γ̄

)(n−1)·m

× exp
(
−
m
γ̄
· γn:N

)
γn:N

N ′(m)

m−1∏
l′=0

(l ′!)n
′
l′+1

×

N ′(m)∑
j′=0

(
N ′ (m)
j′

)(
m
γ̄

)N ′(m)−j′

×L−1s1

{
s1j
′

(
m
γ̄
+ s1

)−(n−1)·m
× exp

(
−

(
m
γ̄
+ s1

)
· n · γn:N

)}
, (11)

where N ′ (m) =
∑m−1
`′=0 `

′
· n′`′+1 and, with the help of (38)

in Appendix B,

L−1s1

{
s1j
′

(
m
γ̄
+ s1

)−(n−1)·m
exp

(
−

(
m
γ̄
+ s1

)
· n · γn:N

)}

=



exp
(
−
m
γ̄
· n · γn:N

)
(z1 − n · γn:N )(n−1)·m−1

((n− 1) · m)!

× exp
(
−
m
γ̄
· (z1 − n · γn:N )

)
U (z1 − n · γn:N ),

for j′ = 0

exp
(
−
m
γ̄
· n · γn:N

)[
d j
′

g (z1 − n · γn:N )
dz1j

′

+

j′−1∑
k ′=0

g(k
′) (0) δ(j

′
−k ′−1) (z1 − n · γn:N )


×U (z1 − n · γn:N ), for j′ > 0.

(12)

where

g(t) =
t(n−1)·m−1 exp (−at)
((n− 1) · m− 1)!

, (13)

or equivalently (12) can be also simplified when n > m as

L−1s1

{
s1j
′

(
m
γ̄
+ s1

)−(n−1)·m
exp

(
−

(
m
γ̄
+ s1

)
· n · γn:N

)}
= exp

(
−
m
γ̄
· n · γn:N

)
(z1 − n · γn:N )(n−1)·m−j

′
−1

((n− 1)m)!

× 1F̃1

(
(n− 1)m, (n− 1)m− j′,−

m
γ̄
(z1 − n · γn:N )

)
×U (z1 − n · γn:N ). (14)

Similarly, with (6), the second inverse LT term in (10) can
also be written as

Ls2
−1
{
[c (γn:N ,−s2)]N−n

}
=

N−n∑
k=0

∑
n1,n2,··· ,nm≥0

n1+n2+···+nm=k

(
N − n
k

)(
k

n1, n2, · · · , nm

)
(−1)k

×

(
m
γ̄

)(N−n)·m N (m)∑
j=0

(
N (m)
j

)(
m
γ̄

)N (m)−j

×Ls2
−1

{
s2j
(
m
γ̄
+ s2

)−(N−n)·m
× exp

(
−

(
m
γ̄
+ s2

)
· k · γn:N

)}
, (15)

and in (15) the inverse LT term, Ls2−1 {·}, can be obtained as

L−1s2

{
s2j
(
m
γ̄
+ s2

)−(N−n)·m
exp

(
−

(
m
γ̄
+ s2

)
· k · γn:N

)}

=



exp
(
−
m
γ̄
· k · γn:N

)
(z2 − k · γn:N )(N−n)·m−1

((N − n) · m− 1)!
× exp

(
−
m
γ̄
· (z2 − k · γn:N )

)
U (z2 − k · γn:N ),

for j = 0

exp
(
−
m
γ̄
· k · γn:N

)[
d jg (z2 − k · γn:N )

dz2j

+

j−1∑
k ′=0

g(k
′) (0) δ(j−k

′
−1) (z2 − k · γn:N )


×U (z2 − k · γn:N ), for j > 0

(16)

where

g(t) =
t(N−n)·m−1 exp (−at)
((N − n) · m− 1)!

, (17)

or equivalently for n > m, the inverse LT term in (15) can be
obtained as

L−1s2

{
s2j
(
m
γ̄
+ s2

)−(N−n)·m
exp

(
−

(
m
γ̄
+ s2

)
· k · γn:N

)}

= exp
(
−
m
γ̄
· k · γn:N

)
(z2 − k · γn:N )(N−n)·m−j−1

× 1F̃1

(
(N − n)m, (N − n)m− j,−

m
γ̄
(z2 − k · γn:N )

)
×U (z2 − k · γn:N ). (18)
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IV. CLOSED-FORM EXPRESSIONS FOR
KEY JOINT STATISTICS FOR FRS
In this section, we investigate the following key joint statistics
for outage performance evaluation: fY ,W1 (·, ·), FY+W1 (·),
and FWn (·) for 2 ≤ n ≤ L in Sec. II.

A. TWO-DIMENSIONAL JOINT PDF OF TWO ADJACENT
PARTIAL SUMS OF ORDERED RVs, fY ,W1

(
x, y

)
In this case, the target 2-dimensional joint PDF of Y =
Nc−Ns∑
i=1

γi:N1 and W1 =
Nc∑

i=Nc−Ns+1
γi:N1 can be obtained with

the 4-dimensional joint PDF of Z1 =
Nc−Ns−1∑

i=1
γi:N1 , Z2 =

γNc−Ns:N1 , Z3 =
Nc−1∑

i=Nc−Ns+1
γi:N1 , and Z4 = γNc:N1 , where the

order statistics of N1 resolvable paths can be viewed as

Y︷ ︸︸ ︷
γ1:N1 , · · · , γNc−Ns−1:N1︸ ︷︷ ︸

Z1

, γNc−Ns:N1︸ ︷︷ ︸
Z2

,

W1︷ ︸︸ ︷
γNc−Ns+1:N1 , · · · , γNc−1:N1︸ ︷︷ ︸

Z3

, γNc:N1︸ ︷︷ ︸
Z4

, γNc+1:N1 , · · · , γN1:N1 .

(19)

In (19), Z1, Z2, Z3, and Z4 have the following conditions, such
that Z4 < Z2, Z1 > (Nc−Ns− 1)Z2 and (Ns − 1)Z4 < Z3 <
(Ns − 1)Z2. Based on these conditions and with the help of a
function of a marginal PDF, the joint PDF of Y andW1, fY ,W1 ,
can be obtained by integrating out z2 and z4 as

fY ,W1 (x, y)

=

∫ y
Ns

0

∫ x
Nc−Ns

y
Ns

fZ1,Z2,Z3,Z4 (x − z2, z2, y− z4, z4) dz2dz4.

(20)

Here, by adopting the unified MGF approach proposed
in [18], we obtain the 4-dimensional joint PDF in (20),
fZ1,Z2,Z3,Z4 (z1, z2, z3, z4), for i.i.d. Nakagami-m fading
assumption after applying (6), (7), (8), and (5) to the generic
2-dimensional PDF form in [18, eq. (42)] as given in (21) at
the top of the next page. Then, we substitute (21) into (20) and
then, after re-arranging and some simplification, (20) can be
expressed as shown in (22).

Following the detailed derivations in Appendix C, we can
obtain the closed-form expressions of the double integral term
in (22) as follows,

i) For h = Ns − 1,(
m
γ̄
(Ns − 1)

)−α−1(m
γ̄
k
)−β−1

γ

(
β + 1,

m
γ̄
·
k
Ns
y
)

×

[
γ

(
α+1,

m
γ̄
·
Ns−1
Nc−Ns

x
)
−γ

(
α+1,

m
γ̄
·
Ns−1
Ns

y
)]
.

(23)

ii) For 0 ≤ h ≤ Ns − 2,(
m
γ̄
(Ns − 1)

)−α−1(m
γ̄
k
)−β−1

×

[{
1− U

(
x

Nc − Ns
−

y
Ns − (h+ 1)

)}

× γ

(
β + 1,

m
γ̄
ka
){

γ

(
α + 1,

m
γ̄
·
Ns − 1
Nc − Ns

x
)
− 1

}

− γ

(
β + 1,

m
γ̄
·
k
Ns
y
){

γ

(
α + 1,

m
γ̄
·
Ns − 1
Ns

y
)
− 1

}]

+

α∑
t1=0

t1∑
t2=0

(
t1
t2

)
(−1)t1−t2α!

t1!

(
m
γ̄
(Ns − 1)

)t1−α−1

×
yt2(h+ 1)t1−t2

(Ns − (h+ 1))t1
exp

(
−
m
γ̄
·

Ns − 1
Ns − (h+ 1)

y
)

×

{
m
γ̄

(
k −

(Ns − 1) (h+ 1)
Ns − (h+ 1)

)}−β−t1+t2−1
×

[{
1− U

(
x

Nc − Ns
−

y
Ns − (h+ 1)

)}

× γ

(
β + t1 − t2 + 1,

m
γ̄

(
k −

(Ns − 1) (h+ 1)
Ns − (h+ 1)

)
a
)

− γ

(
β + t1−t2 + 1,

m
γ̄
·
1
Ns

(
k −

(Ns−1) (h+1)
Ns − (h+ 1)

)
y
)]
,

(24)

where γ (·, ·) is the lower incomplete gamma
function [40, eq. (8.352.1)].

B. ONE-DIMENSIONAL CDF OF THE
Nc/N1-GSC OUTPUT SNR, FY+W1

(x)
For convenience, we let Z ′ = Y +W1. Then, the target CDF

of Z ′ =
Nc∑
i=1
γi:N1 with the 2-dimensional joint PDF of Z1 =

Nc−1∑
i=1

γi:N1 and Z2 = γNc:N1 can be obtained as

FY+W1 (x) =
∫ x

0

∫ z
Nc

0
fZ1,Z2 (z− z2, z2) dz2dz. (28)

Here, by applying a similar approach used in (11) and (21),
and adopting the generic form in [18, eq. (44)] with (5)
and the related common core functions given in (6)
and (7), we can obtain the target 2-dimensional joint PDF,
fZ1,Z2 (z1, z2), in (26) at the top of the next page for the i.i.d.
Nakagami-m fading assumption.
Substituting (26) into (28) and then, with the help of [31,

eqs. (8.352.6), (3.381.1)] and then after some re-arranging
and some mathematical simplification, (28) can be expressed
as provided in (27).
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fZ1,Z2,Z3,Z4 (z1, z2, z3, z4)

=

N1−Nc∑
k=0

∑
n1,n2,··· ,nm≥0

n1+n2+···+nm=k

∑
n′1,··· ,n

′m≥0
n′1+···+n

′m=Nc−Ns−1

N ′(m)∑
j=0

Ns−1∑
h=0

∑
n′′1,··· ,n

′′m≥0
n′′1+···+n

′′m=h

∑
n′′′1,··· ,n

′′′m≥0
n′′′1+···+n

′′′m=Ns−1−h

N ′′(m)∑
j′=0

M(m)∑
q=0

×

(
N1 − Nc

k

)(
k

n1, n2, · · · , nm

)(
Nc − Ns − 1
n′1, · · · , n′m

)(
N ′ (m)
j

)(
Ns − 1
h

)(
h

n′′1, · · · , n′′m

)(
Ns − 1− h
n′′1, · · · , n′′′m

)(
N ′′ (m)
j′

)

×

(
M (m)
q

) F(−1)k+Ns−1−h
(
m
γ̄

) N (m)+N ′(m)+N ′′(m)
+M(m)+Nc ·m−j−j′−q

(Nc − Ns − 1)! (Ns − 1)!0(m)2
m−1∏
`1=0

(`1!)
n`1+1

m−1∏
`2=0

(`2!)
n′`2+1

m−1∏
`3=0

(`3!)
n′′`3+1

m−1∏
`4=0

(`4!)
n′′′`4+1

× zN
′(m)+M(m)+m−1

2 exp
(
−
m
γ̄
z2

)
zM(m)+N

′′(m)+m−1
4 exp

(
−
m
γ̄
(1+ k)z4

)
U (z2 − z4)

×L−1s1

 sj1(
m
γ̄
+ s1

)(Nc−Ns−1)m exp
(
−

(
m
γ̄
+ s1

)
(Nc − Ns − 1) z2

)
×L−1s3

 sj
′
+q

3(
m
γ̄
+ s3

)(Ns−1)m exp
(
−

(
m
γ̄
+ s3

)
(h · z4 + (Ns − 1− h) z2)

), (21)

where F = N1!
(N1−Nc)!

, N ′′ (m) =
∑m−1
`′′=0 `

′′
· n′′`′′+1,

L−1s1

 sj1(
m
γ̄
+ s1

)(Nc−Ns−1)m exp
(
−

(
m
γ̄
+ s1

)
(Nc − Ns − 1) z2

)
=

j∑
k ′=0

(
j
k ′

)(
m
γ̄

)j−k ′ (−1)j+k ′ k ′∏
k1=0

((Nc − Ns − 1)m− k1)

((Nc − Ns − 1)m)!
(z1 − (Nc − Ns − 1) z2)(Nc−Ns−1)m−1−k

′

× exp
(
−
m
γ̄
z1

)
exp

(
−
m
γ̄
(Nc − Ns − 1) z2

)
U (z1 − (Nc − Ns − 1) z2),

and

L−1s3

{(
m
γ̄
+ s3

)−(Ns−1)·m
(s3)j

′
+q exp

(
−

(
m
γ̄
+ s3

)
(h · z4 + (Nc − Ns − 1) z2)

)}

=

j′+q∑
k ′′=0

(
j′ + q
k ′′

)(
m
γ̄

)j′+q−k ′′ (−1)j′+q+k ′′ k ′′∏
k2=0

((Ns − 1) · m− k2)

((Ns − 1) · m)!

× (z3 − (h · z4 + (Ns − 1− h) z2))(Ns−1)·m−1−k
′′

exp
(
−
m
γ̄
z3

)
U (z3 − (h · z4 + (Ns − 1− h) z2)).

C. ONE-DIMENSIONAL CDF OF THE SUMS OF THE Ns
STRONGEST PATHS FROM EACH TARGET BS, FWn (x)
In this case, by applying a function of amarginal PDFwith the

2-dimensional joint PDF of Z ′1 =
Ns−1∑
i=1

γi:Nn and Z
′

2 = γNs:Nn ,

the target one-dimensional CDF of Wn =
Ns∑
i=1
γi:Nn can be

derived as

FWn (x) =
∫ x

0

∫ z
Ns

0
fZ ′1,Z ′2

(
z− z′2, z

′

2
)
dz′2dz. (28)

The closed-form expression of (28) can be easily obtained by
replacing Nc and N1 with Ns and Nn in (27), respectively.
The closed-form result of the integral form in (22) can be
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fY ,W1 (x, y)

=

N1−Nc∑
k=0

∑
n1,n2,··· ,nm≥0
n1+···+nm=k

∑
n′1,··· ,n

′m≥0
n′1+···+n

′m=Nc−Ns−1

N ′(m)∑
j=0

Ns−1∑
h=0

∑
n′′1,··· ,n

′′m≥0
n′′1+···+n

′′m=h

∑
n′′′1,··· ,n

′′′m≥0
n′′′1+···+n

′′′m=Ns−1−h

N ′′(m)∑
j′=0

M(m)∑
q=0

j∑
k ′=0

j′+q∑
k ′′=0

×

(Nc−Ns−1)m
−1−k′∑
p1=0

(Ns−1)m
−1−k′′∑
p2=0

(Ns−1)m
−1−k′′−p2∑
p3=0

(
N1 − Nc

k

)(
k

n1, · · · , nm

)(
Nc − Ns − 1
n′1, · · · , n′m

)(
N ′ (m)
j

)(
Ns − 1
h

)(
h

n′′1, · · · , n′′m

)

×

(
Ns − 1− h

n′′′1, · · · , n′′′m

)(
N ′′ (m)
j′

)(
M (m)
q

)(
j
k ′

)(
j′ + q
k ′′

)(
(Nc − Ns − 1)m− 1− k ′

p1

)
×

(
(Ns − 1)m− 1− k ′′

p2

)(
(Ns − 1)m− 1− k ′′ − p2

p3

)

×

F
k ′∏

k1=0
((Nc − Ns − 1)m− k1)

k ′′∏
k2=0

((Ns − 1)m− k2)(Nc − Ns − 1)p1hp3(Ns − 1− h)
(Ns−1)m−1
−k′′−p2−p3

m−1∏
l1=0

(l1!)
nl1+1

m−1∏
l2=0

(l2!)n
′
l2+1

m−1∏
l3=0

(l3!)
n′′l3+1

m−1∏
l4=0

(l4!)n
′′′
l4+1 (Nc − Ns − 1)!(Ns − 1)!0(m)2 ((Ns − 1)m)! ((Nc − Ns − 1)m)!

×

(
m
γ̄

) N (m)+N ′(m)+N ′′(m)
+M(m)+Ncm−k′−k′′

(Nc−Ns−1)m
−1−k′−p1∑
p4=0

p2∑
p5=0

(
(Nc − Ns − 1)m− 1− k ′ − p1

p4

)(
p2
p5

)
xp4yp5 (−1)

k+(Ns−1−h)+j+k′

+j′+q+k′′−p4−p5 exp
(
−
m
γ̄
(x + y)

)

×

∫ y
Ns

0

∫ x
Nc−Ns

y
Ns

z2αz4β exp
(
−
m
γ̄
(Ns − 1) z2

)
exp

(
−
m
γ̄
kz4

)
U (z2 − z4)U (x − (Nc − Ns) z2)

×U (y− ((h+ 1) z4 + (Ns − (h+ 1)) z2)) dz2dz4, (22)

where α = N ′ (m)+M (m)+ (Nc − 1)m− k ′ − k ′′ − 3− p2 − p3 − p4 and β = N (m)+ N ′′ (m)+ m− 1+ p3 + p2 − p4.

fZ1,Z2 (z1, z2) =
N1−Nc∑
k=0

∑
n′1,n

′
2,··· ,n

′m≥0
n′1+n

′
2+···+n

′m=k

∑
n1,n2,··· ,nm≥0

n1+n2+···+nm=Nc−1

N (m)∑
j=0

(
N1 − Nc

k

)(
k

n′1, n′2, · · · , n′m

)(
N (m)
j

)

×

F(−1)k
(
m
γ̄

)N ′(m)+N (m)+Nc·m−j
(Nc − 1)! (m− 1)!

(
m−1∏
`′=0

(`′!)n
′
`′+1

)(
m−1∏̀
=0
(`!)n`+1

) zN ′(m)+N (m)+m−12 exp
(
−
m
γ̄
(k + 1) z2

)

×L−1s1

{(
m
γ̄
+ s1

)−(Nc−1)·m
(s1)j exp

(
−

(
m
γ̄
+ s1

)
(Nc − 1) z2

)}
, (26)

where F = Nc! and

L−1s1

{(
m
γ̄
+ s1

)−(Nc−1)·m
(s1)j exp

(
−

(
m
γ̄
+ s1

)
(Nc − 1) z2

)}

=

j∑
k ′=0

(
j
k ′

)
(−1)j+k

′

(
m
γ̄

)j−k ′ k ′∏̀
=0
((Nc − 1) · m− `)

((Nc − 1) · m)!
(z1 − (Nc − 1) z2)(Nc−1)·m−1−k

′

exp
(
−
m
γ̄
z1

)
U (z1 − (Nc − 1) z2) .

obtained by separately considering i) h = Ns − 1 and
ii) 0 ≤ h ≤ Ns − 2 as shown in (23) and (24), respectively.

V. DISCUSSIONS AND CONCLUSIONS
In this work, we provided new exact closed-form order
statistics of partial sums of Gamma random variables by

deriving the closed-form results of common core functions
specialized for Nakagami fading. In addition, we analyzed the
outage performance of FRS proposed in [26] operating over
Nakagami-m fading channels as a feasible application
example.
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FY+W1 (x)

=

N1−Nc∑
k=0

∑
n′1,··· ,n

′m≥0
n′1+···+n

′m=k

∑
n1,··· ,nm≥0

n1+···+nm=Nc−1

N (m)∑
j=0

j∑
k ′=0

(Nc−1)·m+k ′∑
p=0

(Nc−1)m−1
−k′−p∑
q=0

(
N1 − Nc

k

)(
k

n′1, · · · , n′m

)

×

(
Nc − 1

n1, · · · , nm

)(
N (m)
j

)(
j
k ′

)(
(Nc − 1)m− 1+ k ′

p

)(
(Nc − 1)m− 1− k ′ − p

q

)

×

F(−1)k+j+(Nc−1)m−q−1
k ′∏̀
=0
((Nc − 1)m− `)(Nc − 1)p

(Nc − 1)! ((Nc − 1)m)!0 (m)

(
m−1∑
`′=0

(`′!)n
′
`′+1

)(
m−1∏̀
=0
(`!)n`+1

) (N ′ (m)+ N (m)+ m · Nc − k ′ − q− 2
)
!

×

γ (q+ 1,
m
γ̄
· x
)
−


N ′(m)+N (m)+mNc
−k′−q−2∑
t=0

1
t!
(k)

t−N ′(m)−N (m)
−mNc+k′+q+1

(
1
Nc

)t(
1+

k
Nc

)−q−t−1
γ

(
q+ t + 1,

m
γ̄

(
1+

k
Nc

)
x
)

.
(27)

If the closed-form results of the joint statistics, especially
in order statistics, are not available, the numerical estima-
tion of multi-fold integral expressions (e.g., the N -fold inte-
grals given in (9)) are required. However, estimating them
accurately as N increases is difficult even with conventional
mathematical tools. When the N is large, estimating the
analytical results is almost impossible. However, with closed-
form results derived here, probabilistic analysis is numer-
ically possible with conventional mathematical tools. Note
that the closed-form expressions seems to be complicated
and they can be further summarized in a functionalized
shape. However, to demonstrate how we obtained the derived
results and the feasibility of applying the derived results to
an application, we maintain them in a minimally simplified
form. With these results, the user can directly change/apply
the obtained results in the form desired by the user. The
closed-form expressions may appear to be complicated, but
the numerical results can be easily obtained. On the other
hand, it is almost impossible to obtain numerical results phys-
ically with conventional mathematical tools due to estimation
difficulties.

Further, as a validation of our analytical formula for the
outage probability, in Fig. 1, we cross-verified the analytical
results and the simulation results obtained via Monte-Carlo
simulation. Fig. 1 showed that the derived analytical results
match the simulation results. As a result, we believe that we
can accurately predict the performance with them.

Note that closed-form results on ordered statistics of par-
tial sums of ordered random variables over Nakagami fad-
ing remained in an open problem, even with integer fading
parameter values. Note also that although derived closed-
form results limited to integer fading parameter values, they
can still covers most cases of interest in practice. Therefore,
in the view of contribution to ordered statistics, these new

FIGURE 1. Outage probability of finger replacement schemes for RAKE
reception in the soft handover region over i.i.d. Nakagami-m fading
channels when L = 4, N1 = · · · = N4 = 5, Nc = 3, Ns = 2, γT = 3, and
γ̄ = 1.

statistical results can provide the potential solution of both
other ordered statistics in the presence of Nakagami fading
in advanced wireless communications research and any other
research topics based on Gamma distributions.

APPENDIX A
DERIVATION OF CLOSED-FORM EXPRESSIONS
OF THREE COMMON CORE FUNCTIONS
In Sec. III, with (5), we can write the mixture of a CDF
and an MGF for the i.i.d. Nakagami fading assumption
as

c(γ,−si) =
(
m
γ̄

)m 1
0(m)

∫ γ

0
γm−1 exp

(
−

(
m
γ̄
+ si

)
x
)
dx.

(29)
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Then, with the help of [31, eq. (3.381.1) and eq. (8.352.1)],
the closed-form result of (29) can be obtained as

c (γ,−si)

=

(
m
γ̄

)m 1
0 (m)

(
m
γ̄
+ si

)−m
γ

(
m,
(
m
γ̄
+ si

)
γ

)
or
=

(
m
γ̄

)m(m
γ̄
+ si

)−m

×

1− exp
(
−

(
m
γ̄
+ si

)
γ

) m−1∑
l=0

[(
m
γ̄
+ si

)
γ
]l

l!

.
(30)

With the summand expression in (30), by applying the bino-
mial theorem, the n-th power of c (γ,−si) for arbitrary n can
be obtained as

[c (γ,−si)]n =
(
m
γ̄

)nm(m
γ̄
+ si

)−nm
×

n∑
k=0

(
n
k

)
(−1)k exp

(
−

(
m
γ̄
+ si

)
kγ
)

×

m−1∑
l=0

(
m
γ̄
+ si

)l
γ l

l!


k

. (31)

Here, with the help of the multinomial theorem, we obtain the
following relationship:m−1∑

l=0

(
m
γ̄
+ si

)l
γ l

l!


k

=

∑
n1,n1,··· ,nm≥0

n1+n1+···+nm=k

(
k

n1, n1, · · · , nm

)
Mn1

0 Mn2
1 · · ·M

nm
m−1,

(32)

where Ml =

[(
m
γ̄
+ si

)
γ
]l
/l! and some mathematical

manipulations give us

Mn1
0 Mn2

1 · · ·M
nm
m−1

=
γ N (m)

m−1∏
l=0

(l!)nl+1

N (m)∑
j=0

(
N (m)
j

)(
m
γ̄

)N (m)−j
sij, (33)

where N (m) =
∑m−1

l=0 l · nl+1. Thus, after successive substi-
tution from (33) to (31), we can get (6).

Similarly, with the help of [31, eq. (3.381.3) and
eq. (8.352.2)] and then by applying the binomial theorem,
the closed-form expressions of the n-th power of e (γ,−si)
and µ (γa, γb,−si) for arbitrary n can be obtained as shown
in (7) and (8), respectively.

APPENDIX B
INVERSE LT PAIR AND RELATED USEFUL FUNCTION
The following inverse LT is useful for the derivation of
final PDF closed-form expressions from MGF expressions
in Sec. III

L−1s
{

sm

(a+ s)n
exp (−b (a+ s))

}
. (34)

Here, let F (s) = sm
(a+s)n , then, L

−1
s {F (s)} = f (t) and we

can obtain the following inverse LT pair for b > 0:

L−1s {F (s) exp (−b (a+ s))}
L.T
←→ exp (−ba) f (t − b)U (t − b). (35)

In (35), let G (s) = 1
(a+s)n and L−1s {G (s)} = g (t), then

F (s) = smG (s) and we can obtain the inverse LT pair of
F (s) by applying classical inverse LT pairs and properties as

F (s) = smG (s)
L.T
←→ f (t)

=
dmg (t)
dtm

+

m−1∑
k=0

g(k) (0) δ(m−k−1) (t), (36)

where g (t) = tn−1 exp(−at)
(n−1)! . Therefore, the inverse LT pair

in (34) can be obtained as

L−1s
{
smG (s) exp (−b (a+ s))

}
L.T
←→ exp(−ba)

[
dmg(t−b)

dtm
+

m−1∑
k=0

g(k)(0)δ(m−k−1)(t−b)

]
×U (t − b). (37)

Here, form > 0,
∑m−1

k=0 g
(k) (0) δ(m−k−1) (t − b)U (t − b) ≈

0. Thus, (37) can be finally simplified as

L−1s
{
smG (s) exp (−b (a+ s))

}
L.T
←→ exp (−ba)

dmg (t − b)
dtm

U (t − b). (38)

With (38), we still need to derive the m-th derivative of g (t).
In this paper, we assume that g(t) = exp(−a·t)tn−1

(n−1)! and we
derive the derivative of g (t) for a special case and then we
can extend this result to the general case. More specifically,
after i) differentiating g(t) based on the product rule one
time, two times, and three times and then ii) rearranging and
simplifying them, the first, second, and third derivative of
g (t) can be written, respectively, as

g′ (t) =
exp (−a · t)
(n− 1)!

(−1)
(
a · tn−1 − (n− 1) tn−2

)
, (39)

g′′ (t) =
exp (−a · t)
(n− 1)!

(−1)2
(
a2 · tn−1 − 2a (n− 1) tn−2

+ (n− 1) (n− 2) tn−3
)
, (40)

and

g′′′ (t) =
exp (−a · t)
(n− 1)!

(−1)3
(
a3 · tn−1 − 3a2(n− 1)tn−2

+ 3a(n−1)(n−2)tn−3−(n−1)(n−2)(n−3)tn−4
)
.

(41)
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FIGURE 2. Integral regions for Eq. (43).

As a result, from (39)-(41), we can now obtain the m-th
derivative of g (t) for arbitrary m as

g(m) (t) =
∑m

k=0
(−1)k+m

(
m
k

)
am−k

∏k
l=0 (n− l)

n!
tn−1−k

× exp (−at). (42)

APPENDIX C
DERIVATION OF THE CLOSED-FORM EXPRESSION OF (22)
To obtain the closed-form expression of (22), we need to
calculate the following double integral term∫ y

Ns

0

∫ x
Nc−Ns

y
Ns

z2αz4β

× exp
(
−
m
γ̄
(Ns − 1) z2

)
exp

(
−
m
γ̄
kz4

)
U (z2 − z4)

×U (x − (Nc − Ns) z2)
×U (y− ((h+ 1)z4 + (Ns − (h+ 1))z2))dz2dz4. (43)

Based on the given conditions associated with parame-
ters z2 and z4, we need to consider two different shaded
regions shown in Fig. 2. More specifically, the overall inter-
section region depends on the intersection point between
z2 = − h+1

Ns−(h+1)
· z4 +

y
Ns−(h+1)

(for 0 ≤ h ≤ Ns − 1)

and the z2-axis. For case i), the z2-coordinate term for the
intersection point of z2 = − h+1

Ns−(h+1)
· z4 +

y
Ns−(h+1)

and z2-
axis (i.e., cz2 =

y
Ns−(h+1)

, where cz2 represents the z2-axis
value of the intersection.) is located between y

Ns
and x

Nc−Ns
.

Therefore, the intersection becomes the shaded region filled
with a blue line under z2 = − h+1

Ns−(h+1)
· z4 +

y
Ns−(h+1)

. For

case ii), the z2-coordinate term for the intersection point is
located over x

Nc−Ns
on the z2-axis. Therefore, the intersection

region becomes the shaded region filled with a red line under
both z2 = x

Nc−Ns
and z2 = − h+1

Ns−(h+1)
· z4 +

y
Ns−(h+1)

.
Specifically, for z4 < ez4 (where ez4 represents the z4-axis
value of the intersection point between z2 = x

Nc−Ns
and

z2 = − h+1
Ns−(h+1)

·z4+
y

Ns−(h+1)
and ez4 =

y
(h+1)−

Ns−(h+1)
(Nc−Ns)

x),

the intersection becomes the shaded region under z2 =
x

Nc−Ns
. Otherwise, the intersection becomes the shaded region

under z2 = − h+1
Ns−(h+1)

· z4 +
y

Ns−(h+1)
. Note that these two

cases are dominated by the relationship among parameters
(Nc and Ns).
Based on the above observations, the valid integration for

case i) is 0 ≤ z4 ≤
y
Ns

and y
Ns
≤ z2 ≤ − h+1

Ns−(h+1)
· z4 +

y
Ns−(h+1)

. For case ii), we need to consider the following two

cases: a) h = Ns − 1 and b) 0 ≤ h ≤ Ns − 2. As a result, for
case ii)-a), the valid integration is 0 ≤ z4 ≤

y
Ns

and y
Ns
≤ z2 ≤

x
Nc−Ns

. Otherwise, based on the above observations, we need
to consider two regions separately. More specifically, for the
shaded region under z2 = x

Nc−Ns
, the valid integration region

is 0 ≤ z4 ≤ ez4 and
y
Ns
≤ z2 ≤ x

Nc−Ns
. Otherwise, the valid

integration is ez4 ≤ z4 ≤
y
Ns

and y
Ns
≤ z2 ≤ − h+1

Ns−(h+1)
· z4 +

y
Ns−(h+1)

.
As a result, we can rewrite (43) as
a) For h = Ns − 1,∫ y
Ns

0

∫ x
Nc−Ns

y
Ns

z2αz4β

× exp
(
−
m
γ̄
(Ns − 1) z2

)
exp

(
−
m
γ̄
kz4

)
dz2dz4. (44)

b) For 0 ≤ h < Ns − 1,

U
(

x
Nc − Ns

−
y

Ns − (h+ 1)

)
×

∫ y
Ns

0

∫
−

h+1
Ns−(h+1)

·z4+
y

Ns−(h+1)

y
Ns

z2αz4β

× exp
(
−
m
γ̄
(Ns − 1) z2

)
exp

(
−
m
γ̄
kz4

)
dz2dz4

+

[
1− U

(
x

Nc − Ns
−

y
Ns − (h+ 1)

)]
×

{∫ ez4

0

∫ x
Nc−Ns

y
Ns

z2αz4β

× exp
(
−
m
γ̄
(Ns − 1) z2

)
exp

(
−
m
γ̄
kz4

)
dz2dz4

+

∫ y
Ns

ez4

∫
−

h+1
Ns−(h+1)

z4+
y

Ns−(h+1)

y
Ns

z2αz4β exp
(
−
m
γ̄
(Ns−1)z2

)
× exp

(
−
m
γ̄
kz4

)
dz2dz4

}
. (45)

With (44) and (45), we need to determine four double-
integral terms over z2 and z4. For the double-integral term
in (44) and the second double-integral term in (45), we can
simply obtain the closed-form expression by simply adopt-
ing [31, eq. (3.381.1)] for each integration over z2 and z4
separately as shown in (23) and (24). For the first and third
double-integral terms in (45), we can obtain the closed-
form expression of the inner integral term as the function
of the exponential and the incomplete Gamma function,
γ (·, ·) [31, eq. (3.381.1)]. By rearranging the incomplete
Gamma function as the summation form with the help of
[31, eq. (8.352.6)] and then applying [31, eq. (3.381.1)],
we can obtain the closed-form expression as given in (24).
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