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ABSTRACT Rainbow is one of the most important signature schemes in multivariate public key cryp-
tography. It enjoys a strong security guarantee and is a promising signature scheme in Post-Quantum
Cryptography. However, it suffers from large key size. In this paper, we propose Circulant Rainbow with
shorter private key and higher signing efficiency. In Circulant Rainbow, we introduce rotating relations
into parts of Rainbow private key to speed up the signing procedure and reduce the private key size. We
carefully choose security parameters so that our Circulant Rainbow is secure against all known attacks. In our
experiment, Circulant Rainbow is about three times faster than original Rainbow and it can reduce the private
key size by about 45%. We also make a comparison of Circulant Rainbow with some traditional signature
schemes, the results show that Circulant Rainbow is a promising candidate in Post-Quantum Cryptography.

INDEX TERMS MPKC, Rainbow signature scheme, Post-Quantum Cryptography, AVX2.

I. INTRODUCTION
In [1] and [2], Shor proposed some polynomial-time algo-
rithms for prime factorization and discrete logarithms on a
quantum computer. It posed a serious threat to some existing
cryptographic schemes such as RSA and ECC. The Post-
Quantum Cryptography [3], which is secure against attacks
by quantum computers, has become a hot research area.
Multivariate public key cryptography (MPKC) is one of the
promising candidates for Post-Quantum Cryptography.

Security of MPKC is based on the hardness of solving a set
of quadratic multivariate equations over a finite field, which
is called MQ problem [4]. The MQ problem is proven to be
NP-hard [5], [6], and quantum computers do not appear to
have any advantages in solving it. In addition, MPKC is very
suitable for resource constrained devices such as WSN nodes
and smart cards.

Since the emergence of the first MPKC scheme: MI [7],
there have been many MPKC encryption and signature
schemes such as HFE [8], ZHFE [9], STS [10], PMI [11],
UOV [12], ABC [13], EFC [14] and so on. However,
many of them are broken by various attacks such as Dif-
ferential attack [15], MinRank attack [16]–[18], Highrank
attack [19], [20], algebraic key recovery attack [21] and

Direct attack [22], [23]. It is clear that secure MPKC schemes
are extremely rare.

Rainbow [24] is one of the most important signature
schemes in MPKC. It enjoys a strong security guarantee and
a fast verification procedure. None of the existing attacks can
cause severe security threats to it. However, Rainbow has
not been widely used mainly because of its large key size.
Therefore, reducing the sizes of private and public keys of
Rainbow is an important research direction.

Petzoldt et al. [25] proposed Cyclic Rainbow to reduce
public key size of Rainbow and improve the verification
speed. They inserted some cyclic relations into generation of
public key and accelerated the verification using the relations.
Several variants of Rainbow using sparse private keys have
been proposed to reduce the private key size and improve the
signing process, e.g. Enhanced TTS [20] MB Rainbow [26],
NT Rainbow [27]. Although Enhanced TTS was broken
in [28] because that it lacks some cross-terms of Vinegar
variables and Oil variables, the method of reducing private
key size of Rainbow using sparse key [26], [27], [29] survived
now. However, we find out that the suggested parameters of
MB Rainbow and NT Rainbow can be broken by algebraic
key recovery attack using good keys.
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A. OUR CONTRIBUTIONS
In this paper, we carefully analyze the security of MB Rain-
bow and NT rainbow and revise their parameters for 80 bits
and 100 bits security. We propose a new Rainbow variant
called Circulant Rainbow. It provides a newway to reduce the
private key size and improve the signing speed of Rainbow.
We carefully choose security parameters to make Circulant
Rainbow secure against all known attacks. The private key
size of Circulant Rainbow is smaller by 45% than that of
original Rainbow. To demonstrate the efficiency, we imple-
ment our Circulant Rainbow. The results show that Circulant
Rainbow is about 3 times faster than original Rainbow and
it outperforms many other signature schemes in both signing
and verification speed.

II. RAINBOW AND RAINBOW VARIANTS
In this section, we give a description of Rainbow and its
variants.

A. BASIC RAINBOW
Ding and Schmidt proposed a signature scheme called
Rainbow, which is a generalization of the Oil-Vinegar sig-
nature scheme (OV) [30]. The key point of Rainbow is the
idea of a multi-layer Oil-Vinegar system.

Let t be the number of layers in Rainbow. Let v1, . . . , vt+1
be t + 1 integers such that 0 = v0 < v1 < v2 < · · · <
vt+1 = n. For i=1,. . . ,t , the set of indices of the i-th layer in
Rainbow is defined by integers vi and oi = vi+1 − vi. The

number of equations is m =
t∑
i=1

oi and number of variables

is n. We call (v1,o1,. . . ,ot ) a parameter of Rainbow and denote
it by Rainbow(K , v1, o1, . . . , ot ).
LetG=(gv1+1, . . . , gn) be amap fromK n toKm where each

gh is a quadratic polynomial of the form:

gh = xTAhx+ bhx+ ch, x = (x1, . . . , xn)T .

Let h = vi + j for i ∈ [1, . . . , t] and j ∈ [1, . . . , oi]. Here,
Avi+j is a square matrix over K with size n expressed by

Avi+j =

VVvi+j VOvi+j 0
0 0 0
0 0 0

,
whereVVvi+j is a randomly chosen squarematrix with dimen-
sion vi and VOvi+j is a random matrix chosen vi*oi matrix.
bh is a vector in K n taking the form:

bvi+j = (b′vi+j,

n− vi+1︷ ︸︸ ︷
0, . . . , 0),

where b′vi+j is a randomly chosen vector in K vi+1 . ch is a
randomly chosen element in K . The inverse of map G can
be easily computed. For any vector y=(y1, . . . , ym)∈ Km, its
preimage can be computed using Algorithm 1.

Here we give a general description of Rainbow.

Algorithm 1 G−1(y)
Input: y = (y1, . . . , ym) ∈ Km.
Output: x = (x1, . . . , xn) ∈ K n.
1: Randomly choose s1, . . . , sv1 ∈ K and let i = 1.
2: Substitute (x1, . . . , xv1 )=(s1, . . . , sv1 ) into
gvi+1, . . . , gvi+oi to get a system of linear equations
Lx = u in oi variables (If the system is not regular, go
back to line 1).

3: Solve the system using Gauss Elimination and obtain a
solution (xvi+1, . . . , xvi+oi )=(svi+1, . . . , svi+oi ).

4: Let i = i+ 1. If i < t + 1, go back to line 2.
5: return (x1, . . . , xn).

1) PRIVATE KEY
The private key consists of the map G: K n

→ Km, and two
randomly chosen affine transformations S: Km

→ Km and
R : K n

→ K n.

2) PUBLIC KEY
The public key consists of the composite map P = S ◦G ◦R:
K n
→ Km.

3) SIGNATURE GENERATION
Suppose the document to be signed is m. Then we sign it as
follows:

1) Hash it to w ∈ K n.
2) Compute y = S−1(w).
3) Compute x = G−1(y) using Algorithm 1.
4) Finally compute s = R−1(x) as signature.

4) SIGNATURE VERIFICATION
The signer sends a document-signature pair (m, s) to
a receiver. The receiver checks the correctness of the
signature by checking if P(s) = Hash(m). If it
matches, the signature is valid. Otherwise, the signature is
fake.

B. RAINBOW VARIANTS
Petzoldt et al. [25] inserted some special sequences into the
generation of public key of Rainbow to save memory. Cyclic
Rainbow is a special case of this method. It introduces cyclic
relations into public key of Rainbow to reduce the public key
size. In the meantime, it improves the verification speed by
using the cyclic relations.

Several variants of Rainbow using sparse private keys
have been proposed to reduce the private key size and
improve the signing process. Enhance TTS was proposed
by Yang and Chen in 2005 [20]. The overall idea of the
scheme is to use several layers of UOV trapdoors and make
them as sparse as possible. It can be viewed as a variant
of Rainbow. It admits shorter key size and faster signing
speed. However, it was broken by a variant of Rainbow-Band-
Separation (RBS) attack in [28] because it lacks cross-terms
of Vinegar variables and Oil variables.
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Yasuda et al. [26] proposed MB Rainbow, which divides
each layer of Rainbow into smaller blocks by using diagonal
matrix representations. The private key size of the MB Rain-
bow is smaller by 40% than that of original Rainbow and its
signing speed is sped up by 40%. Yasuda et al. [27] proposed
NT Rainbow, which introduces some rotating relations into
Vinegar-Vinegar terms of the central map of Rainbow. It can
also be combined with MB Rainbow to improve Rainbow
even further [29]. However, we find out that MB Rainbow is
vulnerable to a variant of RBS attack and suggested parameter
sets of NT Rainbow proposed in [26] are not large enough to
resist RBS attack [21]. In order to achieve the same security
levels, we have to revise the parameters of them.

C. RBS ATTACK AGAINST MB RAINBOW
AND NT RAINBOW
For Rainbow(K ,v1,o1,o2), the goal of RBS attack is to find
the special equivalent key S ′ and R′ such that

F = S ◦ G ◦ R = S ′ ◦ G′ ◦ R′

for a valid trapdoor G′, where S ′ and R′ have the special
structure shown in Fig. 1.

FIGURE 1. Equivalent keys for Rainbow(v1, o1, o2). White parts denote
zero elements, gray parts denote arbitrary elements and there are
ones at the diagonal.

In RBS attack against Rainbow, there exists good key S ′n
and R′n of the form in Fig. 2.

FIGURE 2. Good key for Rainbow(v1, o1, o2).

Only the last column of S ′n contains arbitrary elements in
the first two blocks, which are equal to the corresponding
values in S ′. Respectively, only the second block of the o1-th
row of R′n contains arbitrary elements, which are equal to the
corresponding values in R′. The secret map (S ′−1n ◦ P) ◦ R′−1n
will have the following form in Fig. 3.

FIGURE 3. Central map of Rainbow(v1, o1, o2) after applying the good
key transformation.

Then we can get one cubic equation and m + n − 2
quadratic equations in n variables of R′n and S

′
n. To estimate

the complexity of solving such a system, we have to calculate
the degree of regularity dreg [31], which is the index of the
first non-positive coefficient in the Hilbert series Sm,n with

Sm,n =

∏m
i=1(1− z

di )
(1− z)n

,

where di is the degree of the i-th equation. The computational
complexity of solving such a system using F4 algorithm is
bounded by

O(
(
n+ dreg
dreg

)ω
),

where n is the number of variables, m is the number of
equations, ω is a linear algebra constant and 2 ≤ ω ≤ 3.
In general, we set ω = 2 for cryptanalysis.
For NT Rainbow with suggested parameter

(GF(256),18,14,14) for 80 bits security, we can get one cubic
equation and 72 quadratic equations in 46 variables when
applying RBS attack. The complexity of solving such a
system of equations using F4 algorithm is about 270, which
is weaker than the author’s claim.

For MB Rainbow with suggested parameter
(GF(256),31,19,2*12) for 100 bits security, we can get one
cubic equation and 155 quadratic equations in 74 variables
when applying RBS attack. The complexity of solving such a
system of equations using F4 algorithm is about 2110, which
seems to meet the security requirement. However, this attack
does not exploit the special key structure of MB Rainbow. In
MB Rainbow(K , v1, o1, d ∗ o′2), we have more zero columns
in the last layer of its central map. After we apply S ′−1n and
R′−1n to the public key P. The map (S ′−1n ◦ P) ◦ R′−1n actually
have the following form in Fig. 4.

This means that we can get one cubic equation and
(n − 1) ∗ (m − o1 − o′2 + 1) + (m + 1) quadratic equations
in n variables of R′n and S ′n. We give a proof-of-concept
code to show this weakness.1 For MB Rainbow with param-
eter (GF(256),31,19,2*12), we can actually get one cubic

1Proof-of-concept code can be found at https://github.com/
edwardz246003/MB-Rainbow
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FIGURE 4. Central map of MB Rainbow(K , v1, o1, d ∗ o′2) after applying
the good key transformation.

equation and 993 quadratic equations in 74 variables when
applying RBS attack. The complexity of solving such a sys-
tem of equations using F4 algorithm is about 233 which is
much weaker than that in original RBS attack.

1) DISCUSS
MBRainbow is vulnerable to RBS attack because it has more
zero columns in the last layer of its central map. Attackers
can get more equations in the first step of RBS attack. To
block this attack, we should avoid using MB structure in
the last layer of MB Rainbow. Fortunately, other layers of
MB Rainbow can still use MB structure to speed up sign-
ing process. We can re-select the parameter sets for MB
Rainbow to achieve the intended security levels. As for NT
Rainbow, the parameter sets proposed in [27] are weaker
than the author’s claim when applying RBS attack on it. Our
revised parameters for MB Rainbow and NT Rainbowwill be
presented in Section V.

III. DESCRIPTION OF CIRCULANT RAINBOW
In this section, we propose a new Rainbow variant called
Circulant Rainbow. Although its name is similar with Cyclic
Rainbow, the basic ideas are very different. In Cyclic Rain-
bow, the authors are able to reduce the public key size and
improve the verification speed. But in our Circulant Rainbow,
we aim at reducing the private key size and improving the
signing speed. Here we start by explaining the basic idea
underlying our scheme.

A. BASIC UNDERLYING IDEA
The key idea underlying our scheme is a modification of
linear equations appearing inAlgorithm 1 of Rainbow signing
procedure.

As described in Algorithm 1 of Rainbow signing proce-
dure, we have to solve a system of linear equations described
as Lx = u in the i-th layer of Rainbow. L is a square
matrix over K with size oi, u is a column vector over K
with size oi and x is a vector of oi variables. In general, we
use Gauss Elimination to find a solution for x, which takes
O(o3i ) operations on the base field to do this. In Circulant

Rainbow, we introduce some rotating relations into parts
of Rainbow central map to make L become a circulant
matrix [32] which can be inverted efficiently. Here we define
a circulant matrix L taking the form:

L =


l1 l2 · · · loi−1 loi
loi l1 · · · loi−2 loi−1
...

...
. . .

...
...

l3 l4 · · · l1 l2
l2 l3 · · · loi l1

.
When L is a circulant matrix, we can use the extended

Euclidean algorithm to compute the inverse of it. This only
takes O(o2i ) operations on the base field. In addition, the
structure introduced in the central map will also improve the
speed of the remaining parts of Algorithm 1 significantly.

To make L be a circulant matrix, we introduce some rotat-
ing relations into each layer of the central map of Rainbow.
Here we first show the matrix representation of the i-th layer
central polynomials of Circulant Rainbow. We keep the con-
stant and linear parts so that the central matrices are square
matrices with size vi + oi + 1 of the form in Fig. 5.

FIGURE 5. Central map matrix of the i -th layer of Circulant Rainbow.

The white areas stand for zero elements. The gray areas
stand for arbitrary elements in the base field. The blue areas
will have some rotating relations with other central matrices.
VVvi+j is a square matrix with size vi standing for Vinegar-
Vinegar cross-terms coefficients and VOvi+j is a vi ∗oj matrix
standing for Oil-Vinegar cross-terms. αvi+j in the last column
stands for the linear coefficients of Vinegar variables, βvi+j
in the last column stands for the linear coefficients of Oil
variables and cvi+j stands for constant term. Every single
central matrix of Circulant Rainbow looks exactly the same
as that of original Rainbow.
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As we describe above, Circulant Rainbow doesn’t have
circulant matrix in its central maps. It only has some rotat-
ing relations among parts of submatrix of different central
matrices. Those rotating relations will help us to get cir-
culant matrices during the signing process. Here we write
matrix VOvi+j in column form. VOvi+j and βvi+j have the
following rotating relations:

VOvi+1 = (voi,1, voi,2, · · · , voi,oi )

VOvi+2 = (voi,oi , voi,1, · · · , voi,oi−1)
...

VOvi+oi = (voi,2, voi,3, · · · , voi,1)

βvi+1 = (βi,1, βi,2, · · · , βi,oi )
T

βvi+2 = (βi,oi , βi,1, · · · , βi,oi−1)
T

...

βvi+oi = (βi,2, βi,3, · · · , βi,1)T .

B. INVERTING THE CENTRAL MAP
Since our central map G is a special form of the G given in
Section II-A, we can use Gauss Elimination to compute the
inverse of our G. Here we are going to describe a faster way
to invert the central map of Circulant Rainbow.
Assume the vector to be inverted is y and the Vinegar

vector for the i-th layer is v = (v1, . . . , vvi ). Substituting
(x1, . . . , xvi ) with (v1, . . . , vvi ), we will get a linear equation
system of oi variables. For each central polynomial gvi+j in
the i-th layer, we get an equation:

vT · VVvi+j · v+ vT · αvi+j + cvi+j︸ ︷︷ ︸
constant

+ vT · VOvi+j · o+ βvi+j · o︸ ︷︷ ︸
linear in o

= yvi+j,

where vector o = (xvi+1, . . . , xvi+oi ) stands for Oil variables.
Let

uvi+j = yvi+j − (vT · VVvi+j · v+ vT · αvi+j + cvi+j)

for j ∈ [1, · · · , oi]. Then we get a linear system:
vT · VOvi+1 + βvi+1
vT · VOvi+2 + βvi+2

...

vT · VOvi+oi−1 + βvi+oi−1
vT · VOvi+oi + βvi+oi


︸ ︷︷ ︸

L


xvi+1
xvi+2
...

xvi+oi−1
xvi+oi

=


uvi+1
uvi+2
...

uvi+oi−1
uvi+oi

 .

AsmatricesVOvi+j and vector βvi+j have rotating relations.
After plugging in vector v, L will become a circulant matrix
with size oi, which can be inverted efficiently.

1) COMPUTING L
Before talking about how to invert L, we first introduce how
to calculate L efficiently. To compute matrix L, we need to
compute vT · VOvi+j + βvi+j for j ∈ [1, . . . , oi]. Since L is a

FIGURE 6. Estimated value of P(o).

circulant matrix, we only need to compute the first row of L.
The rest of L can be generated by its right rotating sequences.
The time complexity of computing L is improved by a factor
of oi in i-th layer of Circulant Rainbow.

2) INVERTIBLE PROBABILITY OF L
If the matrix L we get is not invertible, we have to choose
another randomVinegar vector v to get an invertible matrix L.
To get a faster signing algorithm, we have to make sure that
the invertible probability of a random circulant matrix is large
enough. We test the invertible probability P(o) of a random
circulant matrix over GF(256) with size o by experiments.
We test each P(o) with o ∈ [10, 40] for 105 times and record
their average values. Fig. 6 gives the estimated value of P(o).

From Fig. 6, we can observe that P(o) is very close to 1.

3) INVERTING L
In this paper, we use extended Euclidean algorithm to com-
pute the inverse of a circulant matrix L. Suppose L is an
invertible circulant matrix over a finite field K with size o.
It is well known that the inverse of a circulant matrix is also
circulant. We consider the problem of computing a circulant
matrix J that LJ = I . Let (l0,l1,. . . ,lo−1) be the first row of L.
We can associate L with a polynomial l(x) =

∑o−1
k=0 lix

i over
the ring K [x]. Computing the inverse of L is equivalent to
finding a polynomial j(x) in K [x] such that l(x) ∗ j(x) = 1
mod xo − 1 [33]. Hence, the problem of inverting a circulant
matrix is equivalent to inverting a polynomial in the ring
K [x]/(xo − 1). To find a solution, it takes about O(o2) arith-
metic operations by using the extended Euclidean algorithm
which is much faster than Gauss elimination.

C. GENERAL DESCRIPTION OF CIRCULANT RAINBOW
Using the invertible map G, we give a general description
of Circulant Rainbow with shorter private key and faster
signature generation.

1) KEY GENERATION
According to the required security level, we choose
the appropriate set of parameters which is denoted by
Rainbow(K ,v1,o1,. . . ,ot ). Then we randomly generate a
quadratic map G according to Section III-B and two affine
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transformations S: Km
→ Km and R: K n

→ K n. The private
key consists of (S,G,R) and the public key consists of the
composite map F = S ◦ G ◦ R : K n

→ Km.

2) SIGNATURE GENERATION
Suppose the document to be signed is m. Then we sign it as
follows:

1) Hash it to w ∈ K n.
2) Compute y = S−1(w).
3) Compute x = G−1(y) using the circulant method.
4) Finally compute s = R−1(x) as signature.

3) SIGNATURE VERIFICATION
The signer sends a document-signature pair (m,s) to a
receiver. The receiver checks the correctness of the signature
by checking if P(s) = Hash(m). If it matches, the signature
is valid. Otherwise, the signature is fake.

4) CORRECTNESS OF CIRCULANT RAINBOW
Any document-signature pair (m, s) generated by our signing
algorithm satisfies the formula Hash(m) = S(G(R(s))). As
the public map P of Circulant Rainbow is a composite map
of S, G and R, P(s) = Hash(m) holds for every document-
signature pair generated by Circulant Rainbow.

IV. SECURITY OF CIRCULANT RAINBOW
In this section, we are going to analyze the security of
Circulant Rainbow by applying existing attacks on it. As
Circulant Rainbow is actually a subset of original Rainbow,
all the methods of attacking original Rainbow can also be
used to attack Circulant Rainbow. But we will show that
Circulant Rainbow is as hard as original Rainbow if we
choose the parameters appropriately. All the experiments in
this Section are run in MAGMA V2.19 on an computer with
a 192GB RAM and an Intel Xeon E5-2660V2 CPU.

A. DIRECT ATTACK
We compare the time taken by the Direct attack against Cir-
culant Rainbow and original Rainbow by experiments. Since
the public key of Rainbow is a under-determined system,
we fix some of variables before applying an Gröbner basis
based algorithm. We carry out a number of experiments with
MAGMA [34], which contains an efficient implementation of
F4 algorithm [22] to compute Gröbner basis [35], [36] after
we fix v1 variables of Rainbow and Circulant Rainbow. We
list the timing results for attacking Circulant Rainbow and
original Rainbow by Direct attack in Table 1.

Table 1 shows that there is no significant difference
between attack time of original Rainbow and Circulant Rain-
bow when applying Direct attack. So the lower bound of
the complexity of Direct attack using Hybrid F5 algorithm
against Circulant Rainbow can be estimated by

min
k≥0

qk · O(m ·
(
m− k + dreg + 1

dreg

)ω
),

TABLE 1. Timing results for applying Direct attack on Rainbow and
Circulant Rainbow over base field GF(256).

where the degree of regularity dreg is given as the lowest
integer D for which coefficient of zD in (1−z2)m

(1−z)m−k is less than
or equal to 0.

B. MinRank ATTACK
MinRank attack is a powerful attack against many MPKC
schemes [16]–[18]. The goal of the MinRank attack is to
find linear combinations of the central quadratic matrices Ah
with minimal rank r , where r is less than or equal to v2
in Rainbow. Those linear combinations correspond to linear
combinations of the central polynomials of the first Rainbow
layer. If attackers find these linear combinations, then they
will be able to separate the first layer of Rainbow central
polynomials. The remaining Rainbow layers can be extracted
by a similar technique. The complexity of the attack against
original Rainbow can be estimated by O(o1 ∗ qv1+1).
To estimate the complexity of MinRank attack against

Circulant Rainbow, we have to analyze the rank behavior of
the central quadratic matrix Ah of Circulant Rainbow. In each
Avi+j for j ∈ [1, . . . , oi], VVvi+j is a randomly chosen square
matrix with dimension vi. Rank of Avi+j will be larger than vi
with overwhelming probability. So we can conclude that the
complexity of MinRank attack against Circulant Rainbow is
also O(o1 ∗ qv1+1).

C. HighRank ATTACK
In HighRank attack [19], [20], [37], one must find a small
kernel shared by a large number of linear combinations of
the matrices Ah. For original Rainbow, the complexity of
HighRank attack can be estimated by O(qot ∗ n

3

6 ), where ot is
the number of Oil variables in the last layer of Rainbowmaps.

In Circulant Rainbow, HighRank attack becomes a danger-
ous attack if parameters are not properly chosen. To estimate
the complexity of HighRank attack, we focus on the last layer
of Rainbow central maps. We first define a ot ∗ ot rotating
matrix

M =



0 1 0 0 0

0
. . .

. . .
. . .

...

0
. . . 0 1 0

0
. . . 0 0 1

1 0 0 0 0


.

Then we can write

R−TAhR =
[
E H
HT 0

]
,
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where E andH are matrices of size vt ∗vt and vt ∗ot . If E is an
invertiblematrix, the rank ofmatrixR−TAhR can be estimated
by Rank(R−TAhR) = Rank(E) + Rank(H ). In Circulant
Rainbow, H can be expressed as H = VOvt+1

∑ot−1
i=0 λiM i,

where λi are random elements in the base field. As VOvt+1
is a random matrix of size vt ∗ ot (vt > ot ), rank of matrix
VOvt+1 will equal to ot with overwhelming probability. Rank
of matrix H mainly depends on rank of matrix

∑ot−1
i=0 λiM i.

As characteristic polynomial of matrix M is xot − 1, we can
compute the rank of matrix

∑ot−1
i=0 λiM i by

Rank(
ot−1∑
i=0

λiM i) = ot − degree(gcd(xot − 1),
ot−1∑
i=o

λix i).

We can see that the rank of a random linear combination
of the matrices Ah mainly depends on the factorization of
polynomial xot − 1 over the base field.

Suppose xot −1 can be factored as xot −1 =
∑z

k=0 fk over
the base field with dk=degree(fk ) and d0 ≤ d1 ≤ · · · ≤ dz.
Algorithm 2 gives the details of HighRank attack to find the
space R−1(Ot ).

Algorithm 2 HighRank Attack
Input: Parameters (K ,v1,o1,. . . ,ot ) and public matrices

A1,. . . ,Am of Rainbow.
Output: A basis of R−1(Ot ).
1: Factor xot − 1 as xot − 1 =

∑z
k=0 fk with dk=degree(fk )

and d0 ≤ d1 ≤ · · · ≤ dz. Let D = {d0, . . . , dz} and
B = {}.

2: Get the first element dk of D and randomly choose
λ′v1+1

,. . . ,λ′n. Compute Ah =
∑n

i=v1+1 λ
′
iAi and find

U = ker(Ah).
3: If dim(U ) > 0, set (

∑n
i=v1+1 λ

′
iAi)U = 0. If the solution

set has dimension ot − dk , add basis of U into B and
remove dk from D. If D 6= ∅, goto Step 2.

4: return B.

The complexity of HighRank attack against Circulant
Rainbow can be estimated by

HighRank(q, n, ot ) =
n3

6
(qd0 + qd1 + · · · + qdz ),

which is determined by the factorization of polynomial
xot − 1. For different q and ot , the factorization of polyno-
mial xot − 1 is very different. For example, the complexity
of HighRank attack against Rainbow(GF(256),19,18,19) is
about 287, but the complexity of HighRank attack against
Rainbow(GF(256),19,18,18) is only about 241. In order to
prevent HighRank attack, we have to choose q and ot care-
fully. Parameters of Circulant Rainbow are less flexible than
that of original Rainbow because of HighRank attack. In our
experiments, GF(256) appears to be the best choice for the
base field of Circulant Rainbow.

D. RAINBOW-BAND-SEPARATION ATTACK
The intrinsic idea of RBS attack is to exploit the sparse key
structure of Rainbow [19]. It can be seen as an extension of

the UOV-reconciliation attack [19], [38]. Attackers find an
equivalent key S ′ and R′ such that S ◦G◦R = P = S ′ ◦G′ ◦R′

for a valid trapdoor G′. It means that S ′ and R′ preserve the
structure of G. In the first step of RBS attack, attacker can
get one cubic equation and m + n − 2 quadratic equations
in n variables of S ′ and R′ by identifying zero elements in
the cross-terms of Vinegar variables and Oil variables in
central polynomials. The complexity of RBS attack is mainly
determined by solving this system.

In MB Rainbow(K , v1, o1, d ∗ o′2), there have more zero
elements in the cross-terms of Vinegar variables and Oil vari-
ables than those of original Rainbow. Attackers can identify
more zero elements and get more equations when running
RBS attack. This makes MB Rainbow vulnerable to RBS
attack. In Circulant Rainbow, we have dense cross-terms just
like original Rainbow. Attackers cannot identify more zero
elements to run RBS attack in Circulant Rainbow than those
in original Rainbow. One may think that the rotating relations
might actually give more equations in RBS attack because we
have OVh[1, 1]−OVh+1[1, 2] = 0 in the central map of Cir-
culant Rainbow. This is not right because that the equivalent
trapdoor G′ in Circulant Rainbow doesn’t have the rotating
relations anymore for the special S ′ and T ′. The last column
of G′ of Circulant Rainbow looks exactly like that in original
Rainbow. So we can conclude that Circulant Rainbow is
as secure as original Rainbow against the RBS attack. The
complexity of RBS attack against Circulant Rainbow is about
solving a system which consists of one cubic equation and
m+ n− 2 quadratic equations in n variables.

E. UOV ATTACK
The goal of UOV attack [39] is to find the preimage of Oil
subspace O under the transformation R−1. The complexity
of UOV attack can be estimated by O(qv−o−1 ∗ o4) in UOV.
In Circulant Rainbow, the transformation S mix all polyno-
mial components of the central map. Therefore, each polyno-
mial of public key can be considered to be a UOV polynomial
with vt Vinegar variables and ot Oil variables. If we choose
vt ≥ 2ot , the complexity of this attack will be exponential.

In order to verify our claim, we generated 100 instances
of original Rainbow and Circulant Rainbow and then apply
UOV attack against them in MAGMA. Table 2 shows that
original Rainbow and Circulant Rainbow almost have the
same performance resisting UOV attack. According to the
cryptanalysis in [12], we can conclude that the attack com-
plexity of UOV attack against Circulant Rainbow is about
O(qvt−ot−1 ∗ o4t ).

TABLE 2. Timing results for applying UOV attack on Rainbow and
Circulant Rainbow over base field GF(256).
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F. UOV-RECONCILIATION ATTACK
UOV-Reconciliation (UOV-R) attack was originally designed
against UOV. In UOV scheme, the lower right corner of G′

must be zero. UOV-R attack exploits this feature to yield o
quadratic equations in v variables. As a Rainbow can be
viewed as a UOV with vt Vinegar variables and ot Oil
variables, the UOV-R attack can also be applied to orig-
inal Rainbow and Circulant Rainbow. As described in
Section IV-D, the equivalent trapdoor G′ doesn’t have the
rotating relations for the special S ′ and R′ in UOV-R attack,
so attackers can’t get more equations in Circulant Rainbow
than original Rainbow when applying UOV-R attack. Then
we can conclude that the complexity of UOV-R attack against
Circulant Rainbow ismainly determined by the complexity of
solving ot quadratic equations in vt variables.

G. OTHER ATTACKS
One may argue that there may exist some special attacks
exploiting the rotating relations of Circulant Rainbow. In
fact, rotating relations are hard to exploit in cryptanalysis of
MPKC [25], [38], [40]. They are widely used in other areas
of cryptography such as lattice-based cryptography [41], [42]
and code-based cryptography [43]. From the analysis above,
we can conclude that Circulant Rainbow stands against all
attacks if we choose the parameters properly.

V. EXPERIMENTS AND COMPARISONS
In this section, we implement Circulant Rainbow and make
an overall comparison of Circulant Rainbow with some other
signature schemes.

A. COMPARISON WITH OTHER RAINBOW VARIANTS
Here, we compare Circulant Rainbow with other Rainbow
variants in terms of efficiency and key size at the same
security levels. From the security analysis in Section II-C, we
know that MB Rainbow with parameter (K , v1, o1, d ∗ o′2) is
vulnerable to RBS attack because it has more zero columns in
the last layer of its central map. Attackers can identify more
equations in the first step of RBS attack. But this does not
kill the MB method. In fact, other layers of MB Rainbow can
still use the MB structure to speed up signing process. For
example, we can use MB Rainbow with parameter (K , v1,
d ∗ o′1, o2) to block the attack that we mentioned
in Section II-C.

Now we estimate the security of Circulant Rainbow and
other Rainbow variants against Direct attack, HighRank
attack, MinRank attack, RBS attack, UOV attack and
UOV-R attack. To further understand the security of
Circulant Rainbow and other Rainbow variants, we record
the complexities of various attacks against Circulant Rain-
bow and other Rainbow variants over base field GF(256) in
Table 5 and Table 6.

From Table 5 and Table 6, we can observe that Circu-
lant Rainbow is weaker in HighRank attack than original
Rainbow. This causes their parameters less flexible. But
this has little effect on choosing parameters because the
security of Rainbow mainly depends on RBS attack. We
can choose (GF(256),19,18,19) and (GF(256),26,23,23) for
80 bits and 100 bits security for Circulant Rainbow, NT
Rainbow, and original Rainbow. Then we slightly modify
them to fit MB Rainbow.

1) HASH FUNCTION
For digital signatures, we need to have qm > 2l , where l is
the length of the hash, so that w can hold at least one on hash
digest for security consideration. As we have qm > 2256 for
80 bits and 100 bits security for those Rainbow variants, we
can choose SHA-256 as hash function for them. However, all
the implementations in this paper do not take into account the
hash function. We only focus on the basic trapdoor of each
scheme.

2) EXPERIMENTAL SETUP
We implement all the Rainbow variants using MAGMA,
and record their average performance in signature genera-
tion and signature verification. All the schemes are run in
MAGMA V2.19 on an Intel Xeon E5-2660V2 CPU.

Table 3 gives a comparison of Circulant Rainbow with
other Rainbow variants. From Table 3, we can observe that
Circulant Rainbow is about 3 times faster than original Rain-
bow. It can reduce the private key size by about 45%. Among
all the Rainbow variants, Circulant Rainbow is the fastest one
in signature generation and has the shortest private key.

B. COMPARISON WITH OTHER SIGNATURE SCHEMES
To further show the efficiency of Circulant Rainbow, we
implement our Circulant Rainbow using AVX2 instruc-
tions [44] on an Intel Core i7-4790@3.60Ghz CPU. AVX2
is a SIMD instruction set for Intel x64 microprocessors.

TABLE 3. Comparison between Circulant Rainbow and other Rainbow variants.
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TABLE 4. Comparison between Circulant Rainbow and other signature schemes.

TABLE 5. Complexities of various attacks against Circulant Rainbow and
other Rainbow variants over base field GF(256).

TABLE 6. Complexities of various attacks against Circulant Rainbow and
other Rainbow variants over base field GF(256).

It expands most integer commands to 256 bits. Traditional
asymmetric cryptosystem such as RSA and ECDSA imple-
mented in OpenSSL [45] have already taken the advantage
of SIMD instruction. Chen et al. [46] gave some SSE imple-
mentations of MPKC schemes on modern x64 CPUs, which
showed that the advances in chip architecture do not leave
MPKC behind while improving traditional alternatives. In
this paper, we extend their method into AVX2 to implement
Circulant Rainbow.

We compare our Circulant Rainbow implementation with
the fastest known Gui, UOV, RSA and ECDSA implementa-
tions in terms of the size of the public key, size of the private
key, length of the message, length of the signature, signing
time and verification time. For Gui, we get the implemen-
tation result from [47]. As there is no AVX2 implementa-
tion of UOV, we implement it using the same technique as
Circulant Rainbow. For RSA and ECDSA, we choose the
parameters according to the NIST key management recom-
mendation [48] and record their speeds in the same CPU
using OpenSSL speed tester. The overall comparison is given
in Table 4.

From Table 4, we can observe that the Circulant
Rainbow outperforms all the other signature schemes in terms
of signing time and verification time. Compared with other

MPKC signature schemes, Circulant Rainbow is better at
public key size. But it has larger private key and signature than
Gui. Compared with traditional signature schemes, Circulant
Rainbow has larger public key and private key. Considering
that these keys do not need to be updated frequently in many
scenarios, this result is acceptable in the field of MPKC.
Anyway, our results show that Circulant Rainbow is com-
parable to other signature schemes. We believe that it’s a
promising MPKC signature scheme.

VI. CONCLUSION
In this paper, we proposed a new Rainbow-like multivariate
public key digital signature scheme called Circulant Rainbow.
Compared with Rainbow and other Rainbow variants, it has
faster signature generation and shorter private key. We care-
fully analyze its security against known attacks such as Direct
attacks, HighRank attack, MinRank attack, UOV attack and
RBS attack. Our experiments show that Circulant Rainbow is
about 3 times faster than original Rainbow and it outperforms
many other signature schemes in speed. We believe that it’s a
promising candidate in Post-Quantum Cryptography.
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