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ABSTRACT In this paper, the improvement of the method measuring the junction temperature of light-
emitting diodes (LEDs) has been studied experimentally. A practical method is proposed with only three
measurement procedures. With the consideration of indium (In) composition and blue shift, the method has a
high applicability, which is practical for the LED chips vary from blue to green chips under different currents,
including the packaged chips. On the other hand, according to the experimental and derived results, the
junction-temperature difference and peak-wavelength shift in both blue-shift and red-shift fields show similar
parabolic-like relations. To simplify the experimental processes, dual-wavelength LEDs were fabricated and

measured instead of conventional single-wavelength LEDs.

INDEX TERMS Junction temperature, dual-wavelength light emitting diodes, peak-wavelength method,

practicability.

I. INTRODUCTION

Due to the extraordinary characteristics of low power
consumption, environment protection, long lifetime and high
luminous efficiency, gallium nitride (GaN) based light-
emitting diodes (LEDs) have been widely used in our daily
lives [1]-[3]. As the internal quantum efficiency (IQE),
maximum output power, reliability and lifetime of LEDs
strongly depends on the heat at the semiconductor’s p—n
junction, junction-temperature measurement is crucial for
designing and building a reliable LED product [4]-[7].
One of the traditional methods for measuring LED junc-
tion temperatures is detecting the drop of forward volt-
age [8]-[10]. However, it requires direct contact with the
pin of the LED, which is very difficult for a packaged LED
chip [11], [12]. Therefore, the indirect measurement methods
based on spectral properties, including the peak-wavelength
shift, show great potential for the utilization in packaged
LED chips [12]-[15]. For instance, Chen and Narendran [12]
proposed a method to estimate the junction temperature of
LED arrays based on the shift of the wavelength at full
width at half maximum (FWHM). However, for conven-
tional peak-wavelength methods, it is still difficult to elim-
inate the effect of blue shift, which mainly results from

the band-filling effect and piezoelectricity-induced quantum-
confined Stark effect (QCSE) [7], [8], [13]-[17]. Mean-
while, besides blue shift, the peak-wavelength shift is also
influenced remarkably by the indium (In) composition [8],
which limits the accuracy and practicability of the conven-
tional peak-wavelength method significantly [12]. Therefore,
peak-wavelength shift in a LED device does not have a
simple correlation with junction temperature [7]. To date,
although some methods have been used for improving mea-
surement on junction temperature, it is still a severe chal-
lenge to propose a practical method to measure the junction
temperature of packaged LEDs accurately, quickly, and
cheaply.

In this work, to improve the traditional peak-wavelength
method, we report a practical method with three measure-
ment procedures, which has the consideration of In compo-
sition and blue shift. To simplify the experimental processes,
dual-wavelength LEDs were utilized instead of conventional
single-wavelength LEDs.

Il. EXPERIMENTS
Fig. 1 illustrates the schematic plot of the LED struc-
tures with dual-wavelength multiple quantum well (MQW)
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FIGURE 1. Schematic plot of the epitaxial structures of LED chips for
samples A and B.

FIGURE 2. (a) Side-view image of LED samples. (b) Top-view optical
image of a LED chip.

structures. All samples were grown on (0001)-oriented
sapphire substrates by metal-organic chemical vapor
deposition (MOCVD). During epitaxial growth process,
trimethylindium, trimethylgallium, trimethylaluminum, and
ammonia were used as the source materials of In, Ga, Al,
and N, respectively. A 2-um-thick un-doped GaN layer
was grown, followed by 2.5-um-thick Si-doped n-GaN
layers. The active region consisted of a 12-period of un-
doped InGaN/GaN (~3 nm/~12 nm) MQWs with different
emission wavelengths. Compare to blue QWs (~440 nm),
the cyan (~460 nm) and green (~485 nm) QWs were
grown in a lower temperature to increase the In composi-
tion. Then the AlGaN electron-blocking layer (EBL) was
grown, followed by a Mg-doped p-GaN:Mg layer (p-doping
=~ 5 x 10" ecm™3). As shown in Fig. 1, sample A has
6 cyan QWs (close to p-side) and 6 blue QWs (close to
n-side). Sample B has 6 blue QWs (close to p-side) and
6 green QWs (close to n-side). Furthermore, it is difficult to
measure the In composition of each chip exactly. To simplify
the process of measuring the In composition, we use the
commonly employed Varshni equation [7], [12], [18], [19].
By the numerical simulations of APSYS software, the three
peak wavelengths of the QWs with ~15%, ~18% and ~21%
In compositions are around 440 nm, 460 nm and 485 nm,
respectively.

For experimental measurements, the lateral LED chips
were fabricated [Fig. 2(a)], and the chip size is ~250 x
580 wm? with a rectangular shape [Fig. 2(b)]. The electrolu-
minescence (EL) spectra of un-encapsulated LED chips were
measured under different injection currents (DC mode) in a
calibrated integrating sphere at room temperature.
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FIGURE 3. Experimental EL spectra of (a) sample A, and (b) sample B.
Blue arrows represent blue shift, and red arrows represent red shift.

Ill. RESULTS AND DISCUSSIONS
To measure two single-wavelength LEDs with different In
compositions, such as blue and cyan LEDs, we commonly
need to measure them separately, which requires more mea-
surement time than measuring only one LED. As it is very
difficult to measure the temperature within small region (the
thickness of MQW region is typically <0.5 um), a large devi-
ation could be produced. Furthermore, as the MQW thickness
is very small, the temperature in the MQW region is possible
to be regarded as equilibrium. Therefore, it is assumed that
the measured junction temperatures of dual-wavelength (such
as blue and cyan) LEDs are those of corresponding blue and
cyan LEDs under the same measurement conditions. Those
indicate that it is easier to utilize dual-wavelength LEDs
instead of single-wavelength LEDs to measure the junction
temperatures with different In compositions. Thus, two dual-
wavelength LEDs shown in Figs. 1 and 2 were fabricated.
The EL spectra in Fig. 3 clearly show that, with the
increases of currents or junction temperatures (T), the peak
wavelengths (A) undergo a small blue shift firstly and then
a red shift. When T is low, the band-filling effect and
piezoelectricity-induced QCSE could have a major effect on
the X shift, which could cause the blue shift [7], [8], [13]-[17].
While T is high, the thermal effect could have the major effect
on the A shift, resulting in the red shift [7], [12]-[15]. Thus,
the point between the blue-shift field and red-shift field is
the shortest peak wavelength (Ag). On the other hand, the
T data of cyan QW region are obtained based on the curves
(T vs DC current) for the InGaN LED (A ~ 460 nm) in [8],
which are shown in Table I. Then the A data of blue QWs
can be achieved at the same T conditions by sample A. It is
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TABLE 1. Junction temperature (T) under different currents (1).

1(mA) 8 16 28 44 60 70 90 100 110
T (K) 315 324 337 354 371 382 404 415 426

possible to assume that for the QWs with the comparative
In compositions, the peak-wavelength shifts (A)) are similar
under comparative T differences (AT). Thus, according to the
A data of blue QWs in both samples A and B, the T and
A data of green QWs in sample B could also be derived.

To better analyze the relationship among the In compo-
sition (x), T, AT, and AA in both blue-shift and red-shift
fields, we define the point with the shortest peak wave-
length as the inflection point (1g, To, Ip). For instance, as
shown in Fig. 3(a), the inflection point of the cyan QWs
in sample A is (461.1 nm, 371 K, 60 mA). The inflec-
tion points of the three kinds of A are shown in Fig. 4(a).
When x is 0, the piezoelectricity-induced QCSE could be
limited [13]-[17], [20]. x is O means that no QWs exist in the
active region, thus, the band filling effect could be limited.
Therefore, it is possible to assume that the LEDs chips have
no blue shift when In composition decreases to 0, and the
To of corresponding inflection point is regarded as 298K.
Moreover, according to the Varshni equation, the relationship
between T and A is not linear. Therefore, to achieve the
better coefficients of determination (R2), we use Eq. (1) to
fit curves.

y=A-XB+cC, 1)

where A, B and C are the variables. C is the value when the
abscissa variable (X) is 0. According to the four data points,
the relationship between the x and Ty can be shown as the
fitted line in Fig. 4(a)

To = 1740.8x" 4 298. )

The R? of this fitting line is ~0.945. In the blue-shift
region (A1, Tq, I1), the difference values of the parameters
are calculated as

Aly = A1 — Ao, 3)
AT, =Ty —T;. “4)

The data of (ALy, ATy) for the three kinds of XA are illus-
trated in Fig. 4(b). The average data of AT are fitted as

ATy = 37742041 o)
Ty = To — ATy = 1740.8x"% 4298 — 37.7A2041. (6)
R2 of Eq. (5) is ~0.997. In addition, in the red-shift

region (Ay, T, Ip), the difference values of the parameters
are calculated as

Aly = Ay — Ao, @)
AT, = Tr — Tp. (8)
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FIGURE 4. Junction-temperature fitting of (a) Ty, (b) AT;, and (c) AT,.

Fig. 4(c) shows the data of (AX, AT») for the three kinds of
A. The average data of AT, are fitted as

ATy = 44.4A05%, 9)
Ty = To + AT = 1740.8x"0 + 298 + 44.4A00% . (10)

R? of Eq. (9) is ~0.988.

According to Fig. 4, the relation of AT and AX data in both
blue-shift and red-shift fields is similar to parabolic. There-
fore, a practical method is proposed to measure the T data,
which contains three measurement procedures as follows:

1) The EL spectra of packaged GaN-based LED chips
were measured under different injection currents (DC
mode) in a calibrated integrating sphere. The x data of
LED chips should be derived by Varshni equation or
measured.

2) The A data under different currents (A, I) can be
obtained by the EL spectra. Then the Ty of the inflec-
tion point (1g, To, Ip) can be achieved by Eq. (2).

3) Using Egs. (3) and (7) to calculate the AX data. For the
blue-shift field (I; < Ip), the corresponding T results
under different currents can be derived by Eq. (6).
While in the red-shift field (I; > Iy), the corresponding
T, results under different currents can be derived by
Eq. (10).

As it is difficult to measure the x and T data exactly within

MQW regions, the fitted variables in the functions may have
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non-ignorable deviations. In the process of fitting variables,
the more accurate x, A and T data measured, the more
accurate variables could be achieved. For GaN-based LEDs
with different structures, such as different substrates, different
MQWs, different n-GaN and p-GaN thicknesses, efc., the fit-
ted variables can be different and should be corrected. How-
ever, compare to the traditional peak-wavelength method,
the proposed method takes the In composition and blue shift
into consideration, which could have a better practicability.
Therefore, this method has potential significance for the fur-
ther promotion of LED junction-temperature measurement.

IV. CONCLUSION

In this paper, dual-wavelength LEDs have been utilized to
improve the conventional peak-wavelength method measur-
ing LED junction temperatures. By considering the In com-
position and blue shift, a practical method has been proposed
with three measurement procedures. Based on experimental
and derived results, the junction-temperature difference and
peak-wavelength shift in both blue-shift and red-shift fields
show similar parabolic-like relations. The practical measure-
ment method proposed here indicates a promising path to
achieve junction temperatures in packaged LEDs quickly,
cheaply and easily.
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