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ABSTRACT HBase is a distributed database management system and is becoming increasingly popular for
applications that need fast random access to a large amount of data. However, it has a number of performance-
critical configuration parameters, which may interact with each other in a complex way, making manually
tuning them for optimal performance extremely difficult. In this paper, we propose a novel approach to
auto-tune the configuration parameters for a given HBase application, called Auto-Tuning HBase (ATH).
The key is an accurate performance model with low cost, which takes configuration parameters as inputs.
To this end, we systematically explore different modeling techniques and decide to employ an ensemble
learning algorithm to build the performance model. Subsequently, we leverage genetic algorithm to search
the optimal configuration parameters for the application by using the performance model. As such, ATH can
quickly as well as automatically identify a set of configuration parameter values to make the performance
of the application optimal. We validate ATH in a cluster with ten nodes by using five typical applications
from Yahoo! Cloud Serving Benchmark. The experimental results show that ATH can improve throughput
by 41% on average and up to 97% compared with the default configurations. At the same time, the latency
of HBase operations is reduced by 11.3% on average and up to 57%.

INDEX TERMS HBase, auto tuning, performance modeling, performance optimization, ensemble learning.

I. INTRODUCTION
HBase is a NoSQL column database system and widely
used by internet-scale companies such as Facebook as well
as manysmall-scale companies [14]. It can be used as a
part of fundamental storage infrastructures. Fox example, the
‘‘Facebook Messages’’ [18] is built on the top of HBase,
managing millions of messages every day. It can also be used
as a storage system directly. For instance, in ‘‘TimeTunnel’’
[4] of Taobao, HBase is used to store real-time logging and
feedback of advertisements. In fact, HBase supports a wide
range of applications from business data analytics to scientific
data computing.

However, HBase requires end users to determine up to
197 configuration parameters [33]. Although not all of them
significantly affect performance, more than 20 do [6], [33].
A naive way towards configuration optimization is to

manually set the value of each parameter to configure HBase,
actually run an application with the configuration to measure
its performance, and repeat this procedure for a number of
times to identify the best configuration. This would work if
the actual execution time is short as well as the number of
needed executions is small. However, the number of needed
executions for exploring the configuration space of HBase is
huge because at least 20 configuration parameters need to be
considered.

Moreover, we find these configuration parameters may
interact with each other in a complex way, further
complicating the configuration optimization issue. As a
result, manually optimizing the configuration for a given
HBase application without deep understanding of the inter-
nal mechanisms of HBase and that application is imprac-
tical. Therefore, an auto-tuning approach with low cost is

VOLUME 5, 2017
2169-3536 
 2017 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

13157



W. Xiong et al.: ATH’s Configuration via Ensemble Learning

desirable. However, even if we automatically run a HBase
application with each possible configuration parameter value
combination to search the best configuration, the time would
be extremely long because the number of the combinations
is huge and each actual execution typically takes at least
several minutes. A better alternative is to create a perfor-
mance model which takes the configuration parameters as
inputs and outputs a performance prediction.With this model,
we can quickly search the optimal configuration automati-
cally because the model can predict the performance of a
HBase application with a certain configuration at the mag-
nitude of milliseconds.

The key of such an approach is that the performance
model for a given HBase applicationmust be accurate enough
as well as with low cost(e.g., the time used to build the
model). On the one hand, if the model is not accurate
enough, we can not find the optimal configuration. On the
other hand, if the cost, the time for instance, to create an
accurate model is too high, there might be no performance
improvements. Given the complex interaction between
HBase configuration parameters, it is difficult to build
such models by using existing modeling techniques includ-
ing analytical, statistic reasoning, and machine learning
algorithms.

In this paper, we systematically explore the modeling tech-
niques by trying typical statistic reasoning, machine learn-
ing, and ensemble learning algorithms. We find that with
the same amount of training data, the performance model
constructed by ensemble learning is much more accurate
than those built by statistic reasoning and machine learning
algorithms. Theoretically, ensemble learning combines the
advantages of statistic reasoning and machine learning, and
can thereby improve prediction accuracy [8]. We therefore
finally choose ensemble learning to build performance mod-
els in this study. Note that we do not try analytical modeling
technique because it always makes over-simplified assump-
tions, which is unsuitable for the performance modeling of
HBase applications in practice.

After we have an accurate performance model, we employ
genetic algorithm(GA) to automatically search the optimal
configuration for a given HBase application. The GA takes
the values of HBase configuration parameters and the corre-
sponding performance predicted by the model as inputs, and
outputs an optimal configuration for performance. We call
this approach ATH (Auto-Tuning HBase’s configuration)
which can significantly reduce the configuration tuning effort
for optimizing a HBase application.

In particular, we make the following contributions:
• We systematically explore modeling techniques and
propose to leverage an ensemble learning algorithm,
random forest [9], to build a performance model as a
function of configuration parameters for a given HBase
application.

• We propose to input configuration parameter values
and the corresponding performance predicted by the
model to the GA to automatically search the optimal

FIGURE 1. HBase architecture.

configuration for a HBase application, and we call this
approach ATH (Auto-Tuning HBase).

• We evaluate ATH by using five representative HBase
applications from YCSB [14]. The results show that
ATH improves throughput by 41% on average and
up to 97% compared to default configurations. At the
same time, the latency of HBase operations is reduced
by 11.3% on average and up to 57%.

II. BACKGROUND AND MOTIVATION
In this section, we first describe the HBase architecture and
data flow. Subsequently, we describe the motivation.

A. HBase ARCHITECTURE
Fig. 1 shows that HBase is built as a database layer atop
the Hadoop Distributed File System(HDFS). HDFS handles
machine failure, data replication, and placement, provid-
ing reliable and fault tolerant storage. HBase keeps data
in indexed files on HDFS and handles real-time requests.
As such, HBase is able to host very large data tables with bil-
lions of rows and millions of columns, which are distributed
on thousands of machines. Consequently, it has been widely
used in internet-scale companies such as Yahoo!, as well
as many small-scale companies which do not have senior
performance engineers.

In HBase, a big table is typically divided into a number
of individual partitions called regions and each region is
exactly hosted by a single server (called regionserver) serving
clients with requested data. A regionserver runs a daemon
called HRegionServer that makes a set of HRegions to
clients. Each HRegion stores data for a certain region of
a table, as shown in Figure 1. Inside a HRegion, there are
a number of Stores and each holds a column family in
that HRegion. Moreover, each Store has a MemStore
which holds the in-memory modifications to the Store,
and a corresponding HFile that provides the file format
for HBase. In addition, each Store may have a number of
StoreFiles used to store data. Note that all the changes
to the Stores are stored in the object HLog and there is one
Hlog per regionserver. Besides these core components, there
are two auxiliary ones: HMaster and ZooKeeper, which
are responsible for backup and error handling, respectively.
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FIGURE 2. The data flow of HBase applications.

Fig. 2 shows the core components involved in a HBase data
flow. As can be seen, the communication between a client
and a server is handled by a RPC server which consists
of RPC reactor, reader, callqueue, handler, responser, and
responsequeue components. The RPC reactor is in charge
of handling requests from clients. The reader interprets the
operations such as scan and write requested by a client. The
callqueue is used to store the requested operations and there
might be a number of callqueues. The handler executes the
requested operations and puts the results into responsequeues.
The responser is in charge of sending results to clients. Note
that when the handler executes an operation, two more com-
ponents in the HRegion might be needed: BlockCache and
BloomFilter. BlockCache is used to efficiently retain recently
accessed data for subsequent reads. BloomFilter implements
the bloom filter mechanism [10] which is used to test if a
target row is contained in a given HFile or not.
HBase employs a number of configuration parameters to

control the behavior of the components described above for
flexibility. For example, the number of callqueues is specified
by parameter hbase.ipc.server.callqueue.handler.factor, and
the size ofBlockCache is determined by hfile.block.cache.size.
Obviously, these two parameters are critical to the through-
put and operation latency of HBase applications. In sum-
mary, HBase has up to 197 such configuration parameters
controlling six aspects of HBase applications: Client,
CallQueue, MemStore, BlockCache, HStoreFile,
and WAL. Although not all of them significantly affect the
performance of HBase applications, at least 20 parameters
do [6], [33]. How to efficiently as well as optimally con-
figure these parameters is therefore extremely important.
However, it is very challenging to configure them to achieve
optimal performance for a HBase application, as we will
demonstrate in the next section.

B. MOTIVATION
To observe how configuration parameters influence the
performance of HBase applications, we conduct an exper-
iment by varying the values of two parameters —
hfile.block.cache.size and hbase.ipc.server.callqueue.handler.
factor — but keeping the values of other configuration
parameters fixed to configure the read-modify application.
The value of the former parameter increases from 0.1 to 0.9

FIGURE 3. The influence of configuration parameters on the throughput
of the HBase application read-modify.

with step size of 0.1 while that of the later varies from
0.1 to 0.5 with 0.05 as the step size. Note that
hfile.block.cache.size is a percentage of the heap size of
JVM which is used by HBase, see the details in Table 2.
As such, we totally have 81 different configuration com-
binations. By running the read-modify (4 millions of read
requests) application with each such configuration combina-
tion, we observe how the throughput varies.

Fig. 3 shows the experimental results. A couple of inter-
esting observations can be made here. For one, the through-
put varies dramatically when the values of these two
parameters change. More concretely, the throughput varies
from 3626.3 (ops/second) to 5914.2 (ops/second) across
the 81 configuration combinations, which reflects a varia-
tion of 63%. Second, the relationship between the through-
put and hfile.block.cache.size as well as that between
the throughput and hbase.ipc.server.callqueue.handler.factor
are non-monotonic. Instead, the throughput changes up
and down when we increase the values of these two
parameters. In such a case, one would painfully strug-
gle on determining if he/she should increase or decrease
the value of a parameter for better performance. Third,
the two parameters interact with each other in a complex
way with respect to throughput. As can be seen, HBase
achieves the highest throughput, 5914.2 (ops/second), when
hbase.ipc.server.callqueue.handler.factor is equal to 0.1 and
hfile.block.cache.size is equal to 0.33. When we keep the
former parameter fixed but change the later one to 0.4,
the throughput decreases to 4415.2 (ops/second). Similarly,
the throughput decreases to 4521.7 (ops/second) when we
changes the former one to 0.12 while keep the later one fixed.
Whenwe further change the former one to 0.3, the throughput
increases to 5500 (ops/second).

These results indicate the two parameters intricately inter-
twine with each other, which indicates that manually tun-
ing the configuration parameters for a HBase application is
extremely difficult, if at all possible. Furthermore, the later
two findings present significant challenges for traditional
modeling techniques such as statistic reasoning and machine
learning techniques to build accurate performance models as
functions of configuration parameters with low cost, which
motivates this work.
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FIGURE 4. An overview of random forest.

C. RANDOM FOREST
Random forest [9] is an ensemble learning algorithm that can
be used for prediction. It operates by constructing a multitude
of regression trees at training time and then combines the
outputs of individual trees to calculate the final output. A key
feature of random forest is that it corrects for regression
trees’ tendency to over-fit to their training data. There are a
couple of combination approaches such as majority voting for
classification and average for regression.

Fig. 4 illustrates how to build a model by using the
random forest algorithm. The training set S is a set of
observations, which contains n observations in total. Each
observation consists of a set of predictor variables (the HBase
configuration parameters) and a corresponding response y
(the throughput or latency of a HBase application) for them.
The n observations are assumed to be independently and
identically distributed (i.i.d.). A bootstrap sample is generated
by uniformly sampling ntree instances from the training set S
with replacement [16]. According to Fig. 4, the random forest
algorithm operates as follows:

1) Draw ntree bootstrap samples from the training set S.
2) For each of the ntree bootstrap samples, grow an

unpruned regression tree. At each node, randomly sam-
ple mtry of the predictor variables and choose the best
split among those variables [25]. The result is stored in
regression tree(ti). There will be ntree trees at the end
of this step.

3) Predict new data by aggregating the predictions of the
ntree regression trees. In this case, the final prediction
is average of pi, (i = 1, 2, . . . ntree).

Random forest learning is an extension of a bagging algo-
rithm [8], which chooses the best split among all predictor
variables at each node when growing an unpruned tree for
each bootstrap sample. Although choosing predictors ran-
domly is somewhat counterintuitive, it turns out to perform
very well compared to many other classifiers, including dis-
criminant analysis, Support Vector Machines (SVM) and
neural networks [25]. Moreover, it is robust against overfit-
ting [25] and it does not make any assumptions about the
predictor variables. We therefore believe that random forest
is a good candidate for constructing performance models for
HBase applications.

FIGURE 5. System architecture of ATH.

FIGURE 6. Searching work flow for identifying the optimal configurations
of a HBase application.

III. ATH ARCHITECTURE
ATH is an automated performance tuning approach that
adjusts the HBase configuration parameters for an application
running on a given cluster to achieve optimized performance.

Fig. 5 shows the block diagram of ATH. When end users
first run a HBase application, the ATH workload profiler
collects the HBase configurations being used and the output
performancemetrics such as the throughput and latency being
produced. In the scope of this study, we employ latency
to represent 95 percentile latency because the latencies of
different operations are different. Subsequently, the through-
put or latency, and the corresponding configuration parame-
ters are taken as input to the random forest algorithm to train
performance prediction models. Finally, the throughput and
latency model, weights of throughput and latency are taken as
input to theGA. Fig. 6 illustrates the steps inGA for searching
optimum configuration.

To build the models, we need to construct a training set S.
S is a matrix, with each row being the following vector:

vj =
{
perfj, cij, . . . , cij, . . . , cnj

}
, j = 1, . . . ,m, (1)

with vj the jth observation, perfj the throughput or latency,
and cij the ith HBase configuration parameter of the
jth observation. n is the total number of HBase configuration
parameters, and m is the total number of vectors in matrix S
(observations or training examples). The training examples
are collected in a dedicated cluster. In other words, there is
no other workloads running concurrently on the same cluster,
which avoids disturbing the performance measurements.
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FIGURE 7. The accuracy variation of the throughput model built by ATH
when increasing the size of the training set.

To collect vectors defined in Equation (1) for a HBase
workload, we need to repeatedly run the workload a number
of times, each time with a different configuration to form
the training set (the matrix S). During the training phase,
we need to make a trade-off between data collection time and
model accuracy. A larger number of training configurations
produce more accurate performance models but increase data
collection and training time.

To understand this trade-off quantitatively, we have done
the following experiment. We start to train the performance
models using 50 HBase configurations, and we increase the
training set by 50 vectors each time. All HBase configura-
tions are randomly generated with each configuration param-
eter within its corresponding value range (ranges are shown
in Table 2). Fig. 7 quantifies how accuracy is affected by the
number of training examples, for the throughput of our five
benchmarks. We find that all the models converge at the point
where the number of training examples reaches 600. When
the number of training examples increases from 200 to 600,
the prediction error decreases from 7.80% to 7.06% on aver-
age. In practice, we can choose an appropriate number of
training examples between 200 and 600.

After we have a model for throughput(or latency), we still
do not know the optimum HBase configuration for a given
workload with respect to throughput(or latency). More-
over, parameter tuning for HBase is a typical multiple-
objective optimization problem because both the throughput
and latency are important performance metrics. In this work,
we employ the GA to automatically search the optimum
configuration.

The GA takes the performance predictions produced by
our models and the corresponding configuration parameter
values as inputs to globally search the optimized configura-
tion automatically, as illustrated in Fig. 6. In step 1©, we take
a set of randomly generated configuration parameter values
as inputs to our throughput and latency model to predict the
throughput and latency, respectively. The configurations and
the corresponding throughput and latency then serve as inputs
to the GA.

In step 2©, we take the two models, two weights(one
for the throughput, and the other for the latency), and
the corresponding configuration as the inputs of the GA.
As such, the fitnessvalue of the GA is produced
by using the models. In the GA, the crossover operation

randomly selects k configuration parameter values from
one configuration set and n − k values from another one,
and then combines them into a new configuration set.
In the new configuration, the probability for changing the
value of a configuration parameter within its value range
is controlled by the mutation rate which has a default
value of 0.01.

In step 3©, the GA outputs a new set of configuration
parameter values which are passed to the performancemodels
again. Steps 2© and 3© may iterate a number of times until a
configuration that yields the best overall performance (which
is a sum of weighted throughput and latency) is found.

The overall HBase optimization framework is sufficiently
fast to be used in practice. Collecting the profiling data (run-
ning a HBase application of interest with a small input
data set for the 600 training configurations) takes less than
two days. Moreover, as shown in Fig. 7, the prediction
error is less than 10% when the number of training sam-
ples achieves 300 which take less than one and a half
days. In this work, training performance models using the
profiling data takes a few seconds while searching the
optimum configuration using the GA takes time less than
one minute.

Overall, we find that ATH takes less than two days to
optimize the configuration for a given HBase application.
This time overhead seems long but it is a one-time cost and is
well justified as we target long-running HBase applications.

We now detail on the performance models for the through-
put and the latency, and the GA to search the HBase config-
uration space.

A. PREDICTION MODEL FOR
THROUGHPUT AND LATENCY
As mentioned before, we build two models. One is for
throughput and the other is for latency:

throughput = f (c1, c2, . . . , cn) (2)

latency = g(c1, c2, . . . , cn) (3)

with c1, c2, . . . , cn the values of the configuration parame-
ters of HBase. Note that f (. . .) and g(. . .) are data models,
which means there are no formula for them. f (c1, c2, . . . , cn)
and g(c1, c2, . . . , cn) are obtained by using the random
forest algorithm to train models based on the collected
observations:

RF(throughputk , c1k , c2k , . . . , cnk ), k ∈ [1, . . . 600], (4)

RF(latencyk , c1k , c2k , . . . , cnk ), k ∈ [1, . . . 600], (5)

with RF being the random forest algorithm as shown in
Section II-C. throughputk is the throughput of the k th obser-
vation, and c1k ,c2k , . . . , cnk are the values of the correspond-
ing HBase configuration parameters for the k th observation.
Once we have constructed models for the throughput and
latency, we can easily calculate the fitnessvalue for
the GA.
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FIGURE 8. The throughput and latency of benchmark read-only with
default and randomly selected configurations.

B. SEARCHING THE HBase CONFIGURATION SPACE
FOR OPTIMIZED PERFORMANCE
In this subsection, we first introduce the throughput-latency
plane and the baseline. We then describe how to use this
plane and baseline to search the optimum configuration for
a given workload. Finally, we explain the reason why we
select the GA as the search algorithm to identify the optimum
configuration.

To observe how throughput and latency are influenced by
configuration parameters, we run a HBase workload with dif-
ferent configurations and different number of client threads.
For convenience, we call the execution of a workload with
a certain configuration workload-config pair. Fig. 8 shows
the results produced by a red group and a blue group of
workload-config pairs for the YCSBworkload read-only. The
red-dots represent the throughput and latency of read-only
with default configuration running with different number of
client threads. Since the default configuration is always the
same when read-only runs with different number of threads,
each red-dot actually represents the throughput and latency
of this workload with a certain number of threads. The blue-
triangles represent the throughput and latency of read-only
with randomly selected configurations running with variant
number of client threads. As can be seen, there are many blue-
triangles locate in the right-down area of each red-dot. This
indicates that the default configuration of read-only does not
necessarily achieve its optimized performance. In addition,
the distribution of the blue-triangles implies that there is no
configuration achieving the maximum throughput and the
shortest latency at the same time.

Therefore, the optimum performance depends on the
requirements of an end user. One may want maximum
throughput but does not care about latency. Inversely, one
may need to achieve the shortest latency but does not care
about the throughput. In addition, one may need an optimized
trade-off between the throughput and latency. To generally
describe the different requirements of end users, we define
the performance of a HBase workload as a weighted sum of
throughput and latency as follows.

perf = w1 × throughput + w2 × latency (w1 + w2 = 1)

(6)

with w1 and w2 the weights for throughput and latency,
respectively. throughput is defined by Equation(2) and

FIGURE 9. How to choose optimum points in throughput-latency plane.

latency is defined by Equation(3). As such, our goal is
converted to find the optimal perf based on end user’s
requirements.

To this end, we need a baseline. We take the point O(x, y)
shown in Fig. 8 as the baseline because it represents the max-
imum throughput when default configuration is employed.
We then leverage Fig. 9 to describe how to find the optimum
point in the throughput-latency plane where O(x0, y0) is the
baseline. The vertical line l1 corresponds to the case that
shortest latency is required(w1 = 0) and the horizontal line l2
represents the case that maximum throughput is needed
(w2 = 0). For a given HBase workload running on a given
cluster under a given w1 and w2, for example w1 = 0.5 and
w1 = 0.5, the maximum perf is determined by the hard-
ware limitation such as memory size and network bandwidth,
the workload characteristics, and the configuration. Note that
the hardware limitation and the workload characteristics can
not be easily changed while the configuration does. In such
a case, our goal is to find a configuration that makes the
performance(perf ) optimal. For example, we need to identify
the configuration corresponding to the point B(x1, x2) shown
in Fig. 9 that represents the optimal perf for a HBase work-
load when w1 and w2 are both equal to 0.5. The B(x1, x2)-like
points form a curve L.

We now describe how to identify the configuration for a
point on curve L where the w1 and w2 are given. We first
define a metric d as follows.

d =
√
w1(xi − x0)2 + w2(yi − y0)2 (7)

with xi the throughput and yi the latency of the ith time
when w1 and w2 are given. xi and yi can be calculated
by Equation(2) and Equation(3), respectively. Subsequently,
we employ a searching algorithm to identify the optimal
configuration that makes the d maximum. Note that we nor-
malize the values of the throughput and latency because they
have different scales.

There exist many algorithms to search complex optimiza-
tion spaces, such as recursive random search [36], pattern
search [34], and genetic algorithms [23], [26]. Random recur-
sive search is sensitive to getting stuck in local optima;
pattern search typically suffers from slow local (asymptotic)
convergence rates [34]. GA is a particular class of evolu-
tionary algorithms that use techniques inspired by evolu-
tionary biology such as inheritance, mutation, selection, and
crossover [26], and which is well-known for being robust
against local optima [23].
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TABLE 1. Workload and target-sets.

Our goal is to find the configuration for optimized perfor-
mance of a HBase program from the global space of config-
uration parameters, which is a complex space to explore with
many local optima. We therefore employ GA in this study.
The values of HBase configuration parameters are passed to
the GA as inputs and the d defined in Equation(7) is used as
the fitnessvalue.

The GA is implemented by calling the function rbga in
the R library genalg [27]. The rbga function has 11 parame-
ters which are stringMin, stringMax, suggestions, popSize,
iters, mutationChance, elitism, monitorFunc, evalFunc,
showSetting and verbose. We set popSize (population size)
to 200, iters (number of iterations) to 100, mutationChance
to 0.01, suggestions to null, elitism to 40, monitorFunc to
a monitoring function defined by ourselves showing the
status of the GA iterations, and showSetting to false. The
evalFunc is d defined in Equation(7). Note that stringMin and
stringMax correspond to the minimum and maximum values
of a configuration parameter, respecitvely. We will show the
number of iterations needed by the GA to achieve optimized
performance in Section 5.

IV. EXPERIMENT SETUP
A. HARDWARE PLATFORM
We use a HBase cluster consisting of 10 nodes: one serves as
HMaster node, eight serve as RegionServer nodes, and
one serves as YCSB Client. This cluster also serves as the
underlying Hadoop Distributed File Sytem(HDFS) cluster.
All the nodes are equipped with two 1 GB/s ethernet cards
and are connected through two ethernet switches. One switch
is used for global clock synchronization whereas the other
switch is used for the communication in HBase cluster.

Each node has two 2TB disks, 16GB memory, and two
Intel Xeon E5620 multi-core (Westmere) processors. The
operating system running on each node is Ubuntu 12.04 with
kernel version 3.2.0. The versions of HBase, Hadoop, and
JDK are 1.0.3, 2.6.0, and 1.7.0, respectively. The monitoring
system in HBase cluster is Ganglia 3.6.0.

B. BENCHMARKS
We employ Yahoo! Cloud Serving Benchmark(YCSB), a
widely used benchmark frameworks, in this study. YCSB is
designed to evaluate No-SQL systems such as HBase [3],
PNUTS [13], Cassandra [1], Azure [11], CouchDB [2],
SimpleDB [29], and Voldemort [5].

A key feature of theYCSB framework is that it is extensible
and it supports easy definition of new workloads, as well
as making it easy to benchmark new systems. In particular,
YCSB employs five configurable attributions to define a
workload:

1) operation— the basic operations in YCSB include
insert, update, read, and scan. Note that each scan
operation reads 100 successive records by default.

2) record-size— it defines the length of a record and
decides the cost of each operation. The default value
is 1024 bytes.

3) mixture-ratio— it defines the proportion of each
operation in a HBase workload.

4) request-distribution— it is used to select the
records to operate on. Distributions in YCSB include
uniform, zipfian, and latest.

5) target-set — it defines the number of operations
needed to be performed. It is specified by a config-
urable parameter: operationcounts in YCSB.

We select five typical YCSBworkloads shown in Table 1 to
evaluate ATH. Note that: (1) these five workload use zipfian
as theirrequest-distribution; (2)record-size is
the default value:1KB; (3) we evaluate each workload with
five different target-sets.

These workloads represent a sufficiently broad set of typ-
ical HBase application behaviors. For example, read-heavy
contains 90% of read operations and it tests BlockCache in
HBase. Its representative application is photo tagging which
90% of operations are to read tags and 10% of operations are
to update tags. update-heavy contains 50% of read and 50%
of update operations. It evaluates how MemStore interacts
with BlockCache. Its typical application is to store the records
of recent actions in a user session. short-ranges is a network-
intensive workload and its typical application is threaded
conversations used in forums of web sites.

C. CONFIGURATION PARAMETERS
According to the HBase reference guide [33], we consider
23 configuration parameters listed in Table 2. We divide
these parameters into six categories: Client, CallQueue,
MemStore, BlockCache, HStoreFile, and WAL. The
fourth column provides default values of these parameters
which are recommended by the reference guide and the last
column shows the value range for each parameter in our
experiments. Note that the value ranges of these parameters
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TABLE 2. Description of the HBase configuration parameters.

might be cluster-specific because some ranges depend on
the cluster hardware properties such as memory size and the
number of cores in CPU.

V. RESULTS ANALYSIS
In this section, we first describe how to determine the ntree
which is a model parameter of the random forest algorithm.
We then evaluate the number of iterations needed by the
GA to find the optimum configuration. Next, we evaluate
the accuracy and error distribution of our performance mod-
els. Fourth, we report the speedup achieved by ATH. Fifth,
we show and analyze the configuration parameter values
for optimized performance for all the experimented work-
loads. Next, we discuss some insights we found, and finally,
we report the overhead of ATH.

A. DETERMINING THE ntree
ntree(, see Section II-C) is the total number of trees used
to construct our performance model which is an ensemble
model for a YCSB workload. A larger ntree value leads to a
higher accurate performance model but also results in longer
model training time. We conduct experiments to determine
a suitable for ntree for the throughput and latency model of
each HBase workload. Figure 10 illustrates the experiments
for the update-heavy and read-heavy as examples. As can

FIGURE 10. Determining the ntree parameter for update-heavy and
read-heavy.

be seen, the mean square error (MSE) converges once ntree
exceeds 550 for update-heavy and 400 for read-heavy. There-
fore, we set ntree to 550 and to 400 when we build throughput
models for update-heavy and read-heavy, respectively. Simi-
larly, we set the values of ntrees for read-only, short-ranges,
and read-modify to 350, 450, and 500, respectively.

B. ITERATION NUMBER OF THE GA
As aforementioned, the GA iteratively searches the huge
configuration space to find an optimum configuration for a
HBase workload. The larger number of iterations are needed
for convergence, the longer time it takes. Figure 11 shows
how the GA converges for all the experimented benchmarks.
As can be seen, a small number of iterations, say 30 to 45,
are enough for all the benchmarks to achieve their optimized
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FIGURE 11. The number of iterations needed to find the optimum configurations for all experimented workloads.

FIGURE 12. The model accuracy comparison between ANN, SVM, RS, and
ATH. ANN–Artificial Neural NetWork, SVM–Supported Vector Machine,
RS–Response Surface.

performance. Moreover, different benchmarks may need dif-
ferent number of iterations to achieve the optimized perfor-
mance. For example, read-only needs 30 iterations to find
the best optimizations while update-heavy needs 40 itera-
tions, resulting in different optimization costs for different
benchmarks.

C. MODEL ACCURACY
We now evaluate the accuracy of our performance models
and compare them against those built by Supported Vector
Machine(SVM) [24], Artificial Neural Network(ANN) [15],
and Response Surface(RS) [17] because they have been used
to optimize the performance of cluster computing systems.
To this end, we randomly generate 120 configurations for
each experimented benchmark. We run the benchmarks on
the real HBase cluster with the generated configurations and
measure their throughput and latency. We also use the perfor-
mance models built by ATH, RS, ANN, and SVM to predict
the throughput and latency. Subsequently, we leverage Equa-
tion (8) to calculate each prediction error and we therefore
have 120 such errors for each performance model of each
benchmark. Finally, we employ the average of the 120 errors
of a performance model to represent the model accuracy.

err =
|tpre − tmea|

tmea
× 100% (8)

with err the prediction error, tpre the predicted through-
put or latency, and tmea the measured throughput or latency.

Fig. 12 shows the accuracy of the models built by the four
techniques. As can be seen, the performance models built by
ATH for all the benchmarks are the most accurate ones. Even
the highest error occurred for update-heavy is only 9.3%;

FIGURE 13. Error distribution for 120 randomly selected HBase
configurations (the throughput predictions versus real measurements).

the average error for all benchmarks is 7.1%. In contrast,
the average errors of the models built by ANN, SVM,and
RS are 11.8%, 8.1%, 8.3%, respectively. This indicates the
performance models built by ATH are accurate enough to
be used to search the optimum configurations. On the other
hand, these results confirm that the models built by ensem-
ble learning techniques are more accurate than traditional
statistic reasoning and machine learning techniques, which
also explains why we choose random forest to construct the
performance models for HBase workloads.

D. ERROR DISTRIBUTION
As aforementioned, our model accuracy is the average error
of the testing models. However, the average error might
hide large errors for particular predictions due to outliers.
To validate if there are many outliers, we now present the
error distribution of our prediction models using scatter plots.
In this subsection, we take throughput model as examples.

Figure 13 shows two scatter plots produced by 120 real
measurements and 120 ATH predictions for benchmark
update-heavy and read-heavy for 120 randomly selected
HBase configurations. The X axis represents the real mea-
surements and the Y axis denotes the ATH predictions of
throughputs of the two benchmarks. This figure clearly shows
that the models are fairly accurate across the entire HBase
configuration space: all 120 data points for each bench-
mark are located around the corresponding bisector, indicat-
ing that the predictions are close to the real measurements.
We observe a standard deviation of the predictions of 0.09 and
0.08 for the update-heavy and read-heavy models, respec-
tively. In addition, we observe similar results for the other
benchmarks. This indicates that there are not many outliers
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FIGURE 14. The speedup comparison between the default configuration and the ATH configuration when w1 = 1.0 and w2 = 0.0. for all the
experimented benchmarks.

FIGURE 15. The 95th percentile latency comparison between default configuration and ATH configuration when w1 = 1.0 and w2 = 0.0. For
update-heavy, read-heavy, read-only, and read-modify, we report the latency of the read operation while for short-ranges, we report the latency of
the scan operation because this workload does not have read operation. Note that real latency of scan is ten times to the value in the Y axis.

in the predictions of our performance models, which is good
for quickly finding the optimum configuration for a HBase
workload.

E. SPEEDUP
We now evaluate the speedup achieved by ATH. Fig. 14
shows the speedups of the five experimented workloads, each
with five different target-sets. The dark bars represent
the throughput of workloads running with the configurations
obtained byATHwhile the gray bars show those of workloads
running with the default configurations. There are several
interesting observations to be made here.

For one, the throughput of all benchmarks running with
the configurations obtained by ATH are higher than those
of the same benchmarks running with the default configura-
tions. Second, ATH significantly improves the performance
of all the experimented benchmarks except short-ranges. The
reason is that short-ranges is a network-intensive workload
and network bandwidth becomes the bottleneck when the
number of target-set is larger than 0.4 million, which
makes the configuration tuning fail to improve the throughput
further. Themaximum speedup achieves 1.97×when update-
heavy runs with the 8 millions of target-set and the
average speedup for all the benchmarks is 1.41×. Third,
the performance improvement for a benchmarkmade by ATH
generally increases when its target-set increases. This is
a very nice property for data analytics in big data era because
one of the important features of big data is that the amount of
data increases rapidly.

Fig. 15 shows the latency comparison between the default
configurations and the ones obtained byATH. As can be seen,
ATH reduces the latency for most of the benchmarks from
1.2% to 57.1%. However, for a few benchmarks, the latency
slightly increases (from 2.9% to 5.8%) when the configura-
tions obtained by ATH are used. On average, ATH reduces
the latency of all benchmarks by 11.3%.
We now discuss relationship between the throughput

and latency improvements. Fig. 14 and Fig. 15 show that
the improvements of throughput and latency are workload-
specific. For example, for workloads update-heavy and
read-modify, ATH improves throughput and reduces latency
simultaneously. However, for workload read-only with a cer-
tain number of target-sets such as 1 to 8 millions, ATH
improves throughput but increase latency. The same applies
to read-heavy and short-ranges. These workload-specific
properties leave much room for ATH to satisfy the different
optimization requirements of end users.
In summary, our results demonstrate that ATH can improve

the performance of HBase workloads significantly as long
as the the performance of them is sensitive to the HBase
configuration parameters. ATH is a powerful tool to help end
users make a good trade-off between throughput and latency.

F. OPTIMUM CONFIGURATIONS
As shown in Table 3, the optimum configurations of
the experimented benchmarks are significantly differ-
ent from the default configuration parameter values. For
example, the default value of io.storefile.bloom.block.size
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TABLE 3. Optimum parameter values for five YCSB workloads when w1 = 1.0 and w2 = 0.0.

is 64KB*2 while its corresponding values for update-
heavy, read-heavy, read-only, short-ranges, and read-
modify are 64KB*15, 64KB*2, 64KB*12, 64KB*4, and
64KB*12, respectively. In addition, callqueue-related
parameters such as hbase.ipc.callqueue.handler.factor and
hbase.ipc.callqueue.read.ratio are also far from their default
values. This indicates that ATH is able to configure a ded-
icated value of callqueue for each type of request for opti-
mized performance.

G. DETAILED ANALYSIS: UH AND SR
We now further analyze the results of two particular work-
loads in more details to explain where the throughput
improvements come from when ATH is employed. One is
update-heavy, for which ATH improves its throughput the
most significantly. The other is short-ranges, for which ATH
does not present good scalability. That is: ATH improves the
throughput of this workload by 40%when the target-set
is 0.1 million while the improvement gradually reduces when
the size of its target-set increases.
Based on our observation, the throughput improvement

of update-heavy comes from three aspects. (1) By adjusting
the values of parameters hfile.block.cache.size to 0.5 and
hbase.rs.cacheblocksonwrite to TRUE, ATH improves
the blockCacheHitPercent from 82.8% to 92.7% (shown
in Fig. 16), which in turn improves the throughput. (2) Rather
than keeping parameters hbase.regionserver.handler.count
and hbase.ipc.server.callqueue.handler.factor to their default
values (30 and 0.1, respectively), ATH sets the former

FIGURE 16. Block cache hit rate of update-heavy with default and ATH
configuration.

to 35 and the later to 0.5. The product of these two parameters
determines the number of callqueues. In this case, ATH
increases this product from 3 to 17, which possibly improves
the throughput. (3) ATH also improves the disk I/O through-
put by adjusting hbase.storescanner.parallel.seek.enable to
TRUE and hbase.storescanner.parallel.seek.threads to 20.
The default values of them are FALSE and 5, respectively,
which does not support parallel disk operations.

In addition, the ATH configuration also causes the reduc-
tion of execution times of two key stages of a request:
(1) a request is waiting in a callqueue (the wrtq stage); and
(2) the request is being executed (the execute stage).
As shown in Fig. 17, the time used for these two stages
with default configuration is 32.8 ms whereas that with ATH
configuration is 24.7 ms, indicating 24.7% of performance
improvement.

We now turn to analyze why ATH can not improve
the throughput of short-ranges when its target-set is
relatively large. As described in Section IV, short-ranges
is a network-intensive workload. When the target-set
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FIGURE 17. Execution times for stages wreq and execute of
update-heavy.

FIGURE 18. The throughput of each time interval for short-ranges with
the default and ATH configurations. The target-set is 0.8 million, and the
time interval is 10 seconds.

TABLE 4. Time cost.

achieves or exceeds 0.8 million, this workload consumes all
the bandwidth between the client and the server. In such a
case, No matter how we adjust the configuration parame-
ters, the throughput can not be improved further, as shown
in Fig.18. The figure also shows that short-ranges with
default configuration has the same throughput as it with ATH
configuration, which confirms our conclusion.

H. OVERHEAD
We now report the overhead of ATH which includes the
times used to collect the training data, to train the perfor-
mance models, and to search the optimum configurations.
Table 4 shows the time costs.

The unit for the time used for collecting data is hour,
for model training is second, and for searching optimum
configuration is second as well. As can be seen, the highest
cost is the time used to collect data and is up to 28.17 hours.
While it seems long, it is a one-time cost and is still attractive
compared to manual configurations. Moreover, ATH targets
to optimize HBase applications which usually run in data
centers for months or years. As such, this high one-time cost
is amortized between a very large number of runs, leading to
a very low cost per run.

The times used to train the performance models for the
five benchmarks are less than 2 seconds. This indicates that
the time cost for model training is very low. Although the time
used to search the optimum configurations by the GA is near
40 seconds, but the time can be ignored when compared to
the profiling time.

VI. RELATED WORK
HBase is a popular distributed database system which is
widely used in many large- and small-scale internet compa-
nies [14]. Since the performance of HBase is poor in many
applications, a number of approaches have been proposed
from different angles. We classify these approaches into
four categories: (1) data related optimization, (2) architecture
related optimization, (3) schema related optimization, and
(4) configuration parameter tuning.

Data related optimization approaches include bulk-
loading, pre-splitting, server-side filter, and coproces-
sor [33]. bulk-loading directly transfers the input data into
HBase’s internal data format. pre-splitting splits a heavy
workload to many regions served by different regionservers,
preventing the requests from flushing into a single region.
server-side filter facilitates an application to fetch only the
relevant data from a HBase table and coprocessor sends
the business computation codes to the regionserver side.
These data related optimization techniques can significantly
improve the performance of HBase applications. However,
each technique is designed for a particular scenario. It is
hard to apply a technique for a scenario to other scenarios.
For example, bulk-loading is suitable for ‘‘insert heavy’’
applications, but it does not work well for ‘‘read heavy’’
workloads.

Architecture related optimization tries to optimize the per-
formance of HBase from the architecture angle. Spillane
et al. designed a multi-tier storage architecture to replace
the original two-layer architecture. This technique adopts
modern Flash SSD (Solid-State Disk) as the added storage
layer, improving the performance of MemStore and Block-
Cache [30]. Harter et al. designed a local-compaction mecha-
nism to replace the original compaction, reducing the amount
of data transferred across networks [18].

Schema related optimization is another way to optimize
HBase applications. NoSE [28] proposed an approach to
guide the mapping from the application’s conceptual data
model to a database schema. Bermbach et al. [7] developed
a tool to help design the database schema for a given appli-
cation. However, it is difficult to employ such techniques for
end users without expertise because: (1) the former needs in-
depth knowledge about the HBase architecture; and (2) the
later needs deep understanding about the data and application.

Configuration parameter tuning is an effective way to
improve the performance of HBase applications. The HBase
reference guide [33] presents a number of configuration
parameter tuning suggestions. For example, it suggests how
to adjust the sizes of BlockCache, MemStore, and RPC
callqueue to improve the performance of ‘‘read and write
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heavy’’ applications. Nevertheless, it needs to manually tune
the values of these parameters for each HBase application,
which is tedious.

PCM [6] is yet another configuration parameter tuning
approach. It firstly divides various workloads into many cate-
gories according to their read and write ratio. It then suggests
manually tuning a group of configurable parameters to find
the optimum configuration for each category. Finally, PCM
constructs a set of static polices based on previous tuning
experiences. When using PCM, one needs to firstly identify
an application’s characteristics such as write ratio and then
finds the matched static policy for performance optimization.
ATH differs from PCM in three aspects: (1) PCM is a manual
performance tuning approach while ATH is an auto-tuning
one; (2) The static policies of PCM can not optimize a wide
range of different workloads while ATH can optimize work-
loads with any read or write ratio; and (3) PCM only takes
the throughput as its optimization goal while ATH considers
both the throughput and latency as optimization goals.

VII. CONCLUSIONS
In this paper, we propose an approach named ATH to auto-
matically tuning the configuration parameters of HBase for
optimized performance. ATH employs random forest to build
accurate performance prediction models for throughput and
latency for a given HBase workload. It then takes the output
of the two models as the input to a genetic algorithm to
automatically search the HBase configuration space to finally
yield a HBase configuration setting that leads to optimized
performance.

We evaluate ATH using five YCSB workloads, each with
five target-sets ranging from 1 million to 1200 millions.
The results show that ATH speeds up throughput of HBase
workloads by 1.41× on average and up to 1.97×. It also
reduces the latency by 11% on average and up to 57% at the
same time. In addition, we demonstrate that the performance
benefits obtained by ATH increase along with the target-set
of a HBase workload.
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