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ABSTRACT Lithium-ion batteries are crucial to many types of electric equipments. Hence, lithium-ion
battery capacity prognostic is significantly important, and it is yet very hard for the measured battery data
that are regularly polluted by miscellaneous noises. In this paper, a battery capacity prognostic approach
using the empirical mode decomposition (EMD) denoising method and multiple kernel relevance vector
machine (MKRVM) approach is presented. The EMDdenoisingmethod is employed to process themeasured
capacity data to produce noise-free capacity data. The battery capacity prediction model using MKRVM is
constructed based on the denoised capacity data. The MKRVM’s kernel keeps diversity by using multiple
heterogeneous kernel learning method. Meanwhile, sparse weights of basic kernel functions are yielded
by using particle swarm optimization (PSO) algorithm. The measured battery capacity data are used to
demonstrate the effect of EMD denoising method, and battery capacity prediction experiments reveal that
the proposed MKRVM approach can predict the battery’s future capacity precisely.

INDEX TERMS Lithium-ion battery, capacity prognostic, EMD denoising, MKRVM, PSO.

I. INTRODUCTION
Lithium-ion batteries are the crucial components in many
types of electric equipments including mobile phones, elec-
tric vehicles, portable computers, and other portable electric
equipments for their long cycle life, light weight, high cell
voltage, high power density and no memory effect. How-
ever, irreversible physical and chemical diversifications in
lithium-ion batteries occur with the battery’s aging and usage.
Therefore, the state of health (SOH) of the battery decreases
by degrees until the battery failure eventually, which usu-
ally makes the portable electric equipments unusable. As a
result, many works focus on prognostics and health manage-
ment (PHM) of lithium-ion batteries in recent years [1]–[28].

Lithium-ion battery’s PHM includes predicting lithium-
ion battery’s future capacity and estimating its remaining
useful life (RUL). Model-based method and data-driven
method are normally used battery capacity prognostic
approaches. Model-based method adopts mathematical rep-
resentation or failure physics model in order to reflect the
understanding of battery capacity degradation and battery

failure. Kalman filtering [7]–[9], physics-based model [10],
non-linear model [11], [12], sparse Bayesian predictive
model [13] and particle filtering [14]–[19] are currently used
model-based battery capacity prognostic methods. However,
it is hard to derive a generally accepted and precisely ana-
lytical model to track the degradation of battery capacity.
Data-driven method employs machine learning algorithms to
predict the battery’s future capacity and deduce the battery
RUL. The method avoids constructing mathematical or phys-
ical models in battery capacity prognostic works [20]–[28].
Artificial neural network is a classical data-driven method
in the battery capacity prognostic works [20], [21], but
the method has inadequacies of low computation speed,
intangible network structure and inferior generalization per-
formance. Support vector machine (SVM) [29] and rel-
evance vector machine (RVM) [30] are commonly used
data-driven methods in the recent battery capacity prognostic
works [22]–[28]. Compared to the SVM, RVM is a Bayesian
sparse kernel technique with usage of much fewer kernel
function computations and higher performance.
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The kernel is one of the essential ingredients of the
machine learning algorithms such as SVM, RVM and min-
imax probability machine, etc. [22]–[35], where it is respon-
sible for mapping the inner product of data points to a
high-dimensional feature space. Meanwhile, the single kernel
learning method is commonly used in the RVM prognostic
works [25]–[28], [33]. However, the method may discard
the useful information in training data and thus result in
suboptimal generalization performance. For the purpose of
generating better classification and prediction performance in
the machine learning works, learning the optimal kernel has
attracted the increasing attentions [36]–[42]. Multiple kernel
learningmethod considers the kernel as a convex combination
of basis kernel functions, and the method has shown better
generalization performance than the single kernel learning
method in the relevant works [39]–[42]. With respect to
the multiple kernel learning method applied in the RVM,
amultiple homogeneous kernel learning approach to generate
the optimal kernel for the RVM is presented in work [42].
Nevertheless, the method doesn’t consider the heterogeneous
kernel functions which keep diversity of the kernel in the
kernel learning procedure.

The measured battery capacity data are regularly pol-
luted by miscellaneous noises for the reason of instru-
ment errors, interference factors in the measurement,
uncertain load and other unknown reasons in batteries.
Capacity prognostic based on the data polluted by noises
usually causes inaccurate results. Therefore, removing the
noises from the measured capacity data and extracting the
noise-free data are obviously important. Empirical mode
decomposition (EMD) is a method for analyzing nonlinear
and non-stationary signal by adaptively decomposing the
signal into a series of zero-mean oscillation modes called
intrinsic mode functions (IMFs) [43], and method’s main
advantage is that its basis functions are extracted from the
signals in contrast to wavelet methods whose basis functions
are fixed [26], [28], [43]–[45].

On the basis of the above discussions, a battery capacity
prognostic approach is presented in the paper. An EMD
denoising method is employed to process the measured data
for the purpose of removing the noises and extracting the
noise-free battery capacity data. A MKRVM is utilized to
construct a prediction model based on the denoised capacity
data. The proposed MKRVM’s kernel is a weighted com-
bination of basic heterogeneous kernel functions, and its
sparse weights are generated by using the particle swarm opti-
mization (PSO) algorithm. Battery capacity data measured
in the data repository of NASA Ames Prognostics Center of
Excellence [46] are used to demonstrate the effect of the
denoising method, and verify the predict performance of the
proposed MKRVM.

This paper is organized as the following: Section 2 illus-
trates the EMD denoising method to yield noise-free bat-
tery capacity data. Section 3 presents the MKRVM, and
its sparse weights generation by using the PSO algorithm.
Section 4 introduces the experiment data and procedure,

and then gives the experiment results and discussions.
Section 5 draws the conclusions eventually.

II. EMD DENOISING
Themeasured capacity data of batteries are regularly polluted
by miscellaneous noises. Experiment with data polluted by
noises cannot make accurate capacity prediction. Therefore,
it is necessary to process the capacity data for the purpose
of extracting the noise-free data. EMD denoising method is
employed to address the concern in the work.

The gradual decreased battery capacity is a commonly used
battery SOH indicator charactering its health degradation.
Assuming that the measured capacity data m(c) are com-
posed of

m(c) = x(c)+ σ (c) (1)

where x(c) are noise-free battery capacity data; σ (c) are
noises; c denotes the cycle, which is a time index.
EMD denoising method includes two processes:

signal m(c) sifting and choosing relevant mode IMFs. m(c)
are decomposed into IMFs and a residual rN (c) by using the
sifting process

m(c) =
N∑
i=1

IMFi(c)+ rN (c) (2)

where N is the number of the IMFs.
For the most important structures of the signal m(c) are

comprised by relevant mode IMFs and residual. Correlation
coefficient ri of m(c) and IMFi(c) is employed to identify the
relevant mode IMFk (c) [45]

ri =
N∑
i=1

m(c)IMFi(c)/

√√√√ N∑
i=1

m2(c)
N∑
i=1

IMF2i (c) (3)

where k > i, and k ∈ [1,N ]. rk is firstly greater than a cor-
relation coefficient threshold T . The relevant mode IMF(c)s
and rN (c) constitute the noise-free battery capacity data x(c)

x(c) =
N∑
i=k

IMFi(c)+ rN (c) (4)

III. MKRVM AND ITS SPARSE WEIGHTS GENERATION
Generally, the capacity sample data are divided into training
data and testing data. The training data are used to construct a
prediction model by prognostic approach, and the testing data
are employed to evaluate the model’s performance. Assume
{xi}Ni=1 and {ci}

N
i=1 are input time index data and capacity data

of the training data, respectively, where N is the size of the
training data. In the work, the MKRVM is employed to set
up a model of the dependency of the {ci}Ni=1 on the {xi}Ni=1 to
make accurate prediction of c∗ for new input x∗.

A. MKRVM APPROACH
RVM is a Bayesian treatment and it is a special case of a
sparse kernel model [30].

The target ci is produced by

ci = y(xi;w)+ εi (5)
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where εi denote noises; w = (w1,w2, . . . ,wN )T is a weight
vector.

Assume ci is independent, and the complete dataset’s like-
lihood is

p(c|w, σ 2) = (2πσ 2)−N/2 exp{−
1

2σ 2 ||c− ϕw||
2
} (6)

where w = (w0,w1, . . . ,wN )T; c = (c1, c2, . . . , cN )T; ϕ =
[ϕ (x1), ϕ (x2), . . . , ϕ (xN )]T with ϕ (xi) = [1,K (xi, x1),
K (xi, x2), . . . ,K (xi, xN )]T; K (xi, x) is kernel.
Maximum likelihood estimations of w and σ 2 in Eq. (6)

usually bring about over-fitting. For the purpose of constrain-
ing the parameters, an explicit zero-mean Gaussian prior
probability distribution is defined as

p(w|α) =
N∏
i=0

N (wi|0, α
−1
i ) (7)

where α is a N + 1 hyperparameters vector.
The posterior probability of the unbeknown parameters is

defined as

p(w,α,σ 2
|c) =

p(c|w,α, σ 2)p(w,α, σ 2)∫
p(c|w,α,σ 2)p(w,α,σ 2)dwdαdσ 2 (8)

However,
∫
p(c|w,α,σ 2)p(w,α,σ 2)dwdαdσ 2 is difficult

to be calculated. Hence, p(w,α,σ 2
|c) is instead as

p(w,α,σ 2
|c) = p(w|α,σ 2, c)p(α, σ 2

|c) (9)

The weights’ posterior distribution is generated as

p(w|c,α,σ 2)

=
p(c|w, σ 2)p(w|α)

p(c|α, σ 2)

= (2π )−(N+1)/2|6|−1/2 exp{−
1
2
(w− µ)T6−1(w− µ)}

(10)

where µ = σ−26ϕTc with 6 = (σ−2ϕTϕ + A)−1 and A =
diag(α0, α1, . . . , αN ).
Because of the unified hyperpriors, p(c|α,σ 2)is defined as

p(c|α,σ 2) =
∫
p(c|w,σ 2)p(w|α)dw

= (2π )−N/2|σ 2I+ ϕA−1ϕT
|
−1/2

× exp{−
1
2
cT(σ 2I+ ϕA−1ϕT)−1c} (11)

The maximum a posterior (MP) estimation of the weights
is obtained by the posterior mean, which relies on the value of
α and σ 2. The estimations of αMP and σ 2

MP are generated by
maximizing the marginal likelihood. The iterative formulas
of αMP and σ 2

MP are

αnewi =
1− αiNii
µ2
i

(12)

(σ 2)new =
||c− ϕw||2

N −6i(1− αiNii)
(13)

where Nii is the posterior weight covariance’s i-th diagonal
element.

With respect to a new input x∗, its corresponding out-
put c∗’s probability distribution is

p(c∗|c,αMP,σ
2
MP) =

∫
p(c∗|w,σ 2

MP)p(w|c,αMP,σ
2
MP)dw

(14)
The distribution is a Gaussian form for both integrated

terms are Gaussian

p(c∗|c,αMP, σ
2
MP) = N (c∗|y∗,σ 2

∗ ) (15)

where y∗ = µTϕ (x∗) and σ 2
∗ = σ

2
MP + ϕ (x∗)T6ϕ(x∗).

K (xi, x) in the ϕ (xi) is applied to map the inner product
of data points to a high-dimensional feature space, and the
kernel is significantly important to the prediction perfor-
mance of the RVM. Gaussian kernel function is a commonly
used kernel function in the RVM for its powerful nonlinear
processing capability, and the function is defined as

K1(xi, x) = exp(−
‖xi − x‖2

2γ 2 ) (16)

where γ is the width factor.
Polynomial kernel function is a global kernel function, and

it is a beneficial complement to the Gaussian kernel function
in many machine learning works [39]–[41]. The function is
defined as

K2(xi, x) = [(xTi · x)+ 1]d (17)

where d is the degree.
Proper kernel is needed in the RVM for the purpose of

making accurate prediction. Single kernel learning method
has been used to generate kernel in the RVM prognostic
work [25]–[28], [33]. However, the method may discard use-
ful information in the training data and thus result in sub-
optimal generalization performance. Compared to the single
kernel learning method, multiple kernel learning is a novel
and effective method to consist the optimal kernel for the
reason of a convex combination of finitely many basic ker-
nel functions can always generate the optimal kernel. The
MKRVM’s kernel is produced by using multiple heteroge-
neous kernel learning method, and the MKRVM is used to
predict the battery’s future capacity in the work. The multiple
heterogeneous kernel learning method is defined as

K (xi, x) =
M∑
m=1

dmKm(xi, x) (18)

where dm is the weight of the m-th kernel function with

dm ≥ 0 and
M∑
m=1

dm = 1. K (xi, x) in the work is composed of

the Polynomial kernel function of degree 1 to 3 and Gaussian
kernel function with 10 different width factors.

Since a sparse weights solution is helpful in precision
and fitting quality [39]–[42], the weight is cleared when the
corresponding basic kernel function contributes less to the
prediction performance. PSO algorithm has shown superior
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efficiency in the parameter estimation [47]–[49]. This algo-
rithm can seek the kernel function’s weights by using a fitness
function and easily generate an effectively sparse weights
solution. Therefore, the sparse weights of the MKRVM are
produced by using the PSO algorithm in the work.

B. PSO ALGORITHM
PSO algorithm is an effective evolutionary method presented
in 1995 [50]. Referencing birds’ flocking, particles generated
in the algorithm seek the optimal solution for the target.

The particle k’s optimal location can be selected as

Pk =

{
Pk , f (Pk ) < f (Xk (t + 1))
Xk (t + 1), f (Pk ) ≥ f (Xk (t + 1))

(19)

where k = 1, 2, · · · , s, and s is the size of swarm; Xk ∈
[Xmin,Xmax], and it is the particle k’s location; t is the cur-
rent iteration number; f (x) is a minimized objective fitness
function.

The global optimal location of the swarm is elected as

Pg(t) = argmin {f (Pk )} (20)

The location and speed evolution equations are

Vk (t + 1) = wVk (t)+ c1r1(Pk − Xk (t))+ c2r2(Pg − Xk (t))

(21)

Xk (t + 1) = Xk (t)+ Vk (t + 1) (22)

where Vk is the particle k’s speed; c1 and c2 are accelerating
factors; w is inertia weight; r1 and r2 are random num-
bers between 0 and 1.

C. PROCEDURE OF WEIGHTS SEEKING
The weights are mapped to the multi-dimensional locations
of every particle and the optimization target is to seek a best
particle with the optimal location.

The seeking flowchart is shown in Fig. 1 and the seeking
steps are as follows

1) Initialize the PSO algorithm’s particles.
2) Calculate each particle’s fitness value. Mean square

error (MSE) is adopted as the fitness function, and it
reflects the difference between the predicted data and
initial data

MSE =

R∑
r=1

[z∗(r)− z(r)]2

R
(23)

where r = 1, 2, . . .R, and R is the size of data;
z∗(r) are the predicted data and z(r) are the initial data.

3) Produce each particle’s optimal location and the global
optimal location of the swarm in accordance with
Eq. (19) and Eq. (20).

4) Update the speed and location of each particle accord-
ing to Eq. (21) and Eq. (22).

5) Repeat the step 2) to 4) until the maximum iteration.

FIGURE 1. Flowchart of sparse weights generation by using PSO
algorithm.

6) Acquire the optimal multi-dimensional locations and
considered them as the sparse weights of the kernel
functions.

7) Exit the program.
When a basic kernel function contributes less to the predic-

tion performance in the weights seeking procedure, its weight
would be cleared by PSO algorithm. The remained weights
are sparse weights generated by PSO for the MKRVM.

IV. PROGNOSTICS EXPERIMENT
A. EXPERIMENT DATA AND PROCEDURE
The lithium-ion battery capacity data are measured in the
data repository of NASA Ames Prognostics Center of Excel-
lence [46], and they are used to demonstrate the proposed
capacity prognostic approach in the work. In the NASA data
collected procedure, lithium-ion batteries are testing at 25 ◦C
under three different operational profiles: charge, discharge
and impedance. Charging is using a 1.5 A constant current
until the battery’s voltage reaches 4.2 V, and then the voltage
is maintained until the current drops to 20mA. Discharging
is performing at a 2 A constant current until the voltage
drops to 2.7 V, 2.2 V and 2.5 V, which are corresponding to
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FIGURE 2. Measured capacity data of batteries.

FIGURE 3. Flowchart of experiment steps.

battery 5, battery 7 and battery 18, respectively. Impedance
measurement refers to an electrochemical impedance spec-
troscopy frequency sweep ranging from 0.1 Hz to 5 kHz.
The measured battery 5, battery 7 and battery 18 capacity
data are shown in Fig. 2. A cycle refers to once charging and
discharging operation. It can be observed that every capacity
trajectory descends with charging and discharging, and at
some cycle ascends rapidly, shortly and irregularly due to
instrument errors, interference factors in the measurement,
uncertain load and other unknown reasons in batteries. The
lengths of capacity data of battery 5, battery 7 and battery
18 are 168, 168 and 132 cycles, respectively.

In the work, RUL refers to the remaining useful cycle
that the battery performance guarantees, and it is the end
of life (EOL) cycle minus the current cycle. The detailed
experiment steps of battery capacity prognostic are shown
in Fig. 3 and described as follows

1) Perform EMD denoising method on basis of the mea-
sured data, and the denoised data are generated.

FIGURE 4. EMD results of the measured battery 5’s capacity.

TABLE 1. Correlation coefficients between decompose results and the
measured capacity data of the batteries

2) Divide the denoised data into training data and testing
data.

3) By using PSO algorithm, sparse weights of MKRVM
are yielded on basis of the training data.

4) Construct a capacity prediction model by using
MKRVMwhich employs the generated sparse weights.

5) Yield the predicted testing data by the model.
6) Calculate the estimated RUL of the battery.

B. EXPERIMENT RESULTS AND ANALYSIS
EMD denosing is employed to denoise the measured capacity
data. The measured capacity data of battery 5, battery 7 and
battery 18 are decomposed into 6 IMFs and a residual. Fig. 4,
Fig. 5 and Fig. 6 demonstrate the EMD results of battery 5,
battery 7 and battery 18, respectively. The correlation coeffi-
cients between decompose results and the measured capacity
data of the batteries are calculated according to Eq. (3), and
shown in Table 1. The correlation coefficient threshold is
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FIGURE 5. EMD results of the measured battery 7’s capacity.

FIGURE 6. EMD results of the measured battery 18’s capacity.

set to 0.2. Then, the denoised capacity data are generated in
according with Eq. (4) based on the decompose results whose
correlation coefficients are higher than 0.2.

FIGURE 7. The denoised capacity data of battery 5.

FIGURE 8. The denoised capacity data of battery 7.

FIGURE 9. The denoised capacity data of battery 18.

The generated denoised capacity data of battery 5, bat-
tery 7 and battery 18 are shown in Fig. 7, Fig. 8 and Fig. 9.
In the figures, the trajectories of the denoised data descend
by degrees when the batteries are charging and discharging
in the experiments. The denoised capacity data are all close
to the measured capacity data obviously, which reflects that
denoised capacity data can character the downward trend of
the denoised capacity data in the testing.

In the experiments, each nominal capacity of lithium-ion
battery is 2 Ah and the EOL threshold is 1.38 Ah. The lowest
capacity of battery 7 is 1.4005 Ah, which is higher than
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FIGURE 10. The sparse weights generate procedure of battery 5 case.

FIGURE 11. The sparse weights generate procedure of battery 18 case.

the EOL threshold. Therefore, the measured capacity data
of battery 7 are only used to show the effect of the EMD
denoising method, and not applied to predict the battery’s
future capacity. The battery capacity prediction experiments
include a battery 5 capacity prediction case and a battery
18 capacity prediction case. The lengths of the training data
in the two battery cases are set to 80 and 70, respectively.

The PSO algorithm’s swarm size is set to 10; the maximum
iteration is set to 100; the locations of particles are limited
between 0 and 1; c1 and c2 are both set to 2; w is linearly
decreased from 0.95 to 0.4 with the evolution. On basis of the
experiences of formerworks [25]–[28], [33], [42], the degrees
of the polynomial kernel function and the width factors of
the Gaussian kernel function are set to 1, 2, 3, 0.1, 0.2,
0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, which are corresponding
to weight 1, weight 2, weight 3, weight 4, weight 5, weight 6,
weight 7, weight 8, weight 9, weight 10, weight 11, weight 12,
weight 13, respectively.

Fig. 10 and Fig. 11 show the generate procedures of sparse
weights by using the PSO algorithm in the battery 5 and
battery 18 capacity prediction cases. As displayed in the
figures, the PSO algorithm can seek the sparse weights for
the capacity prediction cases. The generated sparse weights
of two cases are shown in Table 2.

TABLE 2. Sparse weights generated of batteries.

FIGURE 12. Prediction results of battery 5 case.

Adopting the generated sparse weights, the MKRVM
is used to predict the battery’s future capacity. The esti-
mated RUL, absolute error (AE), relative accuracy (RA),
α − λ accuracy [51] and MSE are employed as measure
metrics. The metrics are defined as

AE = RULes − RUL (24)

RA = 1−
|RULes − RUL|

RUL
(25)

α − λ accuracy =

{
Yes if RULes ∈ [B1,B2]
No if others

(26)

where RULes refers to the estimated RUL; B1 and B2 are
confidence intervals which are equal to RUL ∗ (1 − α) and
RUL ∗ (1+α), respectively, and α is a bound set to 0.1.
The RUL of the denoised data of battery 5 is 49,

and the RUL of the denoised data of battery 18 is 45.
The predictions of the two cases are displayed in Fig. 12 and
Fig. 13. Estimated RULs, AEs, RAs, MSE1s, MSE2s of two
cases are shown in Table 3, where MSE1 refers to the MSE
of the predicted testing data and the denoised testing data,
and MSE2 denotes the MSE of the predicted testing data and
the measured testing data. The figures obviously show that
the MKRVM can predict the comparatively accurate future
capacity of two batteries. Meanwhile this can also be proved
by the MSE1s and MSE2s in Table 3, which are very low
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FIGURE 13. Prediction results of battery 18 case.

TABLE 3. Estimated RULs, AEs, RAs and MSEs of two cases.

TABLE 4. Compare results of two methods.

values reflecting that the predicted testing data are close to
the denoised testing data and measured testing data in the two
cases. RAs are both beyond 90% in the two cases indicating
high prediction precisions produced by the MKRVM. Mean-
while, two α − λ accuracys are both Yes in the two cases for
the estimated RULs are both within the confidence intervals.

In order to prove the predict performance of the proposed
MKRVM approach, the proposedMKRVM approach is com-
pared with RVM optimized by PSO algorithm approach [33]
and SVM improved by PSO algorithm approach [52]. The
measured data and denoised data of the battery 5 and 18 are
used as experiment data. The measure metrics include esti-
mated RULs, AE, MSE1 and MSE2. The results are recorded
in Table 4. From the table it can be seen that the RVM and
SVM are also effective in battery capacity prediction. Mean-
while, MKRVM provides smaller MSE1 and MSE2 than the
RVM and SVM which reflects that the data predicted by the
MKRVM are more closely to the measured data and denoised
data. Meanwhile, the MKRVM produces lower AE than the
RVM and SVM which indicates that the MKRVM can yield

more precise prediction than the RVM and SVM. Therefore,
the proposed MKRVM approach observably precedes the
RVM and SVM approaches in the battery capacity prediction.

V. CONCLUSION
An EMD denoising method has been presented to process the
measured battery capacity data for the purpose of generating
the noise-free capacity data. Meanwhile, the method has
been demonstrated by the measured battery 5, battery 7 and
battery 18 capacity data.

A MKRVM approach has been proposed to predict the
battery’s future capacity in the work. Meanwhile, its sparse
weights are produced by using PSO algorithm. Battery 5 and
battery 18 capacity prediction cases’ results have validated
that the proposedMKRVM approach can predict the battery’s
future capacity precisely. Furthermore, a compare experiment
has demonstrated that the proposed MKRVM approach can
yield higher prediction precision than RVM and SVM.

There are two future works associated with our work.
First, it would be interesting to apply the EMD denosing and
MKRVM methods to other prognostic applications. Second,
it is promising to develop another advanced kernel function
as basis kernel function, and apply it in ourMKRVMmethod.
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