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ABSTRACT Cognitive radio technology is an important branch in the field of wireless communication, and
automatic identification is a major part of cognitive radio technology. Convolutional neural network (CNN)
is an advanced neural network, which is the forefront of application in the digital image recognition area.
In this paper, we explore CNN in an automatic system to recognize the cognitive radio waveforms. Excitedly,
it is a more effective model with high ratio of successful recognition (RSR) under high power background
noise. The system can identify eight kinds of signals, including binary phase shift keying (Barker codes
modulation) linear frequency modulation, Costas codes, Frank code, and polytime codes (T1, T2, T3,
and T4). The recognition part includes a CNN classifier. First, we determine the appropriate architecture
to make CNN effective for proposed system. Specifically, we focus on how many convolutional layers
are needed, what appropriate number of hidden units is, and what the best pooling strategy is. Second,
we research how to obtain the image features into CNN that based on Choi–Williams time-frequency
distribution. Finally, by means of the simulations, the results of classification are demonstrated. Simulation
results show the overall RSR is 93.7% when the signal-to-noise ratio is −2dB.

INDEX TERMS Cognitive radio, radar countermeasures, waveform recognition, time-frequency distribu-
tion, convolutional neural network.

I. INTRODUCTION
Cognitive radio is an agile way to perceive the electro-
magnetic spectrum, the wireless communicated environ-
ment and recognition of the waveforms etc. It is crucial
to make efficient and effective operation for the future
communication. Many scholars have devoted themselves
in automatic recognition area, because of its important
applications in cognitive radio. They have been looking
for a practical and effective method to make the recog-
nition system more intelligent and more robust. How-
ever, modern communication and radar systems usually
have low instantaneous power. And some classification
approaches that rely on instantaneous power are no longer
applicable. A second-order cyclostationarity-based algorithm
is utilized for the recognition of communication signals,
such as spatial multiplexing (SM) orthogonal frequency-
division multiplexing (OFDM) signals, Alamouti (AL)-
coded OFDM signals and SC-FDMA signals [1], [2].
The experimental results show a good identification
performance with phase noise, channel conditions etc.

Time-frequency techniques can gather the power of signals
in time-frequency domain [3]. In [4] and [5], atomic decom-
position (AD) is investigated in the frame of complex radar
signal detection and classification, and a digital channelized
receiver is presented for the interception of a wide variety of
signals (LFM, PSK, FSK and continuous wave). The RSR
is more than 90% at SNR of 0dB by using the short-time
Fourier transform (STFT). J. Lundén introduces a supervised
classification system based on features that is extracted
from the intercepted pulse compression waveforms [6]. The
intercepted waveforms are classified into eight classes based
on Wigner time-frequency distributions (WD) and Choi-
Williams time-frequency distribution (CWD). The overall
correct classification rate achieves 98% at SNR of 6 dB.Ming
improves themethod of Lundén and achieves great results [7].
Zeng D. uses the Rihaczek distribution (RD) and Hough
transform (HT) to concentrate the energy on time-frequency
plane and then derives two new characteristic features [8].
The algorithm is better than the majority of algorithms
just through ambiguity function. In [9], a radar waveform
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recognition algorithm which is based on random projections
and sparse classification (SC) is presented. The algorithm
can improve the information completeness, efficiency and
robustness of noise. Three kinds of waveforms (LFM, FSK
and PSK) are classified and the ratio of successful recogni-
tion (RSR) is over 90% at SNR of 0dB.

In fact, convolutional neural network (CNN) has been
proposed in image recognition and computer vision fields,
offering improvements over classical neural network onmany
tasks [10], [11]. Recently, CNN has been addressed for
speech recognition [12], [13], computer vision [14], hand-
written recognition [15] etc. Specifically, Abdel-Hamid intro-
duces a novel framework of model spectral correlations
where convolutional weights are shared over limited fre-
quency regions. It is a technique known as limited weight
sharing (LWS) [12]. After that, he discusses how to reduce the
further error rate by using CNNs [13]. Experimental results
show that CNNs reduce the error rate by 6%-10% compared
with deep neural networks (DNNs) on the speech recognition
tasks. X. Niu and C. Suen present a hybrid model of two supe-
rior classifiers CNN and Support Vector Machine (SVM),
which have proven results in recognizing different types of
patterns [15]. In their model, CNN works as a trainable
feature extractor and SVM performs as a recognizer. Exper-
iments show the RSR achieves more than 99.81% without
rejection.

In this paper, we explore awidely automatic cognitive radio
waveform recognition system, which can identify 8 kinds
of waveforms (BPSK, LFM, Costas codes, Frank code and
T1-T4) by using CNN classifier. We employ CWD as a
key signal processing method to improve SNR with detected
signals. The detected signals will become a 2-D image about
time and frequency after CWD. We process the 2-D image
into a binary image by using image binarization, image open-
ing operation etc. As is known to all, CNN is an effec-
tive classifier especially in image recognition. The excellent
structure gives us a high RSR in the low SNR environments.
Experimental results show that when SNR ≥−2dB, the total
RSR of recognition system will be more than 93%.

Major contributions of our work can be summarized as
follows: (1) Propose the recognition scheme based on CWD
and CNN. (2) Explore an adaptive structure of CNN for the
scheme. (3) Our recognition system can identify as many as
8 kinds of waveforms. Previous systems can seldom discuss
such kinds of waveforms together, especially classification
of polytime codes. (4) The system performs well without any
priori information.

The paper is organized as follows. The signal model and
basic algorithm about CWD are proposed in Section II.
Section III describes the structure of the system. Section IV
designs a suitable CNN for the cognitive radio waveform
recognition system. Section V explores the procedures about
how to process the detected signal, how to obtain the binary
image and how to remove the image noise etc. Section VI cre-
ates the simulation data and discusses the simulation results.
Finally, Section VII draws the conclusions.

II. THEORETICAL BACKGROUND
In this section, we review recent approaches related to this
paper. Artificial neural network (ANN) has developed rapidly
in the last few years. And its development has greatly pro-
moted the automation of the classification system.ANN types
vary from one or two layers of single direction logic to
many complicated multi-input directional feedback loops and
layers [16], [17].

A. SIGNAL MODEL
We assume the amplitude of signal has no connection with
time. At the same time, the detected signal transmits in
additive white Gaussian noise (AWGN) environment. And
the SNR is defined as SNR = 10 log10(σ

2
s )/(σ

2
ε ), where σ

2
s

and σ 2
ε are the variances of signal and the noise, respectively.

In summary, the signal model is given by

x(nT ) = s(nT )+ m(nT ) = Aejφ(nT ) + m(nT ) (1)

where, T is sampling interval, n is integer, x(nT ) is the
complex of detected signal, m(nT ) is complex AWGN with
the variance σ 2

ε . s(nT ) is complex signal, and A is amplitude.
For simplicity, we assume A = 1. φ is the instantaneous
phase. However, the Hilbert transform will be applied if the
detected signal x(nT ) is real. For more details, see [18].

y(k) = x(k)+ jH[x(k)] (2)

where, y(k) is complex and x(k) is real. H[·] is Hilbert
transformation.

B. Choi-Williams DISTRIBUTION (CWD)
Choi-Williams distribution is a kind of time-frequency trans-
formation which is an effective approach to prevent the cross
terms [19].

C(ω, t) =
∫∫∫

∞

f (ξ, τ )ej2πξ (s−t)

� x(s+ τ/2)x∗(s− τ/2)e−jωτdξdsdτ (3)

where, C(ω, t) is the time-frequency result. ω and t are
frequency and time axes respectively. f (ξ, τ ) is the kernel
function as follows

f (ξ, τ ) = exp

[
(πξτ )2

2σ

]
. (4)

The kernel is a low-pass filter in two-dimensional space,
which removes the cross terms interference. σ is controllable
factor, which decides the bandwidth of the filter. Once σ is
bigger, the cross terms follows. In this paper, we assume
σ = 1 to balance the cross terms and resolution. In Fig. 1,
8 types of CWD transformation results are presented.
We have found the approach to improve the calculation speed
of CWD showed in [20]. 1024 × 1024 points of CWD are
chosen in this paper.
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FIGURE 1. In this figure, different waveform classes are shown, including LFM, Costas codes, BPSK, Frank, T1, T2, T3 and T4. There are significant
differences among the CWD images.

FIGURE 2. The figure shows the system components. The system consists
of three parts, time-frequency processing, image feature extraction and
classifier. In the first part, the signal is converted into 2-D image. Further,
binary images are extracted in the second part for training and testing.
The classifier can discriminate between 8 different categories of
cognitive radio waveforms into different classes.

III. SYSTEM OVERVIEW
In this section, we describe the recognition scheme in details.
As Fig. 2. shown, the entire identification systemmainly con-
sists of three components: time-frequency processing, image
feature extraction and classifier. All waveforms go through
the time-frequency processing part. In this part, signals will
become a 2-D image about time and frequency by using CWD
transformation. Different kinds of waveforms usually have
different 2-D images. Now the 2-D images are ‘‘colorful’’,
because the signals in the 2-D images have different val-
ues in different time or frequency. However, we pay more
attention to what the shape of signal is, rather than what the
value is or where the largest value locates. At the second
part, 2-D images are processed to binary images by utilizing
image binarization and image denoising algorithm. Then,
the differences between different kinds of waveforms are

FIGURE 3. There is the structure of classifier. Through the two cycles of
convolution and subsampling, the input image would become a features
vector for MLP. And then, the features vector is classified into one
of 8 types of waveforms directly.

more significant, thus CNN can identify them easily. After
the first and second part, the system collects a great deal
of information about different kinds of waveforms, and all
waveforms are classified in the third part.

The classifier can recognize 8 different kinds of cognitive
radio waveforms. They are LFM, BPSK, Costas codes, Frank
code, and T1-T4. At the output of S2, we determine the appro-
priate convolution kernel in S2 layer to make the convolution
results of the input image into a features vector rather than a
features map. N1 and N2 layers constitute a complete MLP.
And the features vector acts as the input data for it, then the
MLP tells us which waveform has the biggest possibility in
current input. As a full connected network,MLP is considered
as an output part of CNN, with robustness and short training
time. The excellent structure gives us a high RSR in the low
SNR environments. For more details, see Fig. 3.
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FIGURE 4. It is the structure of CNN. It has 7 layers for different functions. The formula 6@28×28 means, there are 6 feature maps and the size of
every map is 28×28.

IV. CNN DESIGN
CNN has special structure for feature extraction [11]. The
input of CNN is a 2-D feature (image), and the classification
results are expressed in the form of probability. CNN is not
a full connected neural network. It is a great innovation,
in which the network can focus more on the extraction of
features, rather than fitting input data. As a simple example,
when we focus on a picture, the picture will be converted
into electrical signals by retina, and be transmitted to the
visual areas of the cerebral cortex. Further, neurons are also
full connected, which allows us to pay more attention to the
picture, but ignores the feature that is far from the focus
automatically. CNN is more similar to human in visual pro-
cessing, and it has a powerful performance in complex image
recognition. The architecture of the CNN model is shown
in Fig. 4. As CNN contains a large number of parameters
in the hierarchical architecture, it would be quite lengthy if
we use general constants to denote the parameters. Hence,
we describe the neural architecture as follows.

a) The input data is an image of the normalized and cen-
tralized pattern with size 32× 32. The detected signal,
after CWD transformation and image binarization pro-
cesses, will become a binary image. However, the size
of binary image is too large to train CNN. We attempt
the nearest neighbor interpolation algorithm to match
the CNN input size, the advantage of which is to reduce
the computer load and survive the key features of
image.

b) The first hidden layer C1 is a convolutional layer with
6 feature maps. With different feature maps, we select
different kernels. Each kernel in each feature map is
connected to a 5 × 5 neighborhood of the input. All
the neurons in one feature map share the same kernel
and connecting weights [21]. We indicate C1(i, j, k) as
the value of kth feature map at position (i, j) in the
C1 layer.

c) The second hidden layer S1 is a down-sampling layer
with 6 feature maps by using mean operation. Such
an operation introduces some local translation invari-
ance to the model. According to the same rule of C1,
we denote S1(i, j, k). Further, we have

S1(i, j, k) = mean(C1(2i− 1, 2j− 1, k),

C1(2i− 1, 2j, k),C1(2i, 2j− 1, k),

C1(2i, 2j, k)). (5)

The size of S1 reduces to 1/4 compared with C1.
d) Next layer C2 is also a convolutional layer with 16 dif-

ferent kernels. It is not full connected with S1 layer. The
connection detail is described in Table 1. The reason
why not utilize a complete connection is described
in [22]. We also use C2(i, j, k) to show this layer. For
the αth column in Table 1, we mark row indices by
βα,0, βα,1, · · ·, βα,p−1. For example, if α = 7, then we
get p = 4, β7,0 = 1, β7,1 = 2, β7,2 = 3, β7,3 = 4.
Further, the size of convolution kernel is p × 5 × 5,
we denote the αth kernel by Kα . And we have

C2(i, j, α) =
p−1∑
r=0

4∑
i0=0

4∑
j0=0

[ S1(i+ i0, j+ j0, βα,r )

×Kα(5− i0, 5− j0, p− 1− r) ] . (6)

For instance, for the 0th column, p = 3, α00 = 0,
α01 = 1, α02 = 2, and we also have

C2(i, j, 0) =
p−1∑
r=0

4∑
i0=0

4∑
j0=0

[ S1(i+ i0, j+ j0, β0,r )

×K0(5− i0, 5− j0, p− 1− r) ] . (7)

Finally, the size of receptive field is 10 × 10, which is
suitable for training and recognizing.
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e) Similarly, to match with C2 layer, this layer is a down-
sampling layer, called S2. S2 has 16 feature maps, and
we follow a similar notation as in Equ. 5, we donate

S2(i, j, k) = mean(C2(2i− 1, 2j− 1, k),

C2(2i− 1, 2j, k),C2(2i, 2j− 1, k),

C2(2i, 2j, k)). (8)

f) After that, S2 and C3 are full connected. That is to say,
each kernel in C3 will be connected with all feature
maps in S2. And the size of kernel is 5×5, whichmeans,
the feature map will become the size of 1 × 1, after
convolution. In this layer, there are 120 kernels and the
output is a column vector with the size of 120 × 1.
We define C3(λ) as the λth feature map of C3, and Kλ
as the λth kernel. So, we have

C3(λ) =
15∑
r=0

4∑
i0=0

4∑
j0=0

× [ S2(i0, j0, r)×Kλ(5− i0, 5− j0, 15− r) ] .

(9)

g) Finally, a fully connectedmulti-layer perceptron (MLP)
is connected with C3, which has a hidden layer N1
and an output layer N2. For N1, a method to estimate
the suitable neurons number of hidden layer Hnum is
introduced in [23]. In this paper, an empirical formula
to decide the neurons number is shown as

Hnum =
X × C + 0.5× (X2

+ X )× C − 1
X + C

(10)

where, X is dimension of features vector, C is the
number of classification. In this paper, X = 120,
C = 8. It is just an empirical formula that can not com-
pletely determine the best suitable number of hidden
layer. We may fine-tune the number to search the value
for proposed network. An effective approach is to take
the training data as the testing data and put them into
well-trained networks. The current correct recognition
rate should be beyond 99%, if not, the number needs
to be revised. The original number Hnum = 462 is
calculated from Equ. 10, through the fine-tune process,
the suitable number Hnum = 484 in the paper. The
number is determined before the experiments and is not
changed. Finally, the network is trained by using the
gradient descent method [24]. The size of N2 is a 8× 1
column vector with one-hot code (defined by classes
we want to classify).

V. IMAGE PROCESSING DESIGN
In this section, we process time-frequency images as suitable
ones for classifier. The quality of images (for classifier)
influences RSR and the robustness of system directly. The
section is organized as follows. First, we obtain the 2-D
image, by applying CWD transformation. Then, 2-D images

FIGURE 5. In this figure, T1 code acts as an example with SNR of −6dB.
Original 2-D image (1024×1024) are clipped by 720×720 (decided by the
length of original samples), and the bicubic interpolation is adopted.
By utilizing the opening operation and topological approach, the noises
are removed effectively.

are processed into binary images by using digital image pro-
cessing. For every detected signal, there are one 2-D image
and one binary image to match it.

A. IMAGE CLIPPING
In the following part, the original images are processed into
2-D images. First, we acquire the basic CWD image from
the real parts of CWD transformation. In fact, when we
calculate CWD by computer, FFT kernel is used for many
times. In order to improve the calculation speed, 1024×1024
points is selected. However, the length of signals isN < 1024
in general, and zero padding is utilized. Further, the size of
CWD image is 1024 × 1024. Then, in order to reduce the
computation load and adapt to the approaches, the CWD
image will be resized to N ×N (for more details, see Fig. 5.).

B. BINARY IMAGE
On the basis of global thresholding algorithm, the resized
image is changed into a binary image [7], [25]. The algorithm
is organized as follows:

a) Normalize the resized image with the range of [0, 1],
and record as H (x, y).

b) Estimate the initial threshold T , and the image is
divided into two parts H1 and H2 by using T

T = (max
x,y

(H (x, y))+min
x,y

(H (x, y)))/2;
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TABLE 1. Connection detail about S1 and C2.

c) H1 includes the pixels in which the values> T , andH2
includes others;

d) Calculate the average value µ1 and µ2 of H1 and H2,
respectively;

e) Update T as follows

T := (µ1 + µ2)/2;

f) Repeat (b)-(e), until the difference between the two
calculation results of T is less than 0.001;

g) Binarize the H (x, y) and record as B(x, y),

B(x, y) =

{
1 H (x, y) ≥ T
0 others;

h) Output B(x, y).

C. NOISE REMOVING
After the image binarization, however, some processing
noises and isolated noises can be found in the binary image.
Isolated noises are from external environment. They are nat-
ural properties of signals. In the binary image, they are many
groups of pixels in the random positions. Processing noises
are created in the signal processing. For example, the kernel
of CWD f (ξ, τ ) influences the processing noises. The shape
of the noises is a straight line. Depending on the parameter
of CWD’s kernel σ = 1 and the binarization algorithm,
the lines are long but thin. The length of most lines is longer
than half of the image length and some of them are even as
long as the image. But the width is less than 3 pixels. Image
morphology algorithm is appropriate to remove both two
types of noise. Generally speaking, in 2-D image, signal is
the main component. In other words, the number of pixels of
signal is the largest, and the amount of each group of isolated
noise pixels is much smaller than the signal’s. We can employ
the topological structure (such as ‘‘connected’’ or ‘‘discon-
nected’’) of signals and noise to count the number of pixels
respectively. And remove the group of pixels which size is
much smaller than the largest one. In this paper, the size
of groups that is smaller than 10% of the largest group are
considered as isolated noises and will be removed. We also
utilize opening operation with the kernel of 3 × 3 to remove
the processing noises. The process is introduced in Fig. 5.

D. IMAGE RESIZING
Finally, we will resize the binary image to adapt the input
of CNN. The size of 32× 32 is suitable for the network. It is
small but it has enough pixels to characterize the waveform.
The nearest resizing algorithm is explored in this paper. It is
the nearest-neighbor interpolation process and the output
pixel assigns the value of the pixel that the point falls within.
For more details, see [25].

VI. SIMULATION AND DISCUSSION
In this section, we create different kinds of signals as simu-
lation data to test the recognition system. All the generated
data and experiments are simulated in the MATLAB 2016a.
Each waveform has different parameters that need to be set.
U(·) denotes a uniform distribution based on the sample rate.
For instance, there is an initial frequency f0 = 2000Hz, and
the sample rate is fs = 8000Hz. The uniform result is f0 =
U(f0/fs) = U(1/4). U(1/16, 1/8) means the parameter is a
random number and the range is [fs/16, fs/8] = [500, 1000].
The parameter setting becomes simple and clear by using
this method. For BPSK, the Barker codes length is any of 7,
11 and 13. And the carrier frequency fc is from U(1/8) to
U(1/4) randomly. The cycles per phase code cpp and code
periods number Np are range of [1, 5] and [100, 300] respec-
tively. For LFM, the length of signal is range of [500, 1024].
The remaining parameters, initial frequency f0 and frequency
bandwidth 1f , all of which have the same set. Both the
ranges are U(1/16, 1/8). For Costas codes, the fundamental
frequency fmin is a random number from U(1/24) to U(1/20).
And the number change Nc is a random integer from 3 to 6.
For example, the parameters of Costas codes are fmin = fs/20
and Nc = 4 respectively. Then, a no-repeating sequence
{4, 1, 3, 2} is generated. After that, the frequency sequence
{4fmin, fmin, 3fmin, 2fmin} is created. For Frank code, the car-
rier frequency fc and the number of cycles per phase code cpp
are similar to BPSK. The samples per frequency steps M is
also a random integer with the interval [4, 8]. For T1-T4 poly-
time codes, they are two phase states in the code sequence,
and the number of segments k and overall code duration
T are range of [4, 6] and [0.07, 0.1] respectively. For more
details, see Table 2. There are 1000 labels provided for each
waveform class in the same SNR condition. The production
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FIGURE 6. In the figure, 25 binary images are selected randomly from the
train/test sets of SNR = 0dB. All 8 kinds of waveforms are included in the
figure.

TABLE 2. List of simulation parameters.

of labels repeats for 7 times, in which the SNR is increased
from −4dB to 8dB at a step of 2dB. We divide the labels
into two parts, 80% labels for training and 20% for testing.
We compare our recognition system with J. Lundén’s [6] and
our previous work [7]. They are the most widely recognition
systems at present and they classify the similar waveforms
with proposed system. We repeat the two methods and test
them by using proposed data. The simulation results are
shown as Fig. 7.

Fig. 7 plots RSR as a function of the SNR. Each wave-
form has its own relation between SNR and RSR and the
overall probabilities also be provided. In our system, all
waveforms have positive correlation between SNR and RSR.
When SNR < 2dB, RSR is increased significantly with the

FIGURE 7. Classification performance as a function of the SNR.

improvement of SNR, and when SNR ≥ 2dB, RSR increases
more slowly. RSRs of majority waveforms are more than
90%, and some of them even reach 98%. At SNR of −2dB,
the overall probabilities is still more than 90%. In considering
that the detected signals often has a low SNR, it will be more
meaningful that better RSR are achieved in such environment.
For LFM, proposed method is worse than previous work
but better than Lundén’s. Because the time-frequency images
are similar to Frank code. In terms of BPSK and Costas
codes, the RSRs of three methods have a high level. For
Frank code, the results of proposed method and previous
work are analogical, and better than Lundén’s. For poly-
time codes, the performance of proposed method is the best.
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TABLE 3. Confusion matrix for the system at SNR of −2dB (actual/predicted). the overall RSR is 93.7%.

Table 3 exhibits the detail of classification at SNR of −2dB
and the overall RSR is more than 93%. The successful recog-
nition about T1-T3 and Costas codes are in a high level. The
error of LFM and T4 are higher than others. Some of LFM
waveforms are identified as Frank, while, Frank is identified
as LFM by the system. In fact, the LFM and Frank code
are much similar, which is shown in Fig. 1. T4 has the most
complex CWD image in all waveforms. In other words, it has
the lowest RSR in all types, and other types of waveforms are
also easily identified as T4 at the same time.

VII. CONCLUSION
In this paper, an automatic cognitive radio waveform
recognition system based on CWD transformation and CNN
classifier is explored. The system can classify 8 kinds of
cognitive radio waveforms (including BPSK (Barker mod-
ulation), LFM, Costas codes, Frank code, and T1-T4) in a
high noisy environment. Through the application of CWD
transformation, we can pay more attention to the structure
of waveforms. It is a reliable method to classify them. The
simulation results show the RSR is more than 93.7% when
SNR ≥ −2dB. According to the waveforms classification,
we can detect, track and locate the radiation sources effec-
tively. It is useful for the wireless communication and radar
countermeasure system. However, there are many waveforms
in the airspace in each moment. Proposed method is suitable
for the single sample classification but not good at multiple
samples. How to realize the classification of complex multi-
ple samples is our future work.
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