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ABSTRACT Demand side management (DSM) will play a significant role in the future smart grid by
managing loads in a smart way. DSM programs, realized via home energy management systems for smart
cities, provide many benefits; consumers enjoy electricity price savings and utility operates at reduced peak
demand. In this paper, evolutionary algorithms-based (binary particle swarm optimization, genetic algorithm,
and cuckoo search) DSM model for scheduling the appliances of residential users is presented. The model
is simulated in time of use pricing environment for three cases: 1) traditional homes; 2) smart homes; and
3) smart homes with renewable energy sources. Simulation results show that the proposed model optimally
schedules the appliances resulting in electricity bill and peaks reductions.

INDEX TERMS Appliance scheduling, binary particle swarm optimization, genetic algorithm, cuckoo
search algorithm, energy management system, electricity pricing, smart grid.

I. INTRODUCTION
Global energy demand is increasing rapidly in comparison
to the steady growth of energy generation and transmission
setups. Consequently, widening the demand and supply gap.
In traditional grids, utilities cater this situation by increasing
the total generation capacity as a function of peak demand.
However, the resulted system (generation and distribution)
by a large part is unutilized [1], [2]. Recently, two parallel
approaches are developed to handle such situations: (i) using
and promoting energy efficient technologies to reduce the
aggregated power consumption, and (ii) developing strategies
to control the aggregated power demand. Collectively, the two
parallel approaches make DSM whereas the later approach is
known as Demand Response (DR) [3], [4].

United States household electricity usage data show that
42% of energy is consumed by household appliances [5].
Major forces are creating a new paradigm on residential elec-
tricity markets as energy optimization becomes an increas-
ingly important challenge in our society. New technologies
are being deployed, including advanced meters, control-
lable appliances [6], distributed energy generation and stor-
age systems, i.e., plug-in hybrid electric vehicle batteries,

stand-alone storage systems, and communications capabili-
ties. New laws are being proposed to allow electricity con-
sumers to access pricing information. New dynamic pricing
policies are likely to be implemented at the retail level over
the next years [7], [8]. Energy management controllers [9]
are primarily designed to control load within a single home.
They often take into account the utility data like load fore-
casts or ToU pricing for scheduling the household appliances.
On the customer side, customers have the incentive to shift
their electricity usage from high peak hours to low peak hours
so that their electricity bills can be reduced [10], [11].

DR is defined as ‘‘changes in electricity usage by end cus-
tomers from their normal consumption patterns in response
to changes in the price of electricity over time’’. Price based
DR programs consider flattening demand fluctuations as an
objective. Both the customer and the utility will get benefits
from DR. It encourages the customer to reduce the peak
demand in response to the incentives [12]. A DR strategy
coordinates the requirements between the energy provider
and the customer [13]. On the utility side, by reducing high
peaks, DR programs are helpful in protecting grid from
the risk of outages, reduce the usage of spinning reserves
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TABLE 1. Nomenclature.

during peak load periods, balance the supply demand ratio,
and improve the grid reliability [14]–[16]. Further DR ben-
efits include: (i) lower electricity price in wholesale market,
(ii) adequacy saving and operational security, (iii) integrated
resource planning studies, and (iv) improved choice for using
DR [17], [18].

In contrast to DR programs, integration of renewable
energy into residential units provides reliable, efficient and
most attractive solution now a days. It can curtail electricity
cost at residential premises and flatten the peaks at utility
premises. The work presented in [5] and [6] uses various
types of battery storage systems for electricity cost reduction
alongwith grid stability. Whereas, the impact of uncertainty
in renewable energy production on day-ahead market pricing
is presented in [19]. In another work [20], authors analyze the
impact of line limits/losses on electricity prices which later on
are used for residential energy management [8].

In this paper, we present a cost efficient appliance schedul-
ing model for residential users. Our appliance scheduling
model aims at optimizing the operation time of electrical
appliances. The model also takes into account the RES gen-
erated energy jointly with grid generated energy. The model
uses EAs (GA, BPSO and Cuckoo [21], [22]) for generating
the optimized schedules and it is simulated in ToU pricing
environment. Results validate that the proposed model per-
forms well in scheduling the household electrical appliances
and provides benefits to the users by significantly reducing
their electricity bills.

The rest of the paper is organized as follows. Section II
describes the related work and provides motivation.

Section III presents the proposed approach in detail.
Section IV discusses the simulation settings and resu-
lts. Section V deals with performance tradeoffs. Section VI
concludes the paper. The variables used in this work are listed
in table 1.

II. RELATED WORK AND MOTIVATION
Smart grid is a network of technologies that delivers electric-
ity from power plants to the end user and connects all supply,
grid and demand elements via an effective communication
system. The system is the amalgamation of engineering,
information and communication technologies, and manage-
ment of the power grid. The improvements in these technolo-
gies can be applied to enhance automation, foster integration
of distributed generation from renewables, secure the power
system architecture, and enable efficient demand-side energy
management. Recently, residential energy management has
become an active topic with respect to research and also has
a need of an implementation on the real test bed. In Energy
Management System (EMS), appliance scheduling is one of
the main and important parameter that needs proper attention.
Several appliance scheduling strategies have been proposed
by different researchers. Some of the authors designed an
automatic controlling devices for scheduling the appliances
to provide an optimum cost to the users. while, others used
the AI techniques to schedule the appliances in an automated
way [23].

EMS is deployed in a home to schedule the electricity
consumption in such a way that peaks and electricity cost
is reduced to the maximum extent [9]. The EMS includes
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Advanced metering infrastructure, smart meters, home gate-
way, energy management controller, home appliances and in-
home display devices. The advance metering infrastructure
is like the nervous system of the EMS architecture which
communicates in both ways between utility and smart meter.
An optimization approach based on Real Time Pricing (RTP)
combined with the inclining block rate pricing scheme is used
for the power consumption of all the automatically operated
appliances in the home. GA is used to optimize the operation
start time of such type of appliances [24]. The GA randomly
creates a solution population that consists of a certain number
of individuals. Each individual contains a solution set of all
kinds of variables which are represented as chromosomes.
We can get the new solutions by calculating the fitness value,
selecting individuals, crossover and mutation that include
both old and new individuals.

The objective of the DSM strategy is to increase the use
of RES, increase the economic benefit and reduce the power
imported from the main distribution grid or minimize the
peak load demand [5]. The objective load curve is taken as
an input by the DSM system and demands for the control
action in order to meet the desired load consumption. The
algorithm is completely independent of the criteria that is
used for generating the objective load curve. The connection
moments of each shiftable device are scheduled by DSM.
DSM algorithm needs to be designed in order to handle the
complexities,i.e., operation time interval of electrical appli-
ances more than one hour and able to process a large number
of controllable appliances of various characteristics,i.e., dif-
ferent power consumption characteristics. Moreover, the aim
of the DSM scheme is to get the final load curve as closer as
possible to the objective load curve [25].

Several variants of time pricing are discussed in this paper,
e.g., ToU and RTP [26]. In ToU, prices are well known in
advance may be a year ahead and establishes a variable price
structure for peak, shoulder, and off-peak hours and low peak
hours. RTP is discussed in this paper and vary on an hourly
basis depending on the energy demand of themarket. Variable
peak pricing is a hybrid of the two, and establishes vari-
able pricing in the day. Energy can be efficiently consumed
and the power consumption can be efficiently minimized by
voluntary reduction of home electric consumption based on
energy awareness and automatic or manual reduction of home
idle appliances. Smart meters and HEM are deployed so that
consumers may respond according to the behavior of energy
markets and reduce their energy consumption at peak prices.
The highest developments in the home area communications
and networking technologies for energy management in the
smart grid are presented briefly in [27]. It also gives a review
of the different objects used in smart grid, offered by different
companies and also explains the various challenges in the
design of future EMS such as network security, etc.

A GA based optimization approach combined with a two
point estimate method is used to meet the heating ventilation
air-conditioning load with a hybrid renewable energy gen-
eration and energy storage system [28]. Hybrid generation

systems are inherently unpredictable because of the stochas-
tic nature of the wind, solar irradiation and load attributes.
Probability density function is used to characterize the uncer-
tainties of wind and solar generation whose statistics are
obtained from past data of wind speed and solar irradiance.
Fuzzy C-Mean is used for the calculation of the seasonal
variations in the data. To get the optimal capacity for solar
energy, wind energy and energy stored in hybrid system,
GA based tool is used.

In [29], a residential load management problem is formu-
lated and solved in terms of cardinality optimization used
to form sparse patterns for Nash equilibrium. The sparse
patterns significantly reduce the user discomfort which is
created when cost reduction is a primary objective of opti-
mization program. As it is understood that with the objec-
tive of cost reduction, peak reduction constraint could be
violated. To overcome this issue, a Newton method to accel-
erate coordination of DSM strategies is used. Generally,
the DSM techniques are price driven where there is a minimal
consumer interaction involved [30]–[33]. To achieve cost
reduction object with utility benefits, consumers’ activities
are predicted using hidden Markov model. Then based on
the information about consumers’ activities, load demand,
utility supply constraints, algorithm decides weather the load
will be turned ON or OFF. A similar work where interac-
tions among various energy retailers and mobile operators are
investigated [34]. These interactions are made to achieve eco-
nomical goals with reduction in carbon dioxide emissions.

In DSM, cost and comfort are two major objectives subject
to price and user preferences. The works done in [6], [26],
[32], and [33] use stationary strategies to minimize electricity
cost and user discomfort of myopic consumers. In contrast,
the work [35] uses repeated energy scheduling game to model
interactions among foresighted and interested consumers.
They prove that stationary strategies provide sub-optimal
solutions in terms of long-term cost and comfort. In con-
trast, authors determine non-stationary DSM strategies where
consumers have choice to select any strategy based on their
energy demand and comfort requirements. In [36], an integer
linear programming technique is used to schedule power and
time shiftable appliances. At utility premises, integration of
distributed RES can help independent system operators and
aggregatorsto make foresighted decisions (i.e., procurement
and energy purchase) for long term cost reduction [37].

Residential users are not much aware about the impor-
tance of DR program and most of them have not tools for
taking part in DR. Moreover, the commercial and industrial
customers have tools and therefore widely participate in the
DR programs as compared to residential users. Home appli-
ances and their consumption are monitored, controlled and
managed by HEM system. It is the most prevalent response
side for automation of appliance monitoring [38]. Distributed
resources are used to describe mainly three new concepts,
i.e., DR, distributed generation and electricity storage. These
distributed resources are connected in low and medium volt-
age level inside of the grid. This connection of distributed
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FIGURE 1. Proposed model.

resources inside of the grid represents a radical change for
the operation [39]. An opportunistic scheduling scheme is
proposed based on the optimal stopping rule for smart appli-
ance automation control [6]. It calculates the best time for
an appliance operation to minimize electricity bill reduction.
The proposed scheme has low complexity, i.e., can be eas-
ily implemented, real time and distributed characteristics.
It follows distributed threshold policy when no constraint is
considered. Furthermore, if there exists a power constraint,
the scheduling algorithm can be implemented in either a
centralized or distributed fashion [39].

Smart grid gives opportunity to the end users to
bi-directionally communicate with the utility in real time,
so consumers can tailor their energy consumption based on
individual preferences like price concern, user comfort, etc.
Based on different usage patterns of energy, the smart grid
offers differential pricing scheme in order to avoid different
risk factors like blackout or load shedding, thus allows the
user to curtail energy consumption during peak demand.
The objective of appliance scheduling in differential pricing
environment is to optimally schedule the ON-OFF cycles of
appliances subject to end user electricity cost minimization.
The contributions of work are listed as follows:

1) We propose a model for different types of users and
loads and a simple way to model user preferences with
the aim at cost and peak reductions. Then cost reduction
objective function is formulated, mathematically.

2) BPSO, GA and Cuckoo search algorithms are used
to solve centralized optimization problem. Control

parameters of these algorithms are selected in such a
way that an optimal solution is found within acceptable
processing time.

3) To avoid the usage of peaking power plants during
high demanding hours, on-site renewable energy and
backup storage systems are used which further reduce
electricity cost.

III. PROPOSED APPROACH TO OPTIMIZE
ENERGY CONSUMPTION
In this section, an optimal approach for scheduling the power
usage of smart appliances in a home is proposed based on the
ToU pricing scheme. Accurate and reliable load management
are a key element of the automation. Whereas, automation of
appliances is a critical aspect of energy management in the
residential sector, especially in the smart grid environment.
The concept of load scheduling approach to monitor the
electricity usage of appliances is introduced. Section III-A
describes the conceptual model used in this work.
Section III-C discusses the user categorization based on
which the optimization algorithm works.

A. CONCEPTUAL MODEL
Fig. 1 shows a graphical representation of the proposedmodel
that serves as the basis for the development of optimiza-
tion algorithm. It consists of integrated power & renewable
energy utility that is interested in serving all types of resi-
dential or commercial loads. The respective power grid and
on-site RES act as a single node. The optimization program
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dispatches power to residential loads and storage system that
could be utilized during high demanding hours. The energy
demand of residential load is directly fulfilled by using grid
energy, direct renewable energy or storage systems depend-
ing on the electricity price in particular hours. However,
the on-site renewable energy source and storage system act
as a ‘‘first-choice’’ for delivering energy to residential loads.
In this way, the load management system reduces the energy
obtained from utility which is presented and discussed in
section V. Furthermore, the integration of on-site renewable
energy and storage systems with HEM model is helpful in
reducing high peaks on grid when energy demand is high.

B. ADVANCE METERING INFRASTRUCTURE
Rather than a single technology, advance metering infras-
tructure is an integration of multiple technologies such as
smart metering, home area network, software interfaces,
and data management applications. Alongwith these tech-
nologies, two way communication, sensors, and distributed
computing make it feasible for both end users and inde-
pendent system operators. The system composed of these
technologies leads to make intelligent decision making, reli-
ability, safety and ease of use [40], [41]. Regarding home
area network, system includes smart meters, communicating
thermostats, back-haul communication network, data centers,
and data integration into new and old application platforms.
According to Fig. 1, smart meter is located between home
area network and utility which forwards aggregated load
demand to utility via smart meter. Then based on load data,
utility calculates and provides pricing signal (i.e., ToU, RTP)
which later on is used for load scheduling.

C. USER CATEGORIZATION
In this work, a new approach is proposed that autonomously
generates energy consumption pattern for each appliance
based on the electricity price tariff. First, we categorized
the energy consumers into three categories; traditional users,
smart users and smart prosumers. Traditional users- this class
of users is non-price sensitive, thus have noHEM architecture
in their homes. Smart users- this class of users has HEM
architecture but have no on-site energy generation system.
Smart Prosumers- this type of users not only consume the grid
energy but also produce some energy from the RES system
and have HEM architecture and RES generation along with
storage system in their homes.

D. RENEWABLE ENERGY GENERATION MODEL
Due to recent energy crises and environmental concerns,
much attentions are given to the integration of renewable
energy resources. Among all renewable energy sources, solar
energy is most abundant and easily accessible. However, its
unpredictable nature poses many questions (i.e., availability,
capacity, usage) to energy retailers and prosumers. A study
conducted in [42] shows that Earth receives 174,000 terawatts
solar radiations and approximately 30% are reflected back to
atmosphere. While, the rest are absorbed by clouds, oceans,

FIGURE 2. Renewable energy generation from solar panels.

and land masses. Then based on solar radiations, the total
energy (kW) obtained from solar panels can be calculated
as [43]:

EPVt = η
PV
× APV × Ir,t (1− 0.005(T at − 25)). (1)

This formulation addresses the recent trends in renewable
energy integration into a smart home to lower electricity bill
alongwith grid stability. Fig. 2 shows the amount of solar
energy produced from renewable source. From h7 − h19,
solar energy can be used for storage or to run residential
load. However, from h1 − h7 and h20 − h24, solar energy
is not available and in this situation, optimization algorithm
should be designed in such a way that it can handle residential
loads even during peak hours. Keeping these tradeoffs in
mind, this work utilises battery storage system to save extra
energy during underload conditions. This, however, signifi-
cantly reduces end user cost and flattens the peaks on grid
side.

E. ENERGY MANAGEMENT MODEL
A demand side HEM model based on ToU pricing scheme
for a household that is connected to the utility grid and an on-
site RES is presented. The Smart Scheduler (SS) receives the
differential price signal from the smart grid via smart meter
and adjusts the hourly load level of the user accordingly.
Firstly, the SS schedules the electrical appliances by shifting
the maximum allowable load from high peak hours to low
peak hours. Secondly, the SS checks the hourly energy cost
and switches the load from the smart grid to the RES storage
where the load costs maximum.

When SS is not included in HEM system then
power (energy) is allocated to the appliances following first
come first serve policy. When the SS is available, an optimal
power pattern is allocated to a set of appliances that mini-
mizes the total cost by solving the objective function.

The objective of the proposed model is to maximize the
economic benefit, minimize high power imported from the
grid during high peak hours and high peak demand, reduce
the peak cost and exploit the use of RES.
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FIGURE 3. Proposed energy efficient model.

F. HOUSEHOLD ORIENTED HEMS
EMS is deployed in a home to schedule the electrical
appliances in order to consume the grid and RES stored
energy optimally. The HEM system is comprised of different
devices; Home Grid (HG), electrical appliances and an in
home display device. The home has an intelligent appliance
scheduling and decision making device, i.e., SS which is
embedded inHEMarchitecture and coordinate with the appli-
ances. The HEM architecture is demonstrated in Fig. 1.

Three types of users are taken into account.Wemodel daily
energy consumption of a single home that acts as consumer
and as a producer of electrical energy, called Prosumer. The
home is equippedwith an on-site RES system for local energy
generation. A smart meter which provides energy price sig-
nals and a set of electrical appliances that consume energy.
We divide each day into 24 equal interval of time slots. The
SS optimally computes the ON-OFF schedules of household
appliances.

Consider a housewhich contains a setℵ = {a1, a2, . . . , aN }
of appliances; |ℵ| ∈ N . Let the observation period be H and
the loads be of two types: interruptible loads (I) and base
loads (B). The set I includes awashingmachine, a cloth dryer,
an electric vehicle and an electric water heater. Similarly,
the set B contains a refrigerator and a lighting source. Once
activated, the interruptible appliances are deferrable at any
time. For a scheduling problem, the number of shiftable appli-
ances is greater than zero (i.e., A > 0). The end user objective
is achieved by optimized control actions over shiftable loads.

TABLE 2. Different appliances with their attributes.

Lets αai,h denotes a set of shiftable appliances at time slot h
and base load is assumed to be unscheduled.

This assumption is made since the end user is not willing
to re-schedule those loads. Each appliance has fixed LOT,
i.e., the number of time slots each appliance needs to be run
and each appliance completes its task within 24 hours. As the
SS works on the principle of load shifting, so, each appliance
can bear a certain amount of delay ζai given as follows:

ζai = 24− βai , (2)

where βai denotes the LOT of aith appliance. The upper and
the lower limits of ζai are given by the following equation:

ψ1 ≤ ζai ≤ ψ2, (3)

where ψ1 = 24 − βmax and ψ2 = 24 − βmin. If E(h,ai) is
the energy consumption of appliance ai at time slot h then the
total demand of a household ET is computed as follows:

ET =
N∑
i=1

24∑
h=1

Eh,ai . (4)

Furthermore, we assume that the household generates 40%
of its total demand via RES. Thus, the user must be con-
nected to the main utility. Considering that the hourly
energy production of one photovoltaic module in kWh is
ERES,h ∀ h ε{1, 2, . . . , 24}, the daily generation is given by
the following equation:

ERES =
24∑
h=1

ERES,h (5)

IV. PROBLEM FORMULATION FOR
APPLIANCE SCHEDULING
Given the set A = {a1, a2, . . . , aN }, where each appliance
consumes different amount of energy as shown in table 2.
These appliances are connected to the HEMS’ SS. Our objec-
tive is to minimize the electricity bill which is formulated as
follows:

min

(
24∑
h=1

N∑
i=1

Ecostai ,h

)
, (6)

s.t :
N∑
i=1

24∑
h=1

Eh,ai = Egrid , ∀ B, (6a)

N∑
i=1

24∑
h=1

ET ,h = Egrid,h + ERES,h, ∀ I, (6b)

ζmax,ai ≤ 24− βai , (6c)
σh,ai ε {0, 1}. (6d)
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Eq. (6) is the cost minimization objective function and
Eq. (6a) denotes energy demand and balance in case ofB. The
energy demand of I is always fulfilled by grid and renewable
sources (eq. 6b). Eq. (6c) shows maximum waiting time that
any appliance can bear. In eq. (6d), a boolean variable is given
to determine weather the appliance is ON or OFF.

σh,ai =

{
1 if appliance ai is ON
0 if appliance ai is OFF.

(7)

1) BPSO BASED OPTIMIZATION
BPSO is a heuristic population-based search technique that
locates the solution to an optimization problem. Each Par-
ticle is composed of N elements. An optimal solution is
found by moving the particle in the solution space. Each
particle is considered as a position and each element of a
particle position can take the binary value 0 (not included)
or 1 (included).

Suppose a swarm consists of M particles, and each par-
ticle’s (ith particle’s) initial position vector Si and velocity
vector Vi are randomly initialized, respectively. Each parti-
cle checks the best particle in its neighbourhood (local best
particle). Position of the best searched particle is therefore,
Plbest = {plbest1 , plbest2 , . . . , plbestM }. The best particle among
all the particles is said to be global best and its position is,
Pgbest = {pgbest1 , pgbest2 , . . . , pgbestM }. Both Plbest and Pgbest
are determined by evaluating the objective function. There are
two main differences between Pgbest and Plbest with respect
to their convergence characteristics. Due to larger particle
inter connectivity, the Pgbest converges faster than the Plbest
but Plbest is less susceptible of being trapped in local optima.
Each particle updates its velocity vector using the following
equation:

V t+1
i (j) =

(
wV t

i (j)+ c1r1( P
h
lbest,i(j)

− Shi
(
j))+ c2r2(Phgbest,i(j)− S

h
i (j)

)
(8)

where V h+1
i (j) is the jth element of the velocity vector of

ithe particle in t + 1th iteration, Shi (j) is the position of the
jth element of ith particle in tth iteration and r1 and r2 are
random variables between 0 and 1. The constants c1 and
c2 are the pulls for the local and the global best positions,
respectively. The w is the weight of the particle’s momentum
and it is calculated as:

w = winitial + (wfinal − winitial)×
t

tmax
(9)

where, both winitial and wfinal are the initial weight and final
weight of the particle’s momentum, respectively; t is the
current iteration number and tmax is the maximum number
of iterations. Also,

S t+1i (j) =

{
1, if sig (V t+1

i (j)) > rij
0, otherwise.

(10)

where,

sig
(
V t+1
i (j)

)
=

1(
1+ exp(−V t+1

i (j))
) . (11)

In BPSO, velocity of a particle coordinate is mapped to
a probability using a sigmoid function and the resulting
probability determines whether the coordinate takes a value
of 1 or 0. The velocity of particle ranges between −Vmax
and Vmax . The cost, i.e., fitness against each particle is cal-
culated using objective function (6). All the particles are thus
ranked according to their fitness values.

After tmax iterations, a particle Pgbest is selected as an
optimal solution by the SS. The Pgbest is the pattern of bits
representing statuses of the appliances. The SS anticipates
cost against this pattern for each hour and shifts this pattern
to that hour where it costs the minimum. The SS shifts
the adjustable load from grid to RES stored energy where
grid energy costs the maximum to the residential user. The
pseudo code and flow chart of the algorithm are given in
Algorithm 1 and Fig. 3, respectively.

2) GA BASED OPTIMIZATION
GA is used to perform search in the solution space to find an
optimal solution (pattern) to the objective function (cost min-
imization) subject to its defined constraints. For a population
ofM number of randomly initialized chromosomes (chromo-
somes represent the solutions to the problem), each one is
constructed as an array of bits, the length of the chromosomes
is directly related with the number of household electrical
appliances. Once the population is created, the objective
function is evaluated in terms of fitness. A fitness function
is chosen such that the algorithm achieves a final load curve
as close to the objective load curve as possible. The fitness
function is given as follows:

Fitness =
M∑
i=1

24∑
h=1

(Eh,ai × EPh) ∀ h ε {1, . . . , 24} (12)

Selection allocates more copies of those solutions with higher
fitness values (i.e., min(Fitness) values) and thus imposes the
survival of the fittest mechanism on the candidate solutions.
Many selection procedures namely roulette-wheel selection,
stochastic universal selection, ranking selection and tourna-
ment selection are used. In this work, binary tournament is
used in which two individuals are randomly chosen with a
chance. The probability of each individual is calculated and
individuals having probability greater than 0.5 but less than 1
are selected for further reproduction to produce new fitter
offsprings.

As the algorithm progresses, new populations of chromo-
somes are produced from the existing ones which have possi-
bly better fitness than the previous population. This operation
is called crossover. There is a chance that the chromosomes
of the two parents randomly crossover to form new fittest
offsprings. In this work, one point crossover is used which
is shown in Fig. 4.
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Algorithm 1 Appliance Scheduling Algorithm Based on
BPSO
Require: number of particles, swarm size, tmax , electricity

price, LOT and appliance power consumption rating
1: Randomly generate the particles’ positions and velocities
2: Pgbest ←∞
3: for t = 1 to swarmsize do
4: initialize (swarmsize,tbits)
5: Pvel ← randomvelocity()
6: Ppos← randomposition(swarmsize)
7: Plbest ← Ppos
8: end for
9: for h = 1 to 24 do
10: Validate Constraints
11: for i = 1 to M do
12: if f (σi) < f (plbest,i) then
13: plbest,i← σi
14: end if
15: if f (Plbest,i) < f (Pgbest,i) then
16: Pgbest,i← Plbest,i
17: else
18: Pgbest,i← Pgbest,i
19: end if
20: Decrement one from the TOT of the working appli-

ance
21: if Ecost > Emaxcost then
22: if ETotRES > Eloadh then
23: Switch the load to RES storage system
24: else
25: Consume the grid energy
26: end if
27: end if
28: Return Pgbest,i
29: Update the velocity vector using Equation 8
30: Update the inertia weight factor using Equation 9
31: Update the position vector using Equation 10
32: end for
33: end for

FIGURE 4. Single point crossover.

Where two parents produce two offsprings. Parental com-
bination at random points may lead to the creation of possibly
new and better solutions. A large crossover rate ensures faster
convergence of the solution. Through extensive simulations,
we have found the best Crossover Rate (Pc) = 0.9 subject to
the objective function (6). In order to avoid repetition of the

FIGURE 5. Mutation operator.

same chromosomes in the population genetics, randomness
is needed so that a chance is provided to randomly change
the gene of a child (refer to Fig. 5). Thus, mutation locally
but randomly modifies a solution. Again, through extensive
simulations, we have found a relation for the best mutation
rate given as follows:

Mutation Rate (Pm) =
1− Pc
10

. (13)

In order to preserve elitism, both parent and offspring pop-
ulations are combined. The resulted population is evaluated
using the fitness function and sorted based on their fitness
values. Eventually, the fittest individuals are chosen for next
generation and the best chromosome among the M fittest
individuals is selected as an optimal solution during that
generation.

The SS checks the energy consumption pattern against the
selected fittest individuals and sends control signal to the
appliances either to operate or not. The SS uses this fittest
individual and checks the 24 hours time horizon and shifts
load to a time slot where it costs the minimum. Moreover,
SS shifts the acceptable load from utility grid to RES stored
energy where grid energy costs the maximum to the residen-
tial user.

It is worth mentioning here that the user provides infor-
mation about the operation time and the power rating of
each newly added appliance or an appliance changed with an
existing one in the HEM system; in-home display is used for
this purpose. Once the information is provided, the algorithm
adaptively adjusts all the parameters accordingly to generate
new solutions.

3) CUCKOO SEARCH BASED OPTIMIZATION
Cuckoo search belongs to an evolutionary algorithm category
which can be used to find optimal solution of any problem.
This algorithm works on the breading behavior of cuckoo
species. Some Cuckoos dump their eggs in other birds nests,
called ‘‘host nests’’. Host birds discover the eggs that are
laid by other Cuckoos for reproduction. The number of host
nests are fixed and the discovering probability of the host
is Pa = [0, 1]. Cuckoo search algorithm finds the optimal
solutions on the basis of following rules.
• Every Cuckoo dump only one egg in the randomly
selected nest.

• For reproducing next generation, the nests having
superior quality eggs (or solutions) among others are
migrated.
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Algorithm 2 Appliance Scheduling Algorithm Based on GA
Require: popsize, maxgen, tbits
1: Generate initial population
2: initgeneration(popsize,tbits)
3: for h = 1 to 24 do
4: Evaluate the population and record current Fittest

chromosome
5: [best] = Evaluatefitnessfunc-

tion(cost,popnew,popsize)
6: if bestai == 1 then
7: LOTai = LOTai − 1;
8: end if
9: Search for chromosome optimal position in the entire

search space
10: for t = 1 to m do
11: h = findminimumcost(best, f (best), t)
12: Shift to that hour the current best chromosome
13: end for
14: if Ecost (h) < Emax then
15: if ETot.RES > loadh then
16: Switch the load to RES storage system
17: else
18: Consume the grid energy
19: end if
20: end if
21: Generate new population
22: for j = 1 to popsize do
23: Select crossover pair
24: Select(a,b)
25: if pc > rand then
26: crossover(a, b)
27: end if
28: if pm > rand then
29: mutation(c,insite)
30: end if
31: New population generated
32: popnew(popsize,tbits)
33: end for
34: Validate− constraints(popnew)
35: end for

• The number of host nests are fixed and the eggs discov-
ering probability is 0 or 1. Accordingly, the host birds
threw the egg for next generation or leave for producing
new nest.

Lévy flight is performed for generating new solutions:
(i) for a Cuckoo ‘‘i’’, (ii) animals search diet in random
way naturally. Normally, the foraging method of an animal
depends on randomwalk because the next step is based on the
basic status and transition probability to the next state. A Lévy
flight is a random walk in which step lengths are distributed
by probability distribution. After maximum number of steps,
the distance from the beginning of the random walk tends to
a stable distribution.

Algorithm 3 Appliance Scheduling Algorithm Based on
Cuckoo Search
Require: host nests, P.a, max. iterations,
1: Objective function f(x), x = 1 to n
2: n = no. of host nests
3: for h = 1 to 24 do
4: no. of host nests are fixed, n = 1, 2, 3, . . . n
5: while i ≤ maxgen(n) do
6: get a solution through random walk (levy flight)
7: consider local best
8: for c = 1 to d do
9: compare lbest with nextbest
10: if nextbest > lbest then
11: gbest = nextbest
12: else
13: gbest = lbest
14: end if
15: if bestc == 1 then
16: LOTc = LOTc − 1
17: end if
18: end for
19: if Ecost (h) < Emax then
20: if ERRS (h) > load(h) then
21: use RES
22: else
23: use grid energy
24: end if
25: end if
26: end while
27: end for

V. RESULTS AND DISCUSSIONS
To evaluate the performance of the proposed appliance
scheduling schemes, we simulate daily energy use of a set of
household appliances. The attributes; number of appliances,
Operation Time (OT) and the power rating of the appliances
are shown in table 1. Simulations are performed for three
main cases: i) Traditional homes (without HEMS), ii) Smart
homes, iii) Smart homes with RES system. Peak shaving was
realized by load adjustment of devices with soft schedules.
Shiftable appliances requests were altered by systematically
switching them off and on.

A. ELECTRICITY TARIFF
The ToU pricing policy is used for billing of the energy users.
ToU pricing establishes a variable price structure for high
peak, shoulder peak, low peak and off peak hours. These
prices are typically established well in advance by the utility
grid. The ToU pricing provides financial benefits to the users
who take part in DR program for shifting their load from high
peak to off peak hours. In ToU pricing scheme, the cost of
electricity is charged at different rates during different time
horizons. Fig. 6 shows the ToU signal sent by utility to the
end users.
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FIGURE 6. ToU pricing scheme.

TABLE 3. Control parameters for BPSO method.

TABLE 4. Control parameters for the GA method.

Simulation Performance parameters are:
i) Energy consumption: Electrical Energy consump-

tion(kWh) is the amount of power consumed by the house-
hold appliances during any time slot h.
ii) cost: It is defined as the cost paid by the user to the

utility corresponding to the energy consumed by the different
appliances at time slot h. The Electricity cost is calculated in
Pakistani Rupees (Rs).

The control parameters of BPSO are table 3:
i) Swarm: Swarm is the number of particles used to analyze

the performance of the proposed BPSO technique.
ii) Velocity: The particles move in the search space and try

to find the optimal solution. The particles move between two
ranges of the velocities, i.e., Vmin and Vmax .

iii) Appliance status: It determines whether to operate the
appliances.

The control parameters of BPSO and GA based HEM
architecture are listed in tabl. 3.

The control parameters of the GA based HEM architecture
are discussed as under (table 4):

i) Chromosome: Parameters of the solution, i.e., genes are
concatenated to form a string known as a chromosome. The
size of each chromosome is 6-bits.

ii) Population size: Population size is the set of
chromosomes. Each chromosome represents a possible
solution.

iii) Crossover operator: Crossover is a genetic operator
used to vary the programming from one generation to the

TABLE 5. Control parameters for the cuckoo search.

FIGURE 7. Energy consumption profile.

next generation. It forms new elements for the new population
from the current population.

iv) Mutation operator: Mutation is sparingly applied to the
genes randomly chosen for elimination. It randomly flips the
bits within a single chromosome.

The control parameters of Cuckoo search algorithm are
given as (table 5):

i) Cuckoos: The scheme is proposed on the basis of
some special type of cuckoo species which provides different
parameters for problem solution. We assume these parame-
ters in the form of 0 and 1.

ii) Host Nests: The number of host nests represent number
of possible solutions. From these solutions, we select the
solution of high fitness value.

iii) Discovery Rate: This parameter shows the discovery
rate of eggs (or solutions) discovered by the host bird. Its
value ranges between 0.5 and 0.50. However, in our work,
the value of discovery rate is fixed 0.25.

1) APPLIANCE SCHEDULING SCHEMES
In order to demonstrate the performance of the proposed
model for appliance scheduling algorithms, the simulation
result and evaluation of proposed schemes in three scenarios
are analysed and discussed in this section.

a: CASE I (WITHOUT HEMS)
Traditional user has no HEM architecture and thus uses grid
energy when required. The energy obtained from the grid and
is consumed by appliances in different time slots is shown
in Fig. 7.

The electricity cost for unscheduled load under the ToU
pricing scheme is demonstrated in Fig. 8.
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FIGURE 8. Energy cost profile.

b: CASE II (HOUSEHOLD ORIENTED HEM)
Two types of HEM architecture is presented for smart users.
The HEM architecture based on BPSO avoids the appliances
to operate during high peak hours. The performance of the
BPSO based HEM architecture in making optimal schedules
for the household appliances in 24 hours time horizon is
shown in Fig. 7 and the cost paid to the utility against these
consumption is demonstrated in Fig. 8. It is evident from the
Fig. 7, the SS not only shifts the load from high peak hours to
low peak hours, but it also checks and shifts the load to that
hour where it costs minimum.

The smart user having HEM architecture based on GA
consumes the energy optimally and benefices the household
by shifting load during peak hours to off peak hours taking
into account the different user preferences and constraints.
The behaviour of load towards energy consumption after
taking part in DR is shown in Fig. 7. Similarly, Figs. 7, 8 show
the energy consumption and electricity cost of residential
loads using Cuckoo search algorithm. Load has been shifted
from on-peak hours (h1−5) to off-peak (h6−10) hours. This,
however, reduces electricity cost and high peaks caused due
to load shifting where users rely only on grid energy (Fig. 9).
With this kind of benefits, many customers can be motivated
to participate in efficient utilization of energy via scheduling
their appliances. The daily savings of the residents having
HEM architecture in their homes against the traditional users
is tabulated in table.6

c: CASE III (PROSUMER ORIENTED HEM)
In this case, the user takes advantage of the differential pricing
scheme as well as utilizes the stored RES energy optimally to
minimize their electricity cost. The home taken into consid-
eration in this scenario, is the amalgamation of HEM ( BPSO,
GA and Cuckoo) and RES generation along with storage
system. The SS utilizes the RES stored energy where grid
energy costs maximum and shifts the load from the grid to
RES energy and thus minimizes the electricity cost by a very

FIGURE 9. PAR.

TABLE 6. Summary of results obtained from simulations.

significant amount. The performance of all HEM architec-
tures towards the optimal consumption of the grid energy as
well as the stored RES energy is shown in Fig. 7. According
to Fig. 2, solar energy is available during specific time slots
depending upon solar irradiations and total area (eq. 1). So,
this energy can directly be utilized during high demanding
hours (h1−5,18−22) or can be stored in batteries.

High peaks during off-peak hours have been eliminated
by the utilization of RES stored energy. During on-peak
hours (h1−5,18−22), users do not fully rely on the utility grid
and prefer to use RES stored energy. In this way, electricity
cost and high peaks are significantly reduced. Furthermore,
it will lead towards grid stability. The energy cost of the
HEM with RES system against the energy consumption and
peaks reduction are presented in Figs. 8, 9. At the end,
tables 7 and 8 provide the comparisons of the proposed
scheme with other schemes used in the literature. It is clear
that the proposed system is more efficient towards residential
load management. Furthermore, the integration of on-site
RES enhances its feasibility for smart home.
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TABLE 7. Trade-offs made by the proposed optimization techniques.

TABLE 8. Comparison of the proposed scheme with other schemes.

Note: Selection of the best solution in the current gener-
ation is necessary for directing the EAs towards the global
optimum. The tendency to select the best individual in the
current generation is known as selective pressure; it plays
an important in maintaining genetic diversity. High selective
pressure has a negative impact on genetic diversity leading
to premature convergence. On the other hand, low selec-
tive pressure prohibits the EAs to converge to an optimum
solution in reasonable time. We have achieved the balance
between convergence rate and pre-mature convergence using
simulation based iterative mechanism.

VI. TRADE-OFFS MADE BY THE OPTIMIZATION SCHEMES
HEMS enables the user to optimally schedule the appliances
and to shift the load from high peak hours to off peak hours.
There exists a trade-off between electricity cost and delay that
comes due to load shifting. HEM anticipates the optimal time
for appliances, uses the grid energy optimally and allows the
users to pay minimum electricity bills while satisfying the
user comfort level. The HEM incites the users by reducing
the electricity bill. On the other side, the SS shifts the load
so the users bear some delay in the operations that need to be
completed in high peak hours, thus a minimum sacrifice over
some user comfort level are to be accepted.

Smart prosumers have both HEM and RES generation
and storage system. This class of households has an intel-
ligent HEM system and thus allows the user to optimally
consume energy and reduce the electricity bill. Besides RES
system, this class of users enables them to optimally use
the grid energy as well as their own on-site RES genera-
tion energy. Thus, they get maximum advantage of the ToU
pricing scheme and optimally consume the grid energy and
RES stored energy. Finally, an overall comparison is done in
table.6. Traditional user pays the maximum electricity bill for
the same energy used by the smart user. The smart user has
HEM architecture, thus get maximum benefits from the ToU
pricing scheme.Although, the comfort level of traditional
user is although maximum but he/she pays the maximum

electricity bill to the utility so there exists a trade-off between
user comfort and electricity bill. In the second case, the user
pays minimum electricity bills as compared to traditional
user, but compromises on some comfort level. In the third
case, the user optimally uses the energy and pays for utility
much low as compared to Smart users. Table 7 shows the
trade-offs made by the proposed techniques.

The load shifting pattern of GA based HEM architecture is
smooth, avoids load peaks during high peak hours, increases
the life time of the in-home electrical circuitry. It is evident
from the Fig. 7 that GA schedules the appliances in much
sophisticated way and allows the appliances to complete the
task with minimum delay. Whereas, the BPSO gets benefit
from differential pricing scheme and shifts the load to off
peak hours much efficiently. On the other hand, the user
having BPSO based HEM architecture suffers high delay as
compared to the user having HEM architecture based on GA,
and also suffers high load peaks that may not be good for the
stability of user in-home circuitry.

From Fig. 7, it is clear that the smart prosumer having
BPSO based HEM architecture may not be able to use the
RES stored energy optimally as compared to GA based HEM
architecture due to the high peak loads. As the behaviour
of BPSO towards load management is non uniform, i.e., it
creates peaks and shifts all the load from high peak hours to
low peak hours and this leads towards peak generation. The
average delay using BPSO based HEM architecture is very
high as compared to the GA based HEM architecture and the
user has to wait enough to complete the task. On the other
hand, GA basedHEMarchitecture response to the RES stored
energy is very well and utilize the RES energy where the grid
energy costs maximum to the user. The GA algorithm shifts
the load from high peak to low peak hours uniformly, as it
may not shift the load completely from high peak to low peak
hours but it shifts in a manner that cost is minimized and the
peaks are also reduced.

The users having HEM architecture based on GA suffer
less delay to operate their appliances and complete their daily
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routine tasks. The GA based algorithm benefices the users by
paying minimized electricity cost, relatively affordable delay
and optimal utilization of RES energy.

Regarding Cuckoo search algorithm, the simulation results
show the supremacy of the proposed technique when com-
pared with counter part techniques. It is evident from the
results that Cuckoo search optimally schedules the smart
appliances from on-peak hours to off-peak hours in order
to reduce electricity cost and high peaks. Sometimes users
desire to shift all load to low peak hours for reducing elec-
tricity cost. However, it may create high peaks on grid side.
So, algorithms are designed in such a way that alongwith cost,
high peaks are also reduced.

Therefore, it can be concluded from the simulation results
that the GA based HEM architecture shows better perfor-
mance to obtain minimum electricity cost and minimum
delay. The GA based HEM algorithm efficiently uses heuris-
tics to find the optimum appliance task completion. From
table 6, it is clear that both the optimization algorithm reduce
the electricity cost. Smart user having GA based HEM archi-
tecture gets more advantage over the smart user having BPSO
based HEM architecture. Furthermore, the smart prosumer
having GA based HEM architecture efficiently exploits the
RES energy and benefices the end user by paying minimum
electricity bill.

VII. CONCLUSION AND FUTURE WORK
This paper presented a new HEM model based on ToU pric-
ing scheme with and without RESs. In order to optimally
consume grid and RES energy, the proposed model used
EAs; BPSO, GA and Cuckoo. The results obtained from the
simulations revealed that cost saving is achieved in terms
of minimized user electricity bill. By using BPSO, GA and
Cuckoo algorithms, the proposedmodel significantly reduced
the electricity bill and high peaks. From table 6, it can be con-
cluded that with and without RES, Cuckoo search algorithm
provides better results (6.93%, 43.10 % ) in comparison to
GA and BPSO.

In the future, we will investigate other optimization tech-
niques for further reducing the electricity bills of end uses.
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