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ABSTRACT Smart Grids (SGs) have many advantages over traditional power grids as they enhance the
way electricity is generated, distributed, and consumed by adopting advanced sensing, communication,
and control functionalities that depend on power consumption profiles of consumers. Clustering algorithms
(e.g., centralized clustering) are used for profiling individuals’ power consumption. Due to the distributed
nature and ever growing size of SGs, it is predicted that massive amounts of data will be created. However,
conventional clustering algorithms are neither efficient enough nor scalable enough to deal with such
amount of data. In addition, the cost for transferring and analyzing large amounts of data is high both
computationally and communicationally. This paper thus proposes a power consumption profiling model
based on two levels of clustering. At the first level, local power consumption profiles are derived, which are
then used by the second level in order to create a global power consumption profile. The followed approach
reduces the communication and computation complexity of the proposed two level model and improves
the privacy of consumers. We point out that having a good knowledge of the local power profiles leads to
more effective prediction model and cost-effective power pricing scheme, especially in a heterogeneous grid
topology. In addition, the correlations between the local and global profiles can be used to localize/identify
power consumption outliers. Simulation results illustrate that the proposed model is effective in reducing the
computational complexity without much affecting its accuracy. The reduction in computational complexity
is about 52% and the reduction in the communicational complexity is about 95% when compared with the
centralized clustering approach.

INDEX TERMS Smart grid, power consumption profiling, clustering.

I. INTRODUCTION

FOR many years, conventional power grids have been
used to provide electricity to consumers. However,

with the growing demands of electricity, along with the
diminishing fossil fuels and the environmental effect (e.g.,
GreenHouse Gas (GHG) emissions) related to electricity gen-
eration, developing more efficient, reliable, and sustainable
power grids has become a necessary need [1]. The phenom-
enal advances that continue to be made in the various facets
of Information and Communication Technology (ICT) (e.g.,
Wireless Sensor Networks (WSNs), Internet of Things (IoT))
enable the development of the next generation of power grids,
namely Smart Grids (SGs).

SGs use a two-way flow of power and data between
devices (e.g., substations, transformers, and switches)

connected to the grids, in order to automate and facilitate
the power flow optimization in terms of economic efficiency,
reliability and sustainability [2]. To this end, each consumer
location needs to be equipped with a smart meter for moni-
toring, measuring, and communicating the bi-directional flow
of power on request or on schedule. A Supervisory Control
And Data Acquisition (SCADA) system controls the grid
operation by adjusting and controlling each device connected
to the grid.

Although SGs introduce many advantages over conven-
tional power grids, their utility depends heavily on the data
gathered from the devices (e.g., smart meters) connected to
them. Data of smart meters contains correlations, trends, and
patterns that are important for power consumption manage-
ment, as well as the stability of grids [3]. For example, it is
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possible to predict the peak power usage based on the power
consumption profiles of consumers and data of smart meters,
enabling the supplier to address the grid power demands.

Power consumption patterns of different types of
consumers vary based on the type of the consumer (e.g.,
commercial, industrial, domestic). However, even the power
consumption pattern of the same type of consumers might be
different [4]. To address this, power consumption profiling,
which refers to a power consumption for a consumer over
a period of time, is performed [5]. This enables producing,
planning, and provisioning of personalized power services
based on the knowledge of the consumers’ power consump-
tion profiles [4], [6].

Clustering is the core technique of consumers power con-
sumption profiling in SGs [5]. The main idea is to partition
power consumption patterns into groups so that patterns in
the same group are more similar to each other than patterns
in other groups [7].

Several clustering methods have been explored in the con-
text of consumer power profiling, such as K-means [8]–[10],
Fuzzy c-means [11], hierarchical clustering method [12],
and others [7]. Such methods require that all data to be
located at a central site where they are analyzed. However,
this approach (i.e., centralized clustering) cannot be applied
in the case of multiple distributed datasets, unless all data
are transferred to a single location and then clustered [13].
In addition, the centralized clustering approach is costly and
energy-inefficient because it: i) increases the amount of data
that need to be transfered to a centralized processor, ii)
requires investment in computing systems with high mem-
ory capabilities, and iii) potentially increases the number of
computations.

Due to the ever growing SGs and their distributed nature,
huge amounts of sensory data (i.e., big data) is expected to
be produced and collected. However, as the size of the data
increases, the corresponding computational cost increases as
well. Therefore, not only the quality of clustering is impor-
tant, but also the corresponding efficiency and scalability of
the consumer power profiling model is important.

In this paper, we propose a multi-layered clustering model
for SG applications. The proposed model consists of two
levels of data clustering. Using the proposedmodel, the power
consumption data of each consumer is profiled both locally,
as part of a smaller scale grid (e.g., microgrid, neighborhood
grid), and globally, as part of the whole SG. The overall
complexity is reduced by only using the representative local
power profiles of the small-scale grids in the second level of
clustering (i.e., global clustering). In addition, since only the
local power consumption profiles are transfered to the central
processor of the smart grid, the privacy of the consumers is
enhanced.

The rest of this paper is organized as follows: Section II
provides a background of SGs and surveys some of related
studies of power consumption profiling. Section III intro-
duces the proposed multi-layered clustering model and
provides a complexity analysis of the proposed model.

Section IV describes the experiments and presents the results.
Section V concludes and discusses future work.

II. BACKGROUND
SG introduces a number of new technologies, concepts, and
ideas that improve reliability and reduce costs related to
power production and distribution [14]. The SG enables the
integration of distributed renewable energy generation, stor-
age equipment, and massive utilization of electric vehicles,
which poses further challenges on efficient operation of the
electricity grid [15]. In addition, it facilitates the users’ par-
ticipation to the optimization of the power consumption, via
Demand Response (DR) algorithms [16].

FIGURE 1. A typical AMI structure: The smart meter collects the power
consumption of the electricity appliances and sends the control
commands to them if necessary. The data collected by the smart meters
in different buildings is transmitted to a data aggregator. This aggregator
could be an access point or gateway. This data can be further routed to
the electric utility or the distribution substation [20].

Under the umbrella of DR, several pricing schemes have
been proposed. The general idea of these schemes is to
encourage users to shift their usage of high-power appliances
to off-peak hours by providing economic incentives [17]. The
variable pricing schemes of electricity can be either based
on historical demand data or real-time demand. For instance,
real-time pricing is based on the real-time market price of
electricity. On the the other hand, Time of Use (ToU) is based
on seasonal and daily demand data. In both cases, the price of
electricity during high demand time is higher than the price
of electricity during low demand time [1]. For the effective
energy pricing in heterogeneous grid topologies, the concept
of locational marginal prices has been introduced. It enables
the determination of different prices for different areas of
the electricity grid, which depends on parameters such as the
line capacities and type of local loads [18], [19]. In all cases,
without the installation of smart meters and the bi-directional
data flow in smart grid, the deployment of different pricing
schemes is not feasible. The network of smart meters is
known as the Advanced Metering Infrastructure (AMI) [1].
Fig.1 shows a typical AMI structure.
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Based on the data collected from smartmeters, it is possible
to predict power load based on power consumption patterns.
By knowing the consumption patterns, consumers’ demands
might be shifted to less expensive time-slots so as to reduce
the energy expenses of the consumer and to reduce the peak-
to-average ratio of the grid [1].

Clustering is the core technique of power consumption
profiling in SGs [5]. Several studies in the literature have
discussed the application of clustering algorithms in power
consumption profiling. It has been shown in [8] that cluster-
ing of consumers’ power consumption patterns can be used to
improve load forecasting accuracy. Chicco, et al. [21] tested
the performance of five frequently applied clustering algo-
rithms (K-means, fuzzy K-means, hierarchical clustering,
modified follow-the-leader and SOM) for consumers power
profiling. The results show the superiority of the modified
follow-the-leader and hierarchical clustering as they can han-
dle isolated uncommon power patterns. Mutaneen, et al. [22]
proposed an Iterative Self-Organizing Data-Analysis Tech-
nique Algorithm (ISODATA) for load profiling by consid-
ering the dependency of the load patterns on temperature.
Piano, et al. [23] used several subspace projection methods to
capture subspaces of load diagrams and get in the load pro-
filing. Tsekouras, et al. [24] developed a two-stage pattern-
recognition methodology for the classification of electricity
customers.

Although centralized clustering approaches have been used
for power consumption profiling in SGs, they require that data
to be processed at a single sit (central processor at the util-
ity/supplier premises), which increases the communication
overhead and the computational complexity of the clustering
process, dramatically. This is because the complexity of the
clustering process is a function of the number of datapoints.
As the number of datapoints increases, the corresponding
complexity increases as well. In contrast, distributed data-
processing, fits well the concept of SG where the computa-
tions of the system could be distributed among the devices
connected to the grid. Rodrigues and Gama. [25] proposed a
distributed clustering in SG.However, their approach requires
residential units’ participation in the clustering process. They
assume that smart meters have computational capabilities
to perform data clustering. However, this approach is not
preferable as it increases the communication overhead since
data should be communicated with all participated devices.
In addition, it poses further security challenge as the con-
sumer’s data is vulnerable to cyber-attacks (e.g., hijacking,
eavesdropping) while communicating it with other devices in
the grid.

Although the computational complexity and the scalability
of power profiling model are of great interest when deal-
ing with large-scale data, most of the existing studies in
the application of clustering algorithm in SGs focus mainly
on developing a more accurate centralized power profiling
model. On the other hand, the proposed model in this paper
aims to reduce the computational complexity of the power
profiling model, while maintaining comparable performance.

In addition, the proposed model mitigates the previously
mentioned disadvantages of centralized data clustering by:

1) processing the collected data locally at the aggregation
level, which gives a better predictionmodel and reduces
the overall computation and communication costs;

2) enhancing the privacy of the consumers, only the local
power profiles are sent to the central processor.

III. PROPOSED MODEL
This section introduces the proposed multi-layered clustering
model. Then, it provides a complexity analysis of the pro-
posed model.

A. MULTI-LAYERED CLUSTERING MODEL
Consumers’ power consumption profiling, which adopts data
clustering, plays a pivotal role in SGs as it is used for load
forecasting, bad data correction, determination of the optimal
energy resources scheduling, and power pricing [5]. Cluster-
ing algorithms discover patterns among the data based on a
similarity criterion/measure. For instance, the K-means clus-
tering algorithm partitions the data into mutually exclusive
clusters of similar datapoints, aiming to maximize the intra-
cluster similarity and minimize the inter-clusters similarity.

By knowing the derived profiles, normal consumers’
behaviors can be recognized, which allow consumers and
power suppliers to agree on consumption strategies that are
more economically beneficial for both of them [6].

The proposed model consists of two levels of data clus-
tering. The first level aims to make sense of data locality
by finding representative patterns and local power profiles
at data aggregation level (i.e., aggregator). In this context,
we define a layer l as an instance of K-means algorithm
that process data of a certain region and collected by an
aggregator l. The collected power consumption data at each
aggregator is clustered into mutually exclusive clusters where
a pattern belongs to only one cluster. Based on the observation
that if patterns are located in the same cluster, they are likely
to belong to the same type or have the same behavior. Thus
power profiles/patterns within a cluster are represented by the
centroid, which is the mean of the patterns within the cluster,
and the number of patterns in the cluster, which represents the
density of the cluster. Based on the observation that outliers
are minority, we assume that a cluster of high number of
patterns represents a normal power consumption behavior.
On the other hand, a cluster of low number of patterns,
is likely an outlier/abnormal power consumption behavior.
This enables us to define and localize outliers in the SG,
which enhances the reliability of the SG. Then, the repre-
sentative data (i.e., centroid and number of patterns) of the
clusters is communicated with the central processor of the
SG, in order to find global power profiles. This would reduce
the communication cost because only the representative data
is sent to the central processor. In addition, the overall effi-
ciency of the systemwill be improved as the central processor
analyzes the representative data only.

VOLUME 5, 2017 18461



O. Y. Al-Jarrah et al.: Multi-Layered Clustering for Power Consumption Profiling in SG

The second level of data clustering takes place at the central
processor where the centroids of the data clusters derived at
the first level constitute a new dataset. Then global power
profiles are derived by clustering the new dataset (i.e., dataset
of the centroids of the local power profiles). The global power
profiles are represented by the centroids of the clusters at
the second clustering level weighted by the number of power
patterns in each local power profile.

1) LOCAL POWER PROFILES GENERATION (LEVEL 1)
The K-Means is a well-known and widely used clustering
algorithm because of its simplicity and ease of implemen-
tation. In this work, we use the K-means algorithm in both
levels of data clustering of the proposed model, because of its
minimal computational cost when compared to other models.
In addition, the complexity of the proposed model can easily
be defined with respect to the parameters of model, and thus
different setups can easily be compared.

Let x1, x2, ..., xN be a set of datapoints in d-dimensional
space, where d is the number of features, and K is a prede-
fined number of clusters. The K-means algorithm minimizes
the objective function given by :

F(x1, x2, ..., xN ) =
K∑
k=1

∑
xi∈ck

‖xi − x̄k‖2, (1)

where ck denotes the k th cluster,

x̄k =
1
nk

∑
xi∈ck

xi, (2)

is the center of the k th cluster, and nk is the number of
datapoints in k th cluster. ‖.‖ denotes the Euclidean norm
used by the K-means algorithm. The algorithm starts with K
datapoints that represent the centroids of the clusters. Each
datapoint in the dataset is assigned to the centroid of the
closest cluster and the mean of the datapoints in the same
cluster is calculated. The procedure is repeated iteratively
until convergence or the exit condition is satisfied.

Let Xl = {x(l,1), ..., x(l,Nl )} be the available dataset of
layer l, which includes the row data vectors of Nl residences.
First, Xl is clustered into Kl mutually exclusive clusters. Let
Cl = {c(l,1), ..., c(l,Kl )} be the set of the centroids of the
resultant clusters in layer l, where c(l,j) denotes the centroid of
the jth cluster in the l th layer and Kl is the number of clusters
in layer l. Note that by using K-means, the number of clusters
Kl must be predetermined. Here, we use the same value of Kl
for all layers (i.e., K ). Also, nl = {n(l,1), ..., n(l,Kl )} denotes
the set of the number of users in each cluster, where n(l,j) is
the number of users in the jth cluster of the l th layer. Next, Cl
and nl are transmitted to the centralized processor of the SG
in order to derive the global data profiles.

2) LOCAL POWER PROFILES GENERATION (LEVEL 2)
Let X ′ = {x′(1), ..., x

′

(L×K )} be the available dataset at the cen-
tral processor. X ′ contains the centroids of the clusters of all
layers derived in the first clustering level where x′(1) = c(1,1),

x′(K ) = c(1,K ), and x′(L×K ) = c(L,K ) where L is the number of
layers. Then the K-means algorithm is used again to partition
the data X ′ into K ′ clusters. After the convergence of this
clustering process, the derived centroids inC ′ do not properly
describe the global power profiles, since each local centroid,
which is derived at the first clustering level, represents differ-
ent number of residences (i.e., n(l,i)). To this end, the global
energy consumption patterns are defined as:

c′(j) =

∑
l,i:c(l,i)∈clusterj c(l,i) × n(l,i)∑

l,i:c(l,i)∈clusterj n(l,i)
,∀j = 1, ...,K ′. (3)

Note that the proposed multi-layered clustering model is
general and can easily be modified to adopt different cluster-
ing algorithms in each level. Fig. 2 illustrates the proposed
multi-layered clustering model.

Implementation of the proposed model, by using the K-
means clustering algorithm, and discussion of its complexity
are described in the following subsection.

3) COMPLEXITY ANALYSIS
Usually, distributed clustering is used to reduce the commu-
nication demand. It is possible to reduce the computational
complexity of the system by using the proposedmulti-layered
approach, which increases profitability.

In general, the complexity of the K-means algorithm is
given by:

Complexity = O(N × K × P× I ), (4)

where N is the number of P−dimensional data-
points/vectors in the dataset, K is the number of clusters, and
I is the number of iterations until convergence. Let Xl be the
dataset of the l th layer and Il number of iterations at that layer,
the complexity of the K-means clustering at each layer of the
first level is given by:

Complexity(l) = O(Nl × K × P× Il). (5)

Since the first clustering level includes multiple layers,
the overall complexity of the first clustering level is given by:

Complexity(1stLevel) = O(
L∑
l=1

Nl × K × P× Il). (6)

In the special case that all layers have the same number of
datapoints (i.e., residences), the overall complexity of the first
clustering level can be written as:

Complexity(1stLevel) = O(L × Nl × K × P× Imax), (7)

where Imax denotes the maximum allowable number of itera-
tions.

Because the clustering process at each layer is indepen-
dent of other layers, they can be executed in parallel. Thus,
the worst case execution time of the first level can be given
by:

E − Time(1stLevel) = O(Nl × K × P× Imax). (8)
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FIGURE 2. Proposed multi-layered clustering model.

The worst case computational complexity of the second
clustering level is given by:

Complexity(2ndLevel) = O((L × K )× K ′ × P× Imax), (9)

which coincides with the execution time of the second level.
Therefore, the overall worst case complexity of both levels,

when all layers have the same Nl and Kl , is given by

Complexity(Total) = O(((Nl × K )+ (L × K )× K ′)

× (P× Imax)). (10)

On the other hand, in the case that the centralized
K-means is used to find the clusters of users power profiles,
the corresponding computational complexity is given by:

Complexity(Centralized) = O(N × K ′ × P× Imax), (11)

which is higher than Complexity(Total) when

L <
N × K ′ − Nl × K

K × K ′
. (12)

Thus, the approach discussed in this section can also be used
for reducing the computational complexity if the condition
stated in (12) is satisfied.

IV. EXPERIMENTS AND RESULTS
In this section, we describe the dataset used to evaluate the
performance of the proposed model and present the results of
the experiments.

A. DATASET
Building a consumer power profilingmodel requires a dataset
from which the model learns. The dataset shall also rep-
resent real data that describes real-world scenario. In our
experiments, the proposed model is evaluated on the well-
referenced UMass Smart Microgrid Data Set [10], [26].

The UMass Smart Microgrid Data Set was gathered by the
Smart project. This dataset contains average electricity usage

data from 400 anonymous homes in western Massachusettes,
USA at one minute granularity for an entire day. For privacy
reasons, the data source and the homes are kept anonymous.
This data is well-suited for emulating microgrids or examin-
ing the grid-scale effects of various optimizations, such as the
use of energy storage [27].

Excluding the inactive buildings, we focused on 395 res-
idential homes. For the needs of the simulation setup,
the dataset is separated into L datasets, where the l th dataset
is processed by the l th layer at the first level of the proposed
model.

TABLE 1. Simulation setup

B. PERFORMANCE EVALUATION AND RESULTS ANALYSIS
To show the effectiveness of the proposed model, in this
subsection, we provide a detailed simulation of the pro-
posed model on the UMass Smart Microgrid Data Set. The
parameters of the proposed model are given in Table 1.
Following [10], the number of global patterns (i.e., K ′), has
been set to 5, while K has been selected according to (12).
The selection of the value of L is a trade-off between the
effectiveness of the clustering process and its computational
complexity. This is shown in the next subsection.

In order to have a better understanding of the signifi-
cance of the layered approach, we studied the local data
patterns at the different layers of the proposed model. Fig. 3
depicts the derived local patterns (i.e., the centroids at each
layer). In each layer, the locally available power consumption
dataset is partitioned into three clusters: i) low consumption,
ii) medium consumption, and iii) high consumption cluster.
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FIGURE 3. Local patterns. (a) Layer 1. (b) Layer 2. (c) Layer 3. (d) Layer 4. (e) Layer 5. (f) Layer 6. (g) Layer 7. (h) Layer 8.

As can be seen in Fig. 3, the derived local data patterns at
different layers are distinct. For example, a power consump-
tion that is characterized as a high-consumption in layer 2
corresponds to a low or medium consumption in layer 4.
Of particular interest, the peak period differs from a layer
to another. For example, the behavior of the per-residence
power consumption characterized as high in layer 1 reaches
its peak in the period of (200–800) minutes. On the other
hand, the behavior of the per-residence power consumption
characterized as high in layer 2 reaches its minimum during
the same period. This means that the knowledge of local data
patterns is important as it allows us to develop an efficient
and effective location-aware pricing scheme as well as better
scheduling algorithms.

As mentioned earlier, the derived local data patterns are
partitioned into K ′ homogeneous clusters, where each cluster
represents a global data pattern. The global data patterns

are characterized as: i) low, ii) low-medium , iii) medium,
iv) high, and v) very high consumption. Then the derived
global data patterns are compared to the derived pat-
terns when the centralized K-means approach is used (i.e.,
the whole power consumption data set is collected and clus-
tered in a single location). As can be observed in Fig. 4,
the derived patterns using both methods are similar. This
motivates the use of the proposed model as a promising
alternative approach of the centralized K-means clustering
as it maintains the quality and reduces the computational
complexity of power profile clustering. More specifically,
the reduction of the overall complexity, when this setup (num-
ber of instances=395, L = 8, K = 3, and K ′ = 5) is used,
is:

R = 1−
(395× 3×+8× 3× 5×)× P× Imax

395× 5× P× Imax
= 33.92%

(13)
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FIGURE 4. Global patterns. (a) Low Consumption. (b) Low-Medium Consumption. (c) Medium Consumption. (d) High Consumption. (e) Very High
Consumption.

More importantly, as it can be observed from Fig. 3 and
Fig. 4, the global patterns characterized as high consumption
and very high consumption are provoked by the power pro-
files initially processed by layers 8 and 7, respectively. Thus,
the proposed model allows some type of power consumption
outliers localization, while preserving individual residences
privacy.

1) THE TRADE-OFF BETWEEN COMPLEXITY AND
PERFORMANCE
To show the effectiveness of the proposed multi-layered
power consumption profiling model, we compared its perfor-
mancewith the performance of the fully centralizedK-means.
We ran 103 independent simulations for each setup (i.e., L
value). This is because the K-means is a local minimizer
algorithm that tries to find the global optima; however, it is
not necessarily find the global optimum. This is because the
resultant clusters of K-means algorithm depend heavily on
the initialization parameters (i.e., seed, centroids). Different
simulation with different initialization parameters might lead
to different clustering results.

Several evaluation measures were used in the literature to
quantify the performance of clustering algorithms. Most of
these measures consider how well the clusters are separated.
However, a good clustering algorithm should consider the
density of the clusters. Thus we have selected silhouette
coefficient [28] to compare the performance of the proposed
model and the centralized K-means. Silhouette coefficient is

defined as:

S =

∑
S(i)
N

, (14)

where

S(i) =
b(i)− a(i)

max{a(i), b(i)}
, (15)

where i is a datapoint in the dataset, a(i) is the average
distance of datapoint i to the other datapoints in the same
cluster as i, and b(i) is the minimum average distance of
datapoint i to datapoints in other clusters. As a(i) measures
how dissimilar i is to its own cluster, the smaller a(i) value is,
the more compact the cluster is. The value of b(i) implies
the degree of difference between i and other clusters, thus
the larger b(i) is, the more separated i is from other clusters.
The value of the silhouette coefficient is between −1 and 1.
A positive silhouette coefficient value means the cluster
including i is compact and i is far from other clusters, while
negative silhouette coefficient value means i is closer to
the datapoints in another cluster than to the datapoints in
its own cluster. Normally, for silhouette coefficient value,
the bigger, the better, and value 1 is the extreme preferable
condition [28]. Note that when the proposed model is used,
we consider that i follows its local centroid to global clus-
tering. Thus, two datapoints represented by the same local
centroid, are placed in the same global cluster.

Fig. 5 shows the performance of the proposed
multi-layered clustering model, while varying the number of
layers (i.e., L), compared to the fully centralized K-means
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FIGURE 5. Average silhouette value comparison.

clustering. As can be seen in Fig. 5, the performance of the
proposed multi-layered model increases as the number of
layers increases. The reason for this is that for a small value
of L (e.g., L = 4), where the value of K and the number
of datapoints are fixed, the number of datapoints in each
layer is high; thus the clusters centroids might not adequately
capture the spacial properties of the data. In addition, as the
number of the representative centroids is a function of the
number of layers and K , for a small value of L, the number of
representative centroids is also small. Therefore, in general,
increasing the number of layers would increase the quality of
data clustering.

In addition to the quality of clustering, complexity is
another important issue to consider especially when dealing
with large-scale data (e.g., smart grid data). Fig. 6 shows
the reduction in complexity of the proposed model when
varying the number of layers. In this context, we have studied
the reduction of complexity of three cases: i) the worst-
case overall computational complexity, ii) the real overall
computational complexity, and iii) the communication com-
plexity, which corresponds to the power profiles transmission
between the local aggregators and the central processing unit
of the SG. As can be seen in Fig. 6, the proposed model
considerably reduces the computational and communication
complexity for the whole range of the number of layers (i.e.,
4 ≤ L ≤ 20). Both of the worst-case computational and com-
munication complexity of the proposed model also increases
with the number of layers. This is because as the value of
L increases the number of the local patterns that have to be
sent to the central processing unit of the SG also increases.
However, it is remarkable that the complexity reduction of
the overall computational complexity of the proposed model
is higher than the one of the worst-case computational com-
plexity. This is because, as the number of the power profiles
clustered by each layer reduces, the number of iterations
(i.e., Il) required for the local K-means to converge reduces
also. Similarly, as the number of layers (i.e., L) increases,
the number of the power profiles clustered by each layer
reduces, which requires less number of iterations for the

FIGURE 6. Reduction in computational and communication complexity.

local K-means to converge. Thus, the real increase of the
complexity of the proposed model is not necessarily linear
with respect to the number of layers.

Figs. 6 and 5 jointly show that the performance and the
complexity of the proposed model are highly related. For
example, when L = 20 both performance and complexity
of the proposed model present a local maxima. Interestingly,
the proposed model performs at least as well as the central-
ized K-means for L ≥ 8, for which value the reduction in
computational complexity is about 52% and the reduction
in the communication complexity is about 95%. Finally, for
specific values of L, the proposed model seems to perform
slightly better than the centralized one. This might be because
of the independent processing of the power profiles among
different layers, which allows avoiding local optimal solu-
tions.

V. CONCLUSION
This paper presents a multi-layered clustering model for
power consumption profiling of consumers in SGs. The pro-
posed model aims to reduce the communication and com-
putational complexity of the power consumption profiling
process, which is essential for constructing an effective pre-
diction, pricing, and anomaly detection models in end-users
level. The proposed model consists of two levels of clus-
tering. In the first level, the concept of layers is introduced
where a layer is defined as an instance of K-means clustering
that operates on data aggregated from a certain region. The
data of a layer is portioned into mutually exclusive clus-
ters. Customers power consumption patterns in a cluster are
represented by the centroid (i.e., local power consumption
patterns) and the number of patterns within the cluster.
The second level partitions the data (i.e., local power con-
sumption patterns of all layers) generated in the first level into
multiple clusters. The centroids of the clusters of the second
level weighted by the number of patterns in each cluster in
the first level represent the global power consumption pat-
terns. Experiments results show that the proposed model can
significantly reduce the communication and computation cost
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of the power consumption profiling process while maintain-
ing the performance, outperforming the centralized power
consumption profiling approach. This makes the proposed
model a preferable candidate for power consumption profil-
ing in SGs especially when dealing with large-scale data.

Our future work includes investigating how to combine
the advantages of the proposed method with advanced fea-
tures selection/extraction methods [10], studying on how the
proposed model could be used to construct more accurate
power consumption prediction models considering customer
power consumption clustering both at the local and the global
levels [3]. For an example, the dataset concerns 400 residen-
tial houses for one day. The current study has no verified
analytic results on consumption behaviours based on day,
month or season. Furthermore, considering the proposed two-
levels clustering offers some type of outliers localization,
it could be used in the context of local marginal prices, where
the total power consumption can be smoothed by only altering
the local electricity prices. In terms of the clustering, it is also
worth to compare the partition quality with others clustering
algorithms. Finally, this work could be extended to meet
the requirements of real-time data processing applications,
such as clustering the power consumption of appliances and
possibly detecting of appliances with anomaly behavior such
as faulty or compromised appliances.
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