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ABSTRACT One of the most widely studied problems in the analysis of complex networks is the detection
of community structures. Many algorithms have been proposed to find communities but the quest to find
the best algorithm is still on. More often than not, researchers focus on developing fast and accurate
algorithms that can be generically applied to networks from various domains. As the topology of networks
changes with respect to domains, community detection algorithms fail to accommodate these changes to
detect communities. In this paper, we attempt to highlight this problem by studying networks with different
topologies and evaluate the performance of community detection algorithms in the light of these topological
changes. To generate networks with different topologies, we used the well-known Lancichinetti—Fortunato—
Radicchi (LFR) model, and we also propose a new model named Naive Scale-Free Clustering to avoid any
bias that can be introduced by the underlying network generation model. Results reveal several limitations
of the current popular network clustering algorithms failing to correctly find communities. This suggests the
need to revisit the design of current clustering algorithms in order to improve their performances.

INDEX TERMS Social networks and graphs, network topology, benchmark networks, community detection

algorithms, normalized mutual information.

I. INTRODUCTION

Many real world systems can be represented as net-
works depicting relationships and inter-dependencies in
systems emerging from diverse domains such as social
networks [1], [2], biological networks [3], geographical net-
works [4] and economic network [5].

Relationships in these networks naturally evolve with a
non-uniform distribution of ties resulting in modular struc-
tures [6], [7]. These modular structures are important as they
not only help to understand the complex inter-connectivity
among objects but are also vital towards better understand-
ing, management and prediction of the entire system. These
modular structures are usually called community structures,
or simply clusters.

Even though the problem of finding community structures
(or clusters) in networks has been widely studied by physi-
cists, computer scientists, statisticians and mathematicians,
there still remains a disagreement on a standard definition of
communities in networks. The most widely accepted defini-
tion of a community is a high number of intra-cluster edges
and low inter-cluster edges [8], [9]. This translates to groups
of nodes well connected to each other but sparsely connected
to nodes from different clusters.

Real world networks usually exhibit small world [10] and
scale free [11] characteristics implying some structural sim-
ilarity among them, but there are inherent topological and
structural features that make these networks quite different
from each other, specially for the clustering problem. One
obvious reason is that these networks emerge from a vari-
ety of different domains introducing structural differences in
networks such as, the average connectivity of nodes which
in turn affects the performance of clustering algorithms. Fur-
thermore, algorithms usually try to optimize specific prop-
erties such a modulariy [12] or distances [13] disregarding
the different structural variations present in these networks.
For example, networks of air traffic [14] usually contain a
few thousand nodes representing cities with airports as com-
pared to networks obtained from online social networking
website [15], [16] which at times contain millions and billions
of users. Similarly, users are on average connected to hun-
dreds of friends through online social networking websites as
compared to protein interaction networks [17] which usually
have an average degree around three. Figure 1 shows two
real networks, the Air Transport Network (AT) [14] and the
Geometry Co-Authorship Network (CA) [18]. Some basic
network metrics for these two networks are shown in Table 1
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TABLE 1. Metrics for two real world networks highlighting topological variations.

Metrics Air Transport (AT) | Co-Author (CA)

Number of Nodes (N) 1540 3621

Number of Edges (E) 16523 9461
Node-Edge Ratio (R) 10.7 2.6

Clustering Coefficient (CC) 0.26 0.22
Average Path Length (APL) 2.93 5.31

Power-Law Coefficient (v) 2.68 2.45
Maximum Node Degree (Max-D) 487 102
Number of Nodes with Degree 1 (D-1) | 332 741

Highest K-core (Max-K) 44 21

where their topological differences can be easily identified.
These examples motivate the need to identify these structural
differences as an important characteristic to be accounted
for while designing and applying clustering algorithms on
networks.

In this paper, we focus on structural and topological char-
acteristics of networks and analyze how they affect the per-
formance of clustering algorithms. More specifically, we are
interested in the size of networks in terms of number of
nodes, number and size of communities present in a network,
the average connectivity (or average degree) of nodes in a
network and the ratio of inter-intra cluster edges, also referred
to as the mixing of clusters. hIThe major contribution of this
work is that we have systematically analyzed the performance
of community detection algorithms in the context of changing
network topology. Results demonstrate that the topology of
networks largely influence the outcomes of a community
detection algorithm and thus we conclude that the design
of the community detection algorithm should be revisited
in order to produce high quality results. The goal of this
study is not to find the best algorithm, but to expose the
weaknesses of clustering algorithms in general, when tested
against various topological features of networks. Also, we
focus only on algorithms that produce disjoint, flat and static
communities for undirected and unweighted graphs. Studying
fuzzy, hierarchical and dynamic clusters as well as weighted
and directed graphs remains out of scope of this article.

The paper is organized as follows: Section II presents the
related work and Section I'V describes the experimental setup.
In Section V, we present the main findings and discuss their
possible implications in the study of community detection
algorithms. Finally, we conclude in Section VI where we
provide possible future research directions.

Il. RELATED WORK

The related work is grouped into three sub-sections each
addressing an important component of our experimental
setup. First we discuss benchmark graphs which provide
the basis for our experiment, second we discuss several
network generation models used to generate networks with
community structures and the third sub-section provides
a brief account of works where clustering algorithms are
compared.
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A. BENCHMARK GRAPHS

Although the problem of community detection has been
widely studied, the associated problem of generating stan-
dard benchmark datasets to evaluate the quality of clustering
algorithms has not attracted much interest. One of the earlier
works in this direction was by Girvan and Newman [19] usu-
ally referred to as the GN benchmark. They used a network
of 128 nodes divided into four communities of 32 nodes each
with each node having approximately the same node degree.
A parameter was used to control the intra-cluster and inter-
cluster edges. A number of drawbacks were identified in this
benchmark [20], most notably that all nodes of the network
have the same degree and all the communities have the same
number of nodes in them.

Most networks found in the real world have a non-uniform
degree distribution, often following power-law [11]. Fur-
thermore, the community sizes in these real networks also
follow a power-law [21]-[23] which in turn justifies the draw-
backs identified in the benchmark proposed by [19]. Thus
Lancichinetti ef al. [20] proposed a new benchmark called
the LFR benchmark which has a number of interesting fea-
tures. The degree distribution of the generated networks fol-
low power-law and the average degree can be adjusted as
required. The distribution of the community sizes also follow
power-law and can be parametrized between a minimum and
maximum value. Each node can have a fraction of intra-
cluster and inter-cluster edges which are also controlled by a
mixing parameter. one draw back of the algorithm is its inabil-
ity to generate a fixed number of communities. The algorithm
takes a minimum and a maximum number of communities as
an input parameter, and the final number of communities lies
between these two limits.

Lancichinetti and Fortunato [24] also proposed methods to
generate benchmarks for directed and weighted networks as
well as networks with overlapping community structures but
in this study, we limit our analysis to undirected, unweighed
graphs with hard and flat community structures.

B. NETWORK MODELS WITH COMMUNITY STRUCTURES

There exists a number of algorithmic models to generate
networks in order to mimic real world graphs. The primary
objective of these networks is to reproduce networks sim-
ilar to real world networks with structural properties such
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FIGURE 1. (Left) Air Transport Network (AT) where cities are represented by nodes and direct air flights link cities. (Right)
Co-Authorship network (CA) where authors are represented by nodes and co-authoring an article links authors.

as low average path lengths, high clustering coefficients,
degree distributions following power-law and the presence
of community structures. Although not used as algorithms to
generate benchmark graphs to evaluate clustering algorithms,
they provide a number of options for such a study. We review
some of these algorithms below.

Li and Chen [25] propose a model to generate weighted
evolving networks incorporating three types of power-law
distributions, first on the node degree, second on link weights
and third on node strengths along with the presence of clear
communities. Xie et al. [23] introduced an evolving network
model to generate clustered networks with the cumulative
distribution of community sizes following power-law. The
basic idea is when new connections between communities
are added, or a new node to an existing community is added,
communities with larger sizes are selected preferentially.
Zhou et al. [26] worked with two important topological
characteristics, first, the dense intra-cluster connections as
compared to inter-cluster connections and second, size of
communities following a power-law just as [23] proposed.
Based on these characteristics, they proposed a weighted
growing model with power-law distributions of community
sizes, node strengths, and link weights.

Kumpula et al. [27] used the concepts of cyclic closure
and focal closure from sociology to propose a model to
generate a weighted network with communities. New links
are created preferably through strong ties which make these
links stronger. Xu et al. [28] presented a model with com-
munity structures using the idea of local events using three
processes, adding new intra-community nodes, new intra-
community links or new inter-community links. The model
uses preferential attachment mechanism resulting in power
law degree distribution.

Moriano and Finke [29] proposed a model to generate
networks with groups of nodes densely connected to each
other and sparsely connected with other nodes. The model
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attempted to explain networks with extended power law
degree distributions and clustering coefficients that do not
diminish for huge size networks. The connectivity of new
nodes probabilistically choose nodes of same type to form
community structures.

Zaidi [30] proposed a model to generate clustered networks
with high clustering coefficient and low average path lengths.
The author demonstrate that clustered networks can be gen-
erated from completely random graphs by introducing some
order, which is a contrasting approach to the famous model
of Watts and Strogatz [10]. The model is further extended
to generate clustered networks where communities are ran-
domly connected to each other. Sallaberry et al. [31] also
proposed a static network generation model with community
structures i.e the number of nodes added at the start remain the
same throughout the algorithm and only edges are rewired to
create communities. The model is probabilistic and increases
the edge connectivity among nodes closer to each other and
reduces edges among nodes far apart in the network.

Pasta er al. [32] also proposed a tunable network gen-
eration model with community structures whose flexibility
allows it to generate a variety of networks with varying struc-
tural properties. The authors focus on three structural fea-
tures of community structures generated through this model,
the degree distribution within each community follows
power-law, high clustering coefficient of nodes within each
community, and each community can be further divided into
sub-communities.

C. COMPARATIVE ANALYSIS OF

CLUSTERING ALGORITHMS

Danon et al. [33] studied network clustering algorithms
and compared the performance of 16 different algorithms
through empirical analysis using benchmark datasets gen-
erated by [19]. The authors also compared the asymptotic
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complexity of different clustering algorithms to conclude that
small datasets may be clustered using slow but more accurate
methods such as [34] and for large networks, the quality
might be compromised with a faster algorithm requiring less
computational effort.

Lancichinetti and Fortunato [35] comapared the perfor-
mance of 12 different clustering algorithms using the GN and
the LFR benchmarks. The authors focus on mixing param-
eter to perform a comparative analysis for different values
of network sizes (1000 and 5000) and different community
sizes (between 10 to 50 and 20 to 100) in an attempt to
identify the algorithms that perform well on these bench-
marks. The authors also performed a comparative analysis for
directed-unweighted graphs, undirected-weighted graphs and
undirected-unweighted graphs with overlapping community
structures. As compared to this study, we also use the LFR
benchmark but vary parameters with a different perspective
specially varying the average degree of the graphs and large
variation in the size of clusters generated.

Orman and Labatut [36] compared five community detec-
tion algorithms to study the behavior of mixing parameter and
evaluate the performance of community detection algorithms
concluding that walktrap and spinglass methods perform bet-
ter. They also conclude that the average and maximum degree
of nodes have a strong joint effect on the results of community
detection algorithms. They only consider relatively small size
networks (nodes = 1000) varying maximum node degree and
the average node degree.

Leskovec et al. [37] studied various network and common
objective functions optimized to detect communities with
the aim to understand the structural properties of identi-
fied clusters by different methods with the overall motive
to find the best suited algorithm for specific applications.
They conclude that the performance of community detection
algorithms varies for certain classes of networks for example,
communities of larger size tend be less dense.

Orman et al. [38] compared different community detection
algorithms based on community-centered properties such
as heterogeneity of community sizes (few large and many
small communities), embeddedness (ratio of neighbors in the
same community to total neighbors) and density (ratio of
links within a community to total links possible among the
nodes of a community). The performance of different com-
munity detection algorithms was quantitatively compared to
these community-centered properties. This differs from past
approaches where objective measures were used as qual-
ity measures (such as Modularity [39]). Important findings
include the algorithms behave diversely when the number
of communities vary in the network and the inability of
Normalized Mutual Information (NMI) to correctly quantify
community detection algorithms.

Sousa and Zhao [40] empirically compared different clus-
tering algorithms using synthetic and real networks. The
objective of their work was to evaluate the performance of dif-
ferent algorithms. They found that the performance of some
algorithms is effected by the number of nodes in a network.
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The artificial networks they generated were with a maximum
node size of 100 which makes it difficult to generalize the
results to large networks with hundreds and thousands of
nodes. They use Modularity Q [39] in part, to evaluate the
quality of clustering algorithms which is shown to have prob-
lems with underestimation [41] and overestimation [42] of the
number of communities when maximizing modularity.

Another work in evaluating network clustering algorithms
was performed by Wang et al. [43]. They proposed a
procedure-oriented framework for benchmarking to evaluate
different community detection approaches in an attempt to
find better algorithms. Although their objectives were clearly
different from what we have proposed in this paper, one of
their findings also pointed towards the varying performance
of algorithms for different networks.

A more recent work [44] in analyzing the performance
of cluster quality metrics is tuned towards examining the
relationship between cluster quality metrics and information
recovery metrics. They conclude that the notion of a commu-
nity needs to be revisited which varies from one domain to the
other, as a result determining the superiority of a clustering
algorithm cannot be established.

Yang et al. recently addressed the challenging task of deter-
mining which algorithm outperforms others using the LFR
benchmark. Among other contributions, one of their results
also points towards the network size as a factor which changes
the outcomes of a clustering algorithm. Our work is again
different, as we do not intend to identify the best clustering
algorithm, but to highlight the importance of topological
features and their impact on different clustering algorithms.

IIl. CLUSTERING ALGORITHMS

In this section, we discuss several clustering algorithms com-
monly used to detect community structures in networks. An
exhaustive review of all the algorithms present in the litera-
ture is out of our scope, but we have tried to select algorithms
that are popular in terms of their wide application and where
their implementation is available in graph clustering and
analysis software.

One of the earliest methods of the new genera-
tion of algorithms for network clustering is that of
Girvan and Newman [19]. The algorithm iteratively cal-
culates the betweenness centrality of edges, removes the
edge with the highest value and repeats the process to find
disconnected set of nodes. Since the algorithm performs a
global calculation of betweenness centrality in every step,
it is very slow and not applicable on large networks. The
algorithm stops for optimal values of a quality metric called
Modularity (Q) which measures the fraction of the intra-
community edges minus the expected value of edges ran-
domly distributed among vertices of the same quantity in a
network. Radicchi et al. [45] proposed an algorithm based
on similar idea. Instead of calculating edge betweenness to
determine the edges that lie in between communities, they
calculate edge clustering coefficient, which is a local metric
to calculate the ratio of the actual triads that are present

VOLUME 5, 2017



M. Q. Pasta, F. Zaidi: Topology of Complex Networks and Performance Limitations

IEEE Access

around an edge to the maximum number of triads possible.
Auber et al. [46] also proposed an algorithm where they used
cycles of length 3 and 4 to identify edges between different
communities.

A number of local clustering algorithms have been
proposed that try to optimize modularity locally such
as [12], [47]-[49]. These methods in essence try to agglom-
erate nodes which result in high modularity. For example, the
method of Clauset ef al. [12] (Fastgreedy Clustering), starts
from a set of isolated nodes and iteratively add edges such
that the increase in modularity is the highest. The method
proposed by [47] performs an exhaustive optimization of
modularity in comparison to the method proposed by [12]
and is thus expected to perform better in terms of modularity
achieved but is slower than the implementation of [12].

Another algorithm which has gained a lot of popularity
is the algorithm proposed by Blondel ef al. [49] (Multilevel
Clustering). This is a multistep approach which first tries
of optimize modularity locally by merging nodes, and then
groups these nodes together to form supernodes, which in turn
generates a new graph. The process is repeated until all the
nodes are grouped together. Modularity is then used to find
the right number of clusters from the obtained dendrogram.

Apart from modularity optimization, a number of dynamic
processes have also been used to detect community structures
in networks. Most notably, random walks belong to this
classification with algorithms such as [13], [50], and [51].
Pons and Latapy [13] (Walktrap) propose a method which
uses random walks to calculate distances between different
nodes, based on which nodes are grouped together to form
clusters. Nodes are grouped together using Ward’s Method
and Modularity is used to select the best partition of the result-
ing dendrogram. Rosvall and Bergstrom [51] use random
walks and try to compress the information of this dynamic
process minimizing description length of the random walk
to obtain clusters. Dongen proposed the Markov cluster-
ing (MCL) [52] algorithm based on simulation of stochas-
tic flow using Markov matrices. The algorithm iteratively
applies two processes, expansion and inflation, resulting in
a matrix representing a disconnected graph. The connected
components are then grouped as clusters.

Rosvall and Bergstrom [51] (Infomap clustering) model
the problem of community detection as problem of com-
pressing information of a random walk taking place on the
network. The algorithm optimizes the minimum description
length of a random walk. Raghavan er al. (Label propagation
clustering) [53] also proposed an algorithm based on an iter-
ative dynamic process. Each node is initialized with a unique
label and iteratively, nodes adopt the label which is the most
frequent label of their neighbors.

A completely different approach from these network based
methods is the use of network layout methods to determine
community structures. One popular mapping quality function
VOS [54] is used to propose VOS community detection
algorithm [55] which simply optimizes the VOS mapping
instead of the modularity function. The advantage is that it
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provides a good alternate to the Q modularity used in different
community detection algorithms.

Another class of algorithms is based on the Potts model,
popular in statistical mechanics with a number of clustering
algorithms using this analogy [56], [57]. A popular algorithm
belonging to this category is the spinglass algorithm. In this
algorithm, nodes can initially take one of several spin states
and the edges between nodes determine if they align to be in
the same spin state or not. The model is then simulated until
a steady state is found with nodes having the same spin state
being grouped into clusters [58].

A relatively new clustering algorithm which is based on
graph entropy [59], [60] has gained considerable popularity
in clustering biological networks. Starting from a vertex, the
algorithm locally optimizes graph entropy to find clusters.
The algorithm doesn’t require any parameters and due to its
local computation, scales well for large graphs.

We also used spectral clustering algorithms based on
stochastic block model initially proposed by [61]. The imple-
mentations we found available [61], [62] were consistent with
the results of the other algorithms but didn’t scale well for the
larger graphs we used for experimentation. Hence we have
excluded these results.

More detailed information can be found in the respective
citations of these algorithms. More literature and clustering
algorithms can be found in these surveys [7]-[9].

IV. EXPERIMENTAL SETUP

In this section, we describe the models used to generate
benchmark graphs and the community detection algorithms
used for experimentation.

A. BENCHMARK GRAPHS

We used two network models to generate benchmark
graphs with community structures. The well known LFR
model [20](see [63] for implementation) which is the most
widely used model (see [63] for the implementation of LFR
model), and a self designed model which we call Naive Scale-
Free Clustering (NSC).

The NSC model is inspired from the author’s previous
work [30] and uses a naive approach to build networks with
community structures. For simplicity, consider the example
of generating a graph with only two communities. As a first
step, we used the BA model [11] to generate two separate
scale free networks of desired sizes (number of nodes, aver-
age degree). These two networks represent two communities
and the nodes are labelled accordingly. Second, we con-
nect the two networks by randomly selecting one node each
from the two communities and adding an edge connecting
the two networks. This step is repeated until the desired
mixing is introduced. As a result, we obtain a network of
two communities loosely connected to each other. The two
communities have different network size and their degree
distribution follows power-law. The algorithm is presented as
Algorithm 1 (see Appendix B for more results on the model).
Existing models (discussed in section II) were not used due
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to their inherent complexity in controlling the topology of the
generated networks.

ALGORITHM 1 Naive Scale-Free Clustering

Input: C[1...C.] where C is an array with size of
communities, L is the Number of communities,
< k > is the average degree of nodes and u is
the mixing parameter.
Output: Graph G with community structures.
fori=1t0 L do
Gli] = generateBarabasiGraph(size =
Cli], avg.deg. =< k >);
Eyli] = |Edges(GliD| * w3

end

while (1 E,[i]) > 1do
c1 = getCommunity(C){|Ey[c1] > 1} ;
c2 = getCommunity(C){|c1 # c2 NEy[ca] > 1}
ny| = getRandomNode(c1);
ny = getRandomNode(cy);
createEdge(ny, ny);
E lci]=E,lci]l - 1;
Eyleal = Eple] — 1

end

The use of two benchmark models to determine clustering
quality ensures that the results can be generalized indepen-
dently of the underlying network generation model. Both
models allowed to tune input parameters and generate net-
works with desired structural and topological features. The
four controlling parameters used to study the effects of net-
work topology for clustering algorithms are described below:

1) NETWORK SIZE (n)

determines the size of the network in terms of its number of
nodes. Networks were generated with three different sizes in
terms of number of nodes 103, 10* and 10°.

2) AVERAGE NODE DEGREE (k)
controls connectivity for each node on average in the network.
We generated networks with average degree 3, 5 and 10.

3) MIXING PARAMETER (1)
is on average, the fraction of edges a node has with its
neighbors in the same community as opposed to its neighbors

which are not in the same community. We used the values
of 0.2, 0.5 and 0.8.

4) MINIMUM-MAXIMUM NUMBER OF CLUSTERS

This pair of parameters determined the number of clusters
(¢) in a network. Three different ranges were used: Many
clusters (many clusters in the network with small community
sizes), Middling clusters (moderate number of clusters with
moderate sized communities) and Few clusters (a few clusters
with large sized communities). These three ranges were used
for each of the three network sizes (networks with 1000,
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10000 and 100000 nodes). For networks with 1000 nodes,
the ranges for the three sizes in number of nodes are 20 — 50,
100 — 150 and 200 — 300 giving us many small clusters for
the smallest range (20 — 50) and few large clusters for the
largest range (200 — 300). Similarly, for networks of 10, 000
nodes, the ranges used are 200 — 500, 1000 — 1500 and
2000 — 3000, and for networks of 100, 000 nodes, the ranges
are 2000 — 5000, 10000 — 15000 and 20000 — 30000.

The various combinations of these four parameters pro-
duced 81 unique networks each for the two benchmark mod-
els, and the results were averaged over five instances of each
of these networks.

B. COMMUNITY DETECTION ALGORITHMS

We used ten different clustering algorithms. The algorithms
used cover a wide spectrum of clustering methods and tech-
niques commonly used in graph clusterings. This is to avoid
any bias created by a specific class of algorithms or opti-
mization strategy. The selected algorithms are Fast Greedy,
Multilevel, MCL, InfoMap, Label Propagation, VOS, Spin-
glass Clustering, Walktrap, Leading Eigen Vector, and Graph
Entropy. (See [64] for implementation details of clustering
algorithms.)

C. QUANTITATIVE COMPARISON OF

CLUSTERING ALGORITHMS

A number of cluster similarity measures have been proposed
in the recent past to quantitatively compare the community
structure of two clusters, although some of these measures
have drawbacks and are at times ill defined [24]. We used
the most widely accepted method for comparison, called
the Normalized Mutual Information (NMI) first proposed by
Danon et al. [33]. Given two partitional structures of a net-
work, calculation of NMI returns a value in the range between
0 and 1 where 1 suggests perfect similarity and values close
to 0 indicate high dissimilarity in the two partitions.

V. RESULTS AND DISCUSSION

We summarize the results and our findings in this section.
We applied different clustering algorithms on the generated
benchmark graphs and calculated the Normalized Mutual
Information (NMI)(y-axis on all plotted graphs).

Figure 2 presents the results of the two most impor-
tant topological features for clustering algorithms, the size
of a network and the number of clusters. The summa-
rized results for all the algorithms show a decreasing trend
in the NMI values as the size of the network increases
(see Figure 2(a-f) along x-axis). Also, it can be clearly
observed that all the clustering algorithms on average, per-
form poorly when there are a few large sized clusters (see
Figure 2(a-f), represented by round markers) in networks as
compared to many small sized clusters (see Figure 2(a-f), rep-
resented by square markers). All the algorithms considered
in this study do not require as input, the number of clusters
to be generated but rather optimize some objective function
to determine when to stop the execution of an algorithm,
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FIGURE 2. Results for LFR (a,b,c) and NSC (d,e,f) models. The average normalized mutual information as a function of network size(n) with
n = (103, 10%, 10°). (a,d) Mixing Parameter p = 0.2, (b,e) x = 0.5 and (c,f) x = 0.8 and different cluster sizes ¢ = (5 — 10%, 10 — 15%, 20 — 30%). The
Clustering Algorithms perform poorly in two cases, when the size of the networks increases (along x-axis) and when there are a few large sized clusters in

a network (represented by red-round markers).

or they use some dynamic process to determine community
structures, irrespective of the cluster sizes. The results clearly
reflect the poor performance of all the applied clustering
algorithms (see Appendix VI for individual results of all algo-
rithms). These two findings are the most important results of
our experimentation, we have shown that the size of networks
and the size of clusters have a huge impact on the performance
of clustering algorithms.

The algorithms generally fail to perform well as the size
of the networks increases. This directly implies the lack of
robustness of clustering algorithms to cope with the explosive
increase in the size of networks. This limitation requires
us to revisit the optimization functions used to detect and
optimize clusters. As new networks with millions and billions
of nodes are made available, they present new and interesting
challenges for the community to address.

Failing to detect a few large sized clusters but successfully
finding many small sized clusters suggests that the clustering
algorithms we have studied fail to provide a good summary of
the global structure of a network but successfully capture fine
details of its topological structure. One alternative solution
is the use of hierarchical clustering algorithms rather than
just producing partitional clusters. Clustering can be highly
subjective and the level of fine details can vary from one prob-
lem to another. These details can be the number of clusters,
the size of clusters, the ratio of connectivity among nodes
and other topological features. The comparative analysis of
the ground truth to the found clusters does not suggest that
the algorithms are incorrect, but simply points to the often
ignored fact that these algorithms somehow capture a detailed
view rather than a global view. Thus we can conclude that the
design of existing community detection algorithms need to
be revised to incorporate these varying structural properties
of communities.

Figure 3 shows the varying behavior of clustering algo-
rithms with increasing average degree (k) of the networks.
The results are calculated for different network sizes and
cluster sizes. The most interesting result is the behavior of
algorithms when (k) is low while keeping all other parameters
constant. For every plot, we can see an increase in the cluster-
ing quality as (k) increases. This is due to the fact that most of
the clustering algorithms try to find densely connected groups
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FIGURE 3. Results for LFR (a,b) and NSC (c,d) models. The average
normalized mutual information as a function of average

degree((k) = (3, 5, 10)). (a,c) 10> nodes (b,d) 10° nodes and different
cluster sizes ¢ = (5 — 10%), (10 — 15%), (20 — 30%) represented by
different line markers. The algorithms perform poorly for networks with
low average degree regardless of network sizes and cluster sizes.
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of nodes to be identified as communities. For networks which
have low average node connectivity, the clustering algorithms
on average perform poorly.

For Figure 4, the first and previously well known result
is the behavior of mixing parameter for all the different
graphs. It can be clearly observed that all the algorithms
perform poorly for high values of mixing parameter (Figure
4) irrespective of other parameters. Algorithms perform very
well with low values of mixing parameter but for the same
value of mixing parameter, when small sized networks are
compared to large networks, the performance of algorithms
on small networks is much better than on large networks.
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markers. The algorithms perform poorly for networks with increasing mixing parameter and for large network (square line marker).

This re-iterates the earlier discussed results that clustering
algorithms perform poorly for large sized networks as com-
pared to networks with small sizes while keeping all other
topological features constant.

VI. CONCLUSIONS

In this paper, we have studied the performance of network
clustering algorithms using two benchmark models. We ana-
lyze the collective performance of clustering algorithms and
empirically prove several limitations imposed by the topology
of networks on the performance of clustering algorithms.
For example, our experiments demonstrate that the size of
networks and the size of clusters have a huge impact on the
performance of clustering algorithms. Algorithms perform
poorly for large size networks, and networks with large size
clusters. Similarly, we found that algorithms perform poorly
when the networks have low average connectivity. This is an
important contribution as most of the studies apply clustering
algorithms disregarding the variations in the topological and
structural properties of networks and rely on the produced
results, which to some extent might not be correct.

As part of the future work, we intend to analyze the
individual clustering algorithms in an attempt to overcome
their limitations by suggesting different ways to implement
them. For example, one possible approach which is cur-
rently understudy is the repeated application of algorithms
on obtained results to produce clusters at different levels of
granularity. Other possible improvements include revisiting
objective functions and dynamic processes which could lead
to better clustering results.

APPENDIX A

DETAILED RESULTS OF CLUSTERING ALGORITHMS

This section presents the details of the results obtained for
individual clustering algorithms for all the different param-
eter variations used to evaluate the community detection
algorithms.

A. STUDYING THE EFFECTS OF NETWORK SIZE

Figure 2 of the article summarized the results of differ-
ent clustering algorithms as a function of increasing net-
work sizes in terms of number of nodes. Figure 5 provides
the details of these results by presenting all the individual
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results for each clustering algorithm and the varying param-
eters. The results obtained from LFR model are presented
in Figure 5(a),5(b),5(c) and that of NSC model are presented
in Figure 5(d),5(e),5(f).

The subfigures in Figure 5 correspond to the results
compiled for the two models and the 10 clustering algo-
rithms used for clustering. The results are presented for
three different values of average node connectivity ((k) =
{3, 5, 10}). The increasing network sizes are plotted along
the x-axis (nodes = {103, 10*, 10°}) and NMI values are
plotted on the y-axis. The variations in mixing parameter
(u ={0.2, 0.5, 0.8}) are represented by different line markers
(circle, triagle, square).

As the number of nodes are increased, all the algorithms
generally decline in the quality of clusters obtained. One
slight exception to this behavior is the InfoMap algorithm
for LFR benchmark when the (k)=10 as there is a very small
increase in the NMI value when the size of the network is
changed from 103 to 10*, but the NMI value drops again as
the size is further increased to 10°. Apart from this negligible
increase, all the algorithms show a decrease in the clustering
quality as the network size is increased. This clearly shows
that as network sizes increase, clustering algorithms have
some difficulty finding community structures.

B. STUDYING THE EFFECTS OF CLUSTER SIZES

Figure 3 of the article summarized the results of different
clustering algorithms as a function of increasing number of
nodes and varying number of communities and their sizes.
Figure 6 of provides the details of these results by presenting
all the individual results for each clustering algorithm and the
varying parameters. The results obtained from LFR model are
presented in Figure 6(a),6(b),6(c) and that of NSC model are
presented in Figure 6(d),6(e),6(f).

The subfigures in Figure 6 correspond to the results
compiled for the two models and the seven clustering
algorithms used for clustering. The variations in commu-
nity sizes are represented by different line markers. The
results for plotted for three different values of network sizes
(n = {103, 104, 10°}).

For each plot, the performance of clustering algorithms is
better when there are a few large sized clusters in a network
labelled 20% — 30% (which is the minimum to maximum size

VOLUME 5, 2017
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—3.24, 8(b) —3.7 and 8(c) —3.43

of clusters in terms of total number of nodes and represented
by round line markers). Clustering algorithms perform well
when they are required to find many small sized clusters in
a network which highlights another important limitation of
clustering algorithms.

C. STUDYING THE EFFECTS OF AVERAGE DEGREE

Figure 4 of the article summarized the results of differ-
ent clustering algorithms as a function of increasing aver-
age degree or connectivity of nodes. Figure 7 provides
the details of these results by presenting all the individual
results for each clustering algorithm and the varying param-
eters. The results obtained from LFR model are presented
in Figure 7(a), 7(b), 7(c) and that of NSC model are presented
in Figure 7(d), 7(e), 7(f).

The subfigures in Figure 7 correspond to the results com-
piled for the two models and the seven clustering algorithms
used for clustering. The average degree increases along
x-axis ({(k) = {3, 5, 10}) while three different network sizes
(nodes {103, 10%, 10°)}) are represented by different line
markers.

The results demonstrate the behavior of clustering algo-
rithms generally improve as the average degree increases. For
both the LFR and the NSC benchmarks, the results clearly
improve for © = 0.2. For the LFR benchmark and © = 0.5,
the results are again consistent with notable improvements in
the clustering quality but with NSC benchmark, Label Prop-
agation is an exception when (k) = 5 and the network size is
10° (see Figure 7(e)) as NMI decreases from when (k) = 3
to (k) = 5, but increases again for (k) = 10. This strange
behavior needs to be further explored with detailed analysis
of the clustering algorithm in order to find an explanation.
The results for the LFR benchmark when 1 = 0.8 generally
show a negligible change and are very poor. This is due to
the high mixing of nodes with nodes of other clusters. Algo-
rithms perform fairly well for the NSC benchmark even when
= 0.8, this is due to the inherent structure of the networks
and the way they are generated. The only exception is again
for Label Propagation when (k) = 5 and network sizes are
104, 10°. For all the remaining cases, the results improve with
an increase in the average degree of the networks.

APPENDIX B

Naive SCALE-FREE CLUSTERING MODEL (NSC)

We also studied the topological properties of the newly
proposed NSC model to generate benchmark networks.
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Degree distribution of all the generated graphs follows power
law with exponent y = (2, 4) which is consistent with the
original BA model [11]. Figure 8 shows the degree distribu-
tion of graphs generated by the model of size 10° for different
values of mixing parameter.

Community Size
10%-15%

20%-30%

2%-5%

Average Path Length
aaibaq abelony

e

10° 10** 10* 10" 10°10° 10*° 10* 10*° 10°10° 10°*° 10* 10*° 10°
Network Size

mixing parameter (1) — 0.2 ---- 0.5 --- 0.8
FIGURE 9. Relationship between average path length and mixing
parameter(u) as a function of network size. Results are shown for
different community sizes and average node degree. Low average path
lengths can be clearly observed for all the networks for various
parameters except for slightly higher average path lengths when for low
average node degree.

Figure 9 shows the relationship between average path
length and mixing parameter (1) as a function of size of
network. The average path length grows logarithmically with
respect to the network size regardless of mixing parameter.
However, average degree has a direct relation with average
path length, as degree increases, the average path length of
the network decreases.

The basic premises of the algorithm is to generate sub-
graphs for given size and connect these isolated sub-graphs by
adding edges among them as per given mixing parameter ().

The algorithm starts with two parameters: (1) a list contains
L elements where each element represents size of a commu-
nity and (2) a mixing parameter p. First, algorithm generates
L sub-graphs for given list by using Barabasi-Albert model.
At the moment, these graphs are isolated disconnected to each
other. Then we calculate require number of inter-cluster edges
to be added for each sub-graph. Eg[j] represents required
number of inter-cluster edges required by j;; sub-graph.
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To create inter-cluster edges we adopted similar method
as Molly for generating random graphs for given degree
sequence [65]. We first select a random node from commu-
nity with minimum number of required inter-cluster edges
(cl)i.e. min(ER) and connect it with a node selected randomly
from a community which is selected on the basis of prefer-
entially (c2) i.e. community with higher number of required
inter-cluster edges will be having more chances to select.
On creation of edge, we update the require number of inter-
cluster edges for respective sub-graph (cluster). We repeat
this process of inter-cluster edges creation until we created
all required-inter cluster edges.
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