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ABSTRACT The developments and applications of wireless body area networks (WBANs) for healthcare
and remote monitoring have brought a revolution in the medical research field. Numerous physiological
sensors are integrated in a WBAN architecture in order to monitor any significant changes in normal
health conditions. This monitored data are then wirelessly transferred to a centralized personal server (PS).
However, this transferred information can be captured and altered by an adversary during communication
between the physiological sensors and the PS. Another scenario where changes can occur in the physiological
data is an emergency situation, when there is a sudden change in the physiological values, e.g., changes
occur in electrocardiogram (ECG) values just before the occurrence of a heart attack. This paper presents a
centralized approach for the detection of abnormalities, as well as intrusions, such as forgery, insertions, and
modifications in the ECG data. A simplified Markov model-based detection mechanism is used to detect
changes in the ECG data. The features are extracted from the ECG data to form a feature set, which is
then divided into sequences. The probability of each sequence is calculated, and based on this probability,
the system decides whether the change has occurred or not. Our experiments and analyses show that the
proposed scheme has a high detection rate for 5% as well as 10% abnormalities in the data set. The proposed
scheme also has a higher true negative rate with a significantly reduced running time for both 5% and
10% abnormalities. Similarly, the receiver operating characteristic (ROC) and ROC convex hull have very
promising results.

INDEX TERMS Healthcare, wireless body area networks, change detection, intrusion detection,
Markov model.

I. INTRODUCTION
THE number of elderly people in the world’s population
is increasing significantly. The number of people 60 years
of age and over has been projected to reach approximately
700 million by 2009 and 2 billion by 2050 [1]. This will
increase the burden on the medical sector. Therefore, sci-
entists are now trying to shift towards personalized remote
healthcare solutions. This personalized remote healthcare
will help in early prediction and detection of the disease
by the continuous and remote monitoring of a patient’s
health. Such personalized remote healthcare solutions can
be achieved using a Wireless Body Area Network (WBAN),

which is a special kind of network formed by placing wire-
less physiological monitoring sensors on the human body
[2]–[8]. These sensors measure a patient’s vital signs, i.e.,
electrocardiogram (ECG), electroencephalogram (EEG), and
blood pressure, and these are then transmitted to a Personal
Server (PS) using wireless communication devices. The PS
then transmits this information to the remote medical system
to enable remote health monitoring and diagnosis.

In order to provide risk free ubiquitous healthcare facili-
ties, immense work has been done using ECG analysis and
diagnosis in recent years. Most of the work in the literature
is related to the analysis and diagnosis of Cardiovascular
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Diseases (CVDs) [9]–[11]. In most of the architectures pre-
sented in the literature, the analysis and diagnosis are done
on medical servers. Hence, there is a need for live and contin-
uous healthcare monitoring to analyze and diagnose chronic
diseases. The focus of most of the literature is the detection of
abnormalities in the ECG data caused by diseases. However,
none of the existing work considered intentional attacks and
modifications caused to the data during communication in
the case of WBANs. This work considers two situations
where the physiological values change. First, the involve-
ment of wireless media makes WBANs very susceptible to
attacks like insertions, modifications, and forgeries. More-
over, the physiological status also varies as a result of abnor-
mal conditions of the subject (patient carrying the WBAN)
e.g., in the case of CVDs. Attacks on the ECG data during
wireless communication may lead to the wrong diagnosis.
Similarly, the early detection of changes in the ECG readings
may save the user from a massive heart attack and severe
consequences. To ensure fully automated, reliable, and con-
tinuous ubiquitous health monitoring, it is crucial to detect
abnormal conditions and any intrusions or changes in the
physiological values. The abnormality, intrusion, or change
detection will surely allow clinicians and medical personnel
to accurately diagnose CVDs.

In this paper, we present a centralized change detection
mechanism for continuous and ubiquitous monitoring using
WBANs. Change can be in the form of an intrusion, a modifi-
cation, or an abnormality. Because of the time-variant nature
of the ECG data, a Markov model-based detection mecha-
nism is proposed. ECG is a sequence of data points, measured
typically at successive points in time spaced at uniform time
intervals. The amplitudes of the ECG frequency components
change with time. Therefore, a Markov model is an optimal
choice for such time series data. The proposed detection
system architecture is depicted in Fig. 1, where different
physiological monitoring sensors are attached to the human
body, and a centralized PS collects data from these sensors for
real-time abnormal event detection.Moreover, the centralized
change detection mechanism runs on the PS to protect the
human personal data, and to highlight anomalies and intru-
sions before sending it for further diagnosis to the medical
servers. The system attaches a high priority or emergency
tag called an abnormal tag to the data whenever it detects
anomalies or intrusions in the data. On the receiving side,
when this tag reaches the medical systems, it raises an alarm,
and the corresponding medical personnel check the status of
the physiological data. The proposed scheme is tested and
evaluated with different window sizes and different levels of
attack severity. The attack severity increases as we increase
the number of insertions and modifications in the data. The
proposed scheme has a better True Positive Rate (TPR) and
True Negative Rate (TNR), which result in high performance
in terms of intrusion detection. Similarly, the scheme shows
a very low False Positive Rate (FPR) and False Negative
Rate (FNR), which reduce the overburdening of the sys-
tem. Moreover, the scheme is computationally inexpensive

FIGURE 1. WBAN-based change detection architecture.

and consumes a very small amount of time for evaluating
10,000 records.

The remainder of this paper is organized as follows: In
section 2, the background and related literature is discussed.
Section 3 elaborates on the proposed change detection sys-
tem. Section 4 presents experimental analysis and results of
our proposed scheme. Finally, section 5 concludes our work.

II. RELATED WORK
Security, privacy, and attack-free communication can lead to
an optimal and realistic healthcare system. To ensure attack-
free communication in remote healthcare systems, there must
be some countermeasures to protect the data and detect any
intrusions in the human personal data during wireless com-
munications in healthcare systems. Similarly, the physiolog-
ical values also change in case of an emergency. Therefore,
there should be some measures or techniques to detect these
changes in the physiological values during an emergency to
provide an early response to the user of the system.

There are some remote and personal healthcare systems
in the literature, including CodeBlue [12], which is an
ad hoc sensor network infrastructure for emergency med-
ical care comprising low-power physiological sensors and
PDAs. MobiHealth [13] provides an end-to-end health-
care platform for ambulant patient monitoring. The user
of MobiHealth is equipped with different sensors that con-
stantly monitor physiological values, e.g., blood pressure
and electrocardiogram (ECG) data. A PDA-based Patient-
Monitoring System [14] uses a PDA to monitor phys-
iological data such as the heart rate, electrocardiogram,
and SpO2. In [15], the authros use an IoT based data
accessing scheme for ubiquitous emergency medical ser-
vices. The authors in [16] propose a smarthome-based
health monitoring and medicine packaging using IoT where
the main services of the system are health monitoring,
emergency response, and intelligent pharmaceutical pack-
aging (iMedPack) with communication capability of pas-
sive radio-frequency identification (RFID) and actuation
capability enabled by functional materials. Most of these
systems focus on the architecture and services. Some consider
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secure communications, but none of the systems provide
services for attack mitigation or change detection in the phys-
iological data.

There are some schemes in the literature for detecting
anomalies in the ECG data for arrhythmia detection [17],
cardiomyopathy [18], and coronary blood flow abnormali-
ties [19]. In this regard, [20] gives a cluster-based approach
for detecting cardiovascular abnormalities in the ECG data.
Characteristic frequencies are assigned to the compressed
ECG data, and then the correlations between these frequen-
cies are obtained. On the basis of these correlations, two clus-
ters, i.e., normal and abnormal, can be formed. In [14], ECG
biometrics are used for detecting cardiovascular diseases. The
scheme in [21] is based on the idea that the characteristic fre-
quencies taken from compressed ECG data at enrollment and
recognition are the same. Similarly, in [11], R-wave events
are detected using geometrical techniques. The R-wave
detection will help to evaluate and predict abnormal car-
diac rhythms. Similarly, there are schemes that consider
the detection of abnormalities in ECG data using mobile
devices [22], [23]. Although these schemes detect abnormali-
ties like CVDs in ECGdata, they do not consider the detection
of intentional changes made by an attacker. Moreover, most
of the above schemes run on hospital servers, and hence do
not provide continuous and ubiquitous patient monitoring.
The scheme proposed in this paper learns and detects new
changes (i.e., anomalies and attacks) on the basis of the
learned behavior.

There are some Markov model-based schemes for intru-
sion detection in wireless sensor networks (WSN). In this
regard, [24] uses a classifier method for the detection of intru-
sions in log files using a Hidden Markov Model (HMM). The
scheme uses an HMM and a k-mean for the classification of
normal and abnormal traffic data. An intelligent mobile robot
response system was presented in [25], which used enhanced
fuzzy Adaptive Resonance Theory (ART) for learning and
a Markov model for intrusion detection in a WSN. Another
example is the use of a non-parametric version of HMM [26]
for intrusion detection. The scheme uses scores and deviation
alarms when the behavior changes.

The above healthcare systems are prone to attacks
and modifications during wireless communications. If by
any chance an attacker succeeds in forging and modify-
ing human personal information during communication in
remote healthcare systems, it will lead to a wrong diagnosis,
which will ultimately result in serious consequences for the
user of the healthcare system. Because of the harsh wire-
less communication environment, there is a need to incor-
porate a proper intrusion and modification detection sys-
tem in the remote healthcare systems. Similarly, the above-
mentioned Markov model-based schemes used for intrusion
detection were designed by considering the specific require-
ments of the WSN. None of the Markov model-based
schemes considered medical applications and WBANs.

In this paper, the proposed scheme uses a Markov model
to detect modifications and abnormal behavior in the ECG

FIGURE 2. Normal and abnormal ECG behaviour.

data, as shown in Fig. 2. In Fig. 2, the red lines in the plot
represent abnormal behavior, while the blue lines show the
normal behavior. An ECG signal has the characteristics of
time series data, where the amplitude of the signal changes
as the time progresses. Keeping in mind the time series char-
acteristics of the ECG data, Markov model-based intrusion
and change detection is done for qualitative, reliable, and
ubiquitous healthcare services. The proposed scheme helps to
detect forgeries and modifications performed by an attacker
to misguide the diagnosis process. In the same way, the pro-
posed schemewill detect the abnormal behavior that occurs in
case of a heart attack emergency.Moreover, the scheme learns
the behavior of the changes and attacks.Whenever a new type
of change or attack occurs, the scheme successfully detects
and raises an alarm in the medical systems. For example,
if there are some abrupt changes in the ECG data of a patient,
the system will notify the clinicians prior to the heart attack.

III. PROPOSED CENTRALIZED CHANGE
DETECTION SYSTEM
A WBAN-based remote healthcare system uses sensor
devices for physiological monitoring, and then the sensed
data are transferred to themedical servers for experts and clin-
icians for analysis and diagnosis. In our proposed system, all
the physiological sensors are attached to a PS, which collects
the physiological data from the sensors and then, after apply-
ing the intrusion and anomaly detection mechanism, sends
the data along with the associated normal or abnormal tags
to the medical servers. The clinicians then decide whether
the condition of the patient under continuous observation
is normal or needs an emergency response. If the condition
is normal, the proposed system observes and evaluates the
ECG data, detects attacks, and informs the patient as well as
the clinicians about the attack. Our proposed architecture is
depicted in Fig. 3, and is based on the following main steps:

A. FEATURE EXTRACTION
In this step, the PS extracts features from the physiological
values received from the sensor nodes. All the physiological
sensors sample the ECG values at a specific sampling rate and
fixed duration of time. Then, by applying a Discrete Wavelet
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FIGURE 3. Markov Model-based change detection architecture.

Transform (DWT), the features are extracted from the
ECG signal. All the sensor nodes extract the features and
send them to the PS. The PS also extracts its set of features
from the ECG signal. The set of features (FeatureSetPS)
from the PS are used for training, while the sensor node’s
features (FeatureSetSN) are used for testing purposes.

B. Markov MODEL-BASED CHANGE
DETECTION MECHANISM
Let us assume that {Xt, t ∈ T} is a sequence of random
variables, where T = Z+ ={0,1,2,3. . . }. This sequence has a
Markov property [29] if it satisfies the following conditions:

1) For any t ∈ T, the future process at t-, (Xt-, where t- > t and
t- ∈ T) is independent of any past processes (Xγ , where
γ < t and γ ∈ T).

2) The conditional probability distribution of such future
process (Xt-) (where t- > t and t- ∈ T) depends only upon
the present state (Xt , t ∈ T)

In other words, if Xt belongs to some countable set of
states (S), then {Xt, t ∈ Z+} will satisfy the Markov property
if and only if

P (Xt+1 = j |X0 = i0,X1 = i1, . . . ,Xt = it)

= P(Xt+1 = j |Xt = it ), ∀t ∈ Z+ and ∀i0, i1, . . . , it , j ∈ S

The set of such countable states (S) is called the Markov
chain. Therefore, a Markov chain can be defined as a math-
ematical model of random variables that evolve over time in
such a manner that the future is affected only by the present
and is independent of the past events.

1) Markov MODEL
A random variable X will be called a discrete random vari-
able if it is finite or countably infinite and conforms to the
following condition:

∑
x
P (X = x)= 1, where x is each possible value of ran-

dom variable X. The probability mass function (pmf) of two
such discrete variables, X0 and X1, is defined as

P (X0 = x0,X1 = x1) = P (X1 = x1 |X0 = x0) .P (X0 = x0)

In the same way, for a total of n+1 such discrete random
variables, X0, X1, X2, . . . , Xn, the joint probabilities can be
expressed as

P (X0 = x0,X1 = x1,X2 = x2, . . . ,Xn = xn)

= P (X1=x1,X2=x2, . . . ,Xn=xn |X0=x0) .P (X0 = x0)

= P (X2=x2, . . . ,Xn=xn |X1=x1) .P (X1=x1|X0=x0)

·P (X0 = x0)

= P (X0 = x0) .P (X1 = x1|X0 = x0)

·P (X2 = 2|X1 = x1) . . .P (Xn = xn|Xn−1 = xn−1) (1)

The initial probability of state x0∈ S is defined as

qx0 = P(X0 = x0) (2)

and the other conditional probability chunks of (1) are
denoted as

pxn,xn+1 = P (Xn+1 = xn+1 |Xn = xn) ,

∀xn, xn+1 ∈ S, n ≥ (3)

The joint probability distribution in (1) can be simplified
using (2) and (3) as follows:

P (X0 = x0,X1 = x1,X2 = x2, . . . ,Xn = xn)

= qx0.(px0,x1 .px1,x2 . . . pxn−1,xn )

= qx0

n∏
t=1

pxt−1,xt (4)

The function qx0 in (2) is called the Initial Distribution, and
pxn,xn+1 in (3) is called the Transition Probability from state
xn at time n to state xn+1 at time n+1.
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The transition probability is described in amore convenient
manner as follows:

The transition probability matrix (P) is a matrix represen-
tation of the transition probabilities. Let pij be the transition
probability of a system that is in state j at time t+1 and whose
previous state was i at time t [25]–[27]. If the system has a
total of ‘‘n’’ states, P will be defined as

P =


p11 p12 . . . . . . p1n
p21 p22 . . . . . . p2n
...

...
...

...

pn1 pn2 . . . . . . pnn

 (5)

A Markov model is a stochastic process. Hence, the sum of
the probabilities of transitioning from state i to some other
states will be 1, i.e., the sum of each row of transition matrix P
will be equal to 1. ∑n

j=1
pij = 1 (6)

By observing a system’s behavior, the transition probability,
as well as the initial probability, can be calculated.

Let Nij = the total number of observations where Xt is in
state i at time t and Xt+1 is in state j at time (t+1).

If M= the total number of observations where Xt is in state
i and Xt+1 is in any one of the states 1, 2, 3, . . . , n,

Ni = the number of Xt in state i, and
N = the total number of observations, then

pij =
Nij

M
(7)

and

qi =
Ni

N
(8)

2) Markov MODEL-BASED ECG ANALYSIS SCHEME
This section elaborates on the application of the Markov
model to intrusion and abnormality detection in the time
series ECG data. The Markov model is used to represent the
temporal profile of the normal behavior of the continuously
collected ECG data set. Our target is to detect any abnor-
malities or intrusions in a human ECG pattern in real-time
and continuous health monitoring systems. For the detection
of intrusions and anomalies in the ECG data, normal ECG
values, i.e., measured by the PS itself (FeatureSetPS), are used
to compare with the testing dataset, i.e., measured by the
physiological sensors (FeatureSetSN).

The ECG dataset collected from [28] contains a total
of 310 ECG recordings of 90 different persons. There were
44 male and 46 female volunteers ranging in age from 13 to
75. Some records were collected periodically over 6 months.
For experimental purposes, the first ECG records for persons
1 to 25 are used. The header (.hea) file of these records
contains information about the person’s age, gender, record-
ing date, etc. Each record contains raw as well as filtered
data signals. The filtered signals are used here for analysis

and experimentation. Each ECG record contains a total of
10,000 signal values at 0.002-s intervals. An ECG signal
value is denoted in millivolts, which varies in the ±10 mV
range. In order to reduce the dimensions of the ECG data
for better classification and improved detection, a Haar-based
discrete wavelet transformation (DWT) is applied to the sig-
nal.With the goal of reducing the number of random variables
from the ECG dataset, the dimensions were reduced by 50%
in each record using DWT. The reduced set of data is further
used for abnormality and intrusion detection.

Moreover, to validate our scheme, some user-defined intru-
sive data are imposed on the normal dataset in random loca-
tions of the collected ECG patterns, which is then used as
testing data. Both 5% and 10% insertions and modifications
are randomly injected into the dataset to prepare it for testing
purposes. Thus, these testing datasets contain 95% and 90%
normal patterned data, respectively.

3) TRAINING
In order to train the system, PS uses its own measured ECG
feature set, i.e., FeatureSetPS. This is done because the sensor
nodes and PS reside on the same body, and hence measure
similar ECG values. It is worth mentioning here that the
ECG values measured at two different locations on the same
body may have slight differences, but these differences can
be eliminated or rectified by using some correction or recon-
ciliation schemes [8], [30]. Moreover, as the scheme runs on
the PS, the PS uses its own feature set of normal ECG data
to train the system. The system builds a simplified Markov
model by learning a transition probability matrix, as well
as the initial probability distribution from normal ECG data.
An observation window size N (20, 40, and 60) is used to
divide the whole ECG signal into different set of states. For a
total ofM states (M − N + 1), different sets of states of size
N will be available. The sequence of states for each chunk
will remain the same. The steps of the proposed scheme are
shown in Algorithm 1.

4) TESTING
After performing training, the system was able to detect
any abnormality and change in the ECG data. For testing
purposes, the feature set (FeatureSetSN) received from sensor
nodes is passed through the system.

Hence,

S0 = X0,X1,X2,X3, . . . ,XN−1
S1 = X1,X2,X3,X4, . . . ,XN
S2 = X2,X3,X4,X5, . . . ,XN+1
.

.

.

SM−N = XM−N ,XM−N+1,XM−N+2,XM−N+3, . . . ,XM−1

In general, Si = Xi, Xi+1, Xi+2, Xi+3, . . . .. , Xi+N−1, where
0 ≤ i ≤ M-N. We can now compute the probability of each
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Algorithm 1 Implementation of Markov Chain in ECG data
1. Initialization:
Observation Window Size = w;

2. Step 1:
Calculate total number of ECG data instance (M).
Calculate total number of unique ECG data instance (U).
Total_Number_of_Unique_Data (u) ≤
Total_Number_of_Data (m)

3. Step 2:
Assign unique index number to Unique ECG data
instances, start from 0 to (u-1).
Set of available states, X = {Xu, 0 ≤ u <U}

4. Step 3:
Extract ECG States based on original ECG data. Label
as training dataset.

5. Step 4:
Rename the time-based sequence of states available in
training data with respect to state number available in X.
Training Data Set, TD = (Xv)t, 0 ≤ v < u, t = 0,1,2,. . .

6. Step 5:
Calculate initial distribution of set of states, X.
Calculate transition probability, Pij (0 ≤ i,j ≤ u) of state
transition from one state to another. Transition
probability is based on Training Data Set, TD.

7. Step 6:
Label Testing Data Set (TS) as in Step 4 and split the
Testing Data Set into different chunk of entries (Si),
termed as chunk of sequence
Si= (Xi, Xi+1, Xi+2, Xi+3,. . . , Xi+w−1 ) where, 0≤ i≤
m-w+1 and m = |TS|

8. Step 7:
Calculate probability of occurrence of each sequence
(Si), P (Si)= P (Xi,Xi+1, . . . ,Xi+w−1)

=qXi

w∏
t=i+1

PXt−1Xt ,where0 ≤ i < m− w+ 1

9. Step 8:
Assign a Threshold value (τ ) for detecting the effected
sequences. The probability of sequence (P(Si)) lesser
than Threshold value (τ ), will confirm chance of
abnormal changes. i.e., P(Si) <= τ , detect
abnormalities

sequence using (4).

P (Si) = P (Xi,Xi+1, . . . ,Xi+N−1)

= qXi

N−1∏
t=i+1

PXt−1Xt ,where (0 ≤ i ≤ M − N )

The feature set contains 5% and 10% attack data, placed
at random locations. If a total of M states are divided into
(M − N + 1) sliding windows of size N , each chunk (Si)
will contain N entries. If the probability is higher than a
predefined threshold, the tendency of the sequence increases
toward normal. On the other hand, if some sequence of states
receives lower (tending to 0) probability scores, then there

is a chance of an abnormality or intrusion activity in that
sequence. This can be seen in Fig. 5, where a red line rep-
resents a threshold value. Touching the threshold raises an
alarm.

5) NUMERICAL REPRESENTATION OF PROPOSED SYSTEM
In this section, we represent the process of detecting changes
in a sample data set. For training purposes, time series data
with 27 (i.e., (xt, t), 0<t<27) states are given below. Let our
exemplar data set contains a total of five unique states ({xu, 0
≤ u<5} ). These states are discrete random variables, which
are countably infinite.

Thus, unique states= {xu, 0≤ u<5}= (x0, x1, x2, x3, x4)
State occurrence= {(xu, t), where 0≤ u<5 and 0<t<27}.

Here, ‘‘t’’ is the time index, which is incremented by 1 when
a state changes to the same or a different state. The states
are independent of the time t. For example, if at time t=0,
the present state is x0, the next state at t=1 will be any one of
(x0, x1, x2, x3, x4), i.e., the next state = {xu}, 0 ≤ u <5.
The state occurrence of sample data is given as S= (x0, x2,

x1, x3, x4, x3, x3, x2, x0, x4, x2, x2, x0, x2, x3, x0, x4, x3, x1,
x1, x2, x2, x0, x1, x4, x3, x1). The initial distribution for five
unique states can be calculated using (8).
Thus, the initial distribution q = [0.185, 0.185, 0.259,

0.222, 0.148].
The transition probability matrix can be calculated

using (7). The last state in the sample data is given as x1.
As the sample data set is continuous, we expect another state
as x4 even after the last state of S. Here, the transition prob-
ability matrix is represented, where the transition probability
from one state to another is rounded off to two decimal places.

P =


0 0.20 0.40
0 0.20 0.20

0.43 0.14 0.29

0 0.40
0.20 0.40
0.14 0

0.17 0.33 0.17
0 0 0.25

0.17 0.17
0.75 0

 (9)

The sum of each row of P is equal to 1, i.e.,
∑n

j=1 pij = 1 is
satisfied.

Based on the transition probability and initial distribution,
any new sequence behavior can be measured. Let another set
of states be SNew = (x0, x2, x1, x3, x4, x1, x3, x2, x0, x3, x2, x2,
x0, x2, x3, x0, x4, x3, x1, x1, x2, x2, x0, x1, x4, x3, x1). How-
ever, the transition matrix is already created using the training
data set S. This matrix information is essential for identifying
any abnormalities in the future set of transition states. The
initial distribution of unique states along with the transition
from one state to another are the bases for the abnormality
assessments. Let us assume that there are some changes in
the set of states SNew. Some intrusion or abnormality has
occurred in the sixth and tenth position of the data set SNew of
the same profile. Our target is to detect any changes in such
a time series data. For experimental purposes, let us take an
observation window size of N= 4 with a hop size of 1. Thus,
the sequence of states will be divided into (|SNew|-N+1) =
24 chunks, where the chunks are represented as Ck,
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1≤ k ≤ (|SNew|-N+1). The elements in each chunk are given
below:

C1 = (x0, x2, x1, x3), C2 = (x2, x1, x3, x4), C3 = (x1, x3,
x4, x1), C4 = (x3, x4, x1, x3), C5 = (x4, x1, x3, x2), . . . ,
C24 = (x1, x4, x3, x1). The occurrence probability of each
chunk in our system will be calculated using (4).

P (C1) = P (x0, x2, x1, x3) = qx0 .px0x2 .px2x1 .px1x3
= (0.185) . (0.4) . (0.14) . (0.20) = 0.002072

P (C2) = P (x2, x1, x3, x4) = qx2 .px2x1 .px1x3 .px3x4
= (0.259) . (0.14) . (0.20) .(0.17) = 0.001233

P (C3) = P (x1, x3, x4, x1) = qx1 .px1x3 .px3x4 .px4x1
= (0.185) . (0.20) . (0.17) .(0) = 0

P (C4) = P (x3, x4, x1, x3) = qx3 .px3x4 .px4x1 .px1x3
= (0.222) . (0.17) . (0) .(0.20) = 0

P (C5) = P (x4, x1, x3, x2) = qx4 .px4x1 .px1x3 .px3x2
= (0.148) . (0) . (0.20) .(0.17) = 0

and so on.

P (C24) = P (x1, x4, x3, x1) = qx1 .px1x4 .px4x3 .px3x1
= (0.185) . (0.40) . (0.75) .(0.33) = 0.018315

After calculating the joint probability of each chunk, a thresh-
old probability is defined. A higher probability indicates a
greater likelihood that a chunk in the sequence state deviates
from the normal behavior [31]. Abnormal or forged activities
are expected in those sequences of states where the probabil-
ities of the chunks are very low (below the threshold). The
probabilities of the chunks of the sequence, with their states,
are listed in Table 1.
The threshold value is calculated based on the normal

profile behavior. The occurrence probability of each chunk
in the normal profile dataset S is calculated to find out the
sequence of states, which has the lowest probability value.
Nevertheless, we have followed the same steps to calculate
the occurrence probability of the normal profile as stated
earlier in this section. The particular state sequence number,
for which the sequence probability is minimum, is identified
using equation (10).

m = argmink;1≤k≤(|s|−N+1) P(Ck ) (10)

It is found that for the value m = 2, the chunk C2 (which
contains the (x2, x1, x3, x4) sequence of states) produces
the lowest value out of any other sequence combinations in
the normal circumstances. The probability corresponding to
the chunk C2 is calculated as 0.001, which is identified as
the lowest probability among the other chunks in the normal
profile conditions. The threshold is assigned a value, which
is lesser than the lowest occurrence probability among the
chunks (i.e., P(C2)) in a normal profile. We assigned the
threshold as a fraction lower (i.e., 0.0001) than the lowest
occurrence probability among the chunks (i.e., 0.001) avail-
able in the training data. Using equation (11), the threshold
value is calculated as 0.0009 for the particular profile.

Threshold (τ ) = P (Cm)− 0.0001 (11)

TABLE 1. Probabilities of chunks of sequence of states of test data
set (SNew) in respect to Markov Model of normal profile data set.

TABLE 2. Transition from initial state to final state with corresponding
transition probability.

The chunks whose probabilities are lower than the thresh-
old τ , are supposed to contain some abnormal states
in the corresponding chunks. It can be noticed from
Table 1 that the probabilities of chunk numbers C3,
C4, C5, C7, C8, and C9 are lower than the predefined
threshold.
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FIGURE 4. Normal and Abnormal behavior detection using threshold.

FIGURE 5. Markov Chain Transitions from one state to another state.

The proposed model identifies that there may exist some
abnormalities in these six chunks. It is clear from Fig. 4 that
these particular six chunks of sequences satisfy the abnormal-
ity condition as the probabilities of the occurrence of these
sequences are below the threshold value. In the figure, the red
line is marked as the threshold value. However, the threshold
value is not fixed for different profiles. The threshold value
is highly dependent on the training data of a normal profile.
For each profile (i.e., patient), it is necessary to calculate the
threshold value using the sufficient set of normal data. The
more the satisfactory normal dataset is used as the training;
the chances of generating the suitable threshold for the par-
ticular profile become high.

TABLE 3. Threat model.

6) Markov CHAIN TRANSITIONS
A state transition system consists of a set of transition states,
transition relations, and a set of initial states. A transition is
basically a set of rules that is responsible for changing states
from the source to the target. Different possible transitions
that can occur in the proposed model are described in the sub-
sections below. A total of four different types of transitions
are available in our system.

a: TRANSITION FROM
(
Ni, t11, s0,w

)
→
(
Nj, t11, s1,w

)
Consider the case where Ni represents a normal chunk. Ni
contains a total of w states. The initial state is represented
as s0 ∈ S. t11 is the condition for checking the normality
of any chunk. After applying the Markov model on chunk
Ni, if the joint probability of chunk Ni is lower than some
threshold value (which is to be set by observing the normal
system behavior), the next stage will be treated as normal (Nj)
with initial state s1. Here, the initial state will be changed
to the state that is next to the initial state of chunk Ni. For
example, assume window size w = 5 and let us assume that
there are a total of six states available in the system, S= (S0,
S1, S2, S3, S4, S5). As w = 5, so Ni and Nj will be treated as
a chunk with a total of five elements, i.e., |Ni| = |Nj| = 5.
A sequence of states is available as follows: S2, S3, S1,

S3, S4, S2, S5, S1, S3, S4, S0, S1, S1, S0, S4. We take the
chunk, Ni, which occurs in the following sequence: S2, S3,
S1, S3, S4. The initial state here is s0 = S2. After applying
the Markov Model on Ni, if it satisfies the normal condition
(a1), the process will reach the next stage. In this case, Nj will
be the next chunk whose states of occurrence will be S3, S1,
S3, S4, S2. Here, the initial state s1 = S3. This clearly shows
a normal-to-normal transition.

b: TRANSITION FROM (Ni , t12, s0,w)→ (Aj , t12, s1,w)
In this case, if the joint probability after applying the Markov
Model on chunk Ni satisfies the abnormality condition (t12),
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TABLE 4. Total running time of ecg dataset execution.

the next sequence of states (Aj) will be abnormal. Here,
the initial state will be changed from s0 to s1 in the next
transition. This type of scenario shows a normal to abnormal
transition.

c: TRANSITION FROM
(
Ai , t21, s0,w

)
→
(
Nj , t21, s1,w

)
Let us suppose that a system is in an abnormal state and the
initial state is s0. If the probability of the sequence in Ai with
respect to the initial state satisfies the normal condition (t21),
the next chunk of the sequence (Nj) will be in the normal
state. This scenario shows the transition from an abnormal
to a normal state.

d: TRANSITION FROM (Ai , t22, s0,w)→ (Aj , t22, s1,w)
In this case, an abnormal state (Ai) will be unchanged (Aj) if
the probability of chunk Ai, which contains some sequence of
states of size w, still satisfies the abnormality condition (t22).
If Ai = (S1, S3, S4, S0), when s0 = S1, Aj will be the

sequence (S3,S4, S0, S1) with s1 = S3. In this case, both Ai
and Aj will be in the abnormal condition.
These transitions are depicted in Fig. 5, and a similar

transition from the initial state to the final state with the
corresponding transition probability is shown in Table 2.
Moving from the initial state i1 to the final state j1 at time
t will require the value of the integral multiplications of the
probability mass functions.

IV. EXPERIMENTS AND RESULTS
This section provides a detailed description of the experi-
ments and a discussion on the generated results.

A. EXPERIMENTAL SETUP
In order to perform different experiments and analyses,
we use Java and MATLAB-based simulations. The dataset
is taken from MIT-PHYSIOBANK [28], and we use differ-
ent records taken from the ECG recordings of 25 persons.
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TABLE 5. Results for 5% abnormal or attack data.

For an in-depth analysis, we examine the effect of increas-
ing the window size on the detection rate and running time
performance of the proposed scheme. The experiments are
performed for different window sizes of 20, 40, and 60.
Similarly, the experiments are done using 5% and 10% attack
data.

B. RUNNING TIME
The experiments are performed using the data from 25 sub-
jects, where each data set contains 10,000 values. The exper-
iments are performed for different window sizes of 20,
40, and 60, with 5% and 10% intrusive data. On aver-
age, the schemes take almost 2.6 s to detect and evalu-
ate the 5% and 10% intrusive data. Hence, it is evident
from Table 4 that the total running time for a particu-
lar experiment is 2.6s. The running time analysis shows
that the proposed scheme is usable in limited resource

networks like WBANs for continuous monitoring and secu-
rity provisioning.

C. SECURITY ANALYSIS
Since WBANs use wireless technologies for communication,
most of the threats inherent in WSNs can also be launched
against WBANs [32]. In Table 3, some of the attacks that
can be launched against the proposed scheme and are able
to modify the ECG values in order to disturb the diagnosis
process are described.

For the security analysis, the proposed scheme is analyzed
and evaluated in terms of the True Positive Rate (TPR), True
Negative Rate (TNR), False Positive Rate (FPR), and False
Negative Rate (FNR). The experiments are performed for
various window sizes, and as we increase the window size,
a slight variation is observed in the TPR or detection rate,
as can be seen in Tables 4 and 5. Thus, we conclude that
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TABLE 6. Results for 10% attack or abnormal data.

the increase in window size affects the performance of the
proposed scheme in terms of the intrusion and anomaly detec-
tion. Similarly, it is also observed that, when we increase the
insertion and modification percentage from 5% to 10% intru-
sive data, the detection rate decreases. Moreover, the TNR has
maximum value of 99.8% for the 5% attack or abnormal data,
and 98.7% for the 10% attack or abnormal data, which clearly
draws a line between the normal and intrusive or abnormal
data.

Similarly, the FPR interprets the false alarms raised by the
system when it calls a normal sequence or record of data
intrusive or abnormal. The proposed scheme limits theFPR to
2.8% at the maximum for the 5% attack or abnormal data, and
2.4% for the 10% attack or abnormal data.Moreover, theFNR
presents a scenario where there is an attack or abnormality in

the data but the scheme did not raise an alarm. In this scenario,
the scheme fails to detect the abnormality or intrusion in the
data. In our experiments, the proposed scheme restricted FNR
to 7.1% at amaximum for the 5% attack or abnormal data, and
12.8% for the 10% attack or abnormal data.

Similarly, the maximum precision (Prec.) of the proposed
scheme is 97.5% in the case of the 5% attack or abnormal
data, and 98.3% on for the 10% attack or abnormal data. This
shows the accuracy and usefulness of the proposed scheme
in the presence of some abnormality or attack. A Receiver
Operating Characteristic (ROC) curve is a two dimensional
depiction used to evaluate and analyze the performance of any
detection system. The ROC curve depicts the dependence of
the FPR (i.e., accepted imposter attempts) on the TPR (i.e.,
accepted legitimate attempts).
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FIGURE 6. Threshold based detection of change.

FIGURE 7. ROC and ROCCH curves for 5% anomaly data, 20 window size,
and 90% threshold.

FIGURE 8. ROC and ROCCH curves for 5% anomaly data, 40 window size,
and 90% threshold.

Similarly, the Area Under Receiver Operating Characteris-
tic (AUROC) summarizes the total accuracy of the intrusion
detection system. The AUROC number always ranges from
0.5 to 1.0, and the worst ROC curve lies along the positive
diagonal y = x and has the corresponding area of 0.5. The
best ROC curve lies on the y-axis, reaches the top corner (0,
1), and has an area of one.

When the corresponding area approaches 0.5, this means
that the probability of the anomaly or intrusion detection is
50%. On the other hand, when it reaches one, this means that
the probability of an anomaly or intrusion is 100%.

It is evident from Fig. 7 that for the 5% attack or abnor-
mal data with a window size of 20 and a 90% thresh-
old, the AUROC is 0.967391 and AUROCCH is 0.967391.

FIGURE 9. ROC and ROCCH curves for 5% anomaly data, 60 window size,
and 90% threshold.

FIGURE 10. ROC and ROCCH curves for 10% anomaly data, 20-window
size, and 90% threshold.

FIGURE 11. ROC and ROCCH curves for 10% anomaly data, 40-window
size, and 90% threshold.

FIGURE 12. ROC and ROCCH curves for 10% anomaly data, 60-window
size, and 90% threshold.

Similarly, in Fig. 8, when we increase the window size to
40, the AUROC and AUROCCH decrease to 0.760870 and
0.782609, respectively.
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In Fig. 9, the AUROC and AUROCCH decrease to
0.652174 and 0.728261, respectively, for the window size
of 60.

Fig. 10 shows that for the 10% attack or abnormal data with
the window size of 20 and the 90% threshold, the AUROC is
0.690476 and ROCCH is 0.726190.

Similarly, in Fig. 11, when the window size increases to
40, AUROC becomes 0.645833 and AUROCCH becomes
0.651042. In Fig. 12, when the window size increases to 60,
AUROC decreases to 0.574561 and AUROCCH decreases to
0.631579.

V. CONCLUSION
Detecting the changes that occur in ECG readings in continu-
ous health monitoring systems is very hard. This abnormality
detection task becomes more difficult when there is a chance
of erroneous communication or some attacker intentionally
introduces errors or makes changes in the patient’s personal
data during wireless communication. Our proposed work
detects changes or abrupt variations in the ECG data. Sim-
ilarly, it learns the behavior and detects new changes on the
basis of this learned behavior to inform medical personnel by
raising an alarm in the hospital systems. Moreover, the pro-
posed scheme mitigates forgery, unauthorized insertions, and
modifications in the ECG data, hence preventing misleading
data in the diagnosis process. The proposed scheme shows
good results in terms of its detection rate, true negatives, and
running time complexity, which make it a better choice for
resource-constrained WBANs.

In the future, the proposed system will be enhanced by
automatically labeling the illegal attack and emergency heart
attack. In this case, a semi-supervised system will be inte-
grated with our proposed system, which will notify the cor-
responding abnormality indexes with timestamps and patient
IDs to themedical representative. It is the responsibility of the
clinicians to promptly contact patients to check their physical
conditions. In case the patients suffer from symptoms related
to an emergency heart attack, the clinician will inform the
system about the emergency. On the other hand, if the system
has already alerted about some abnormality and the clinicians
have confirmed it as a normal heart condition, then the system
will treat it as an intrusive activity happened around the
time frame. Based on the clinicians’ input, a semi-supervised
model will be presented to label the illegal and emergency
heart attacks.
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