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ABSTRACT Characterization of flow behaviors is one of the most challenging problems in a gas–liquid
flow system. In this paper, correlation dimension, a chaotic characteristic indicator, was introduced to
characterize the gas–liquid two-phase flow behaviors by using the fluctuating pressure induced by a bluff
body. An artificial neural network was trained to help select suitable flow parameters that were combined
with correlation dimension to construct a novel gas–liquid flow pattern map, which was able to distinguish
between the bubble, bubble/plug transitional, plug, slug, and annular flows with reasonable accuracy.
Furthermore, a quantitative correlation with the form of ug = ADB2u

C was established by the universal fitting
and the pattern-specific fitting with the coefficients of determination R2 approaching to 1. In view of the
simplicity and the convenience of vortex generation and pressure measurement, the correlation dimension-
based method provides an effective and practical idea to gas–liquid two-phase flows study.

INDEX TERMS Gas–liquid flow, correlation dimension, flow characterization, vortex-induced pressure
fluctuation, artificial neural network.

I. INTRODUCTION
Gas–liquid two-phase flow abounds in various industrial
equipment and processes [1]. Characterization of its flow
behaviors is known as one of the biggest challenges in the
field of multiphase flow study, due to the highly deformable
interfaces between the gaseous and liquidus phases [2], [3].
Generally, two major aspects are involved in gas–liquid flow
characterization: one is the recognition of flow patterns [4],
and the other is the establishment of quantitative correlation
of flow parameters [5].

Accurate and effective identification of flow patterns is the
basis for measurement and control of most other parameters
in a gas–liquid system. The methods for discerning gas–
liquid two-phase flow patterns have been investigated exten-
sively. Among them, flow pattern maps, flow visualization
and soft sensing are receiving much popularity. Constructing
a flow pattern map is a classical method in recognition of
flow patterns. Due to the boundary of flow pattern transition,
flow patterns are determined by the determination of corre-
sponding specific flow parameters according to the coordi-
nates of the map [6]–[8]. A considerable number of widely

adaptable flow pattern maps are established, for instance, the
Baker-Scott and the Hewitt maps which are appropriate for
horizontal and vertical upward gas–liquid pipe flows [9].
Flow visualization techniques extract qualitative and quan-
titative information from fluid flow field by making it
visible, and have solved numerous gas–liquid flow pattern
identification problems [10]. Soft sensing provides a feasible
alternative to impractical physical measurement issues, using
parameters available from other sources of measurements to
calculate the estimate of the quantity of interest. With the
rapid development of computer and information processing
technology, identification of gas–liquid flow patterns based
on soft sensing becomes a useful and widely adopted tool in
the field of multiphase flow measurement [11].

Normally, signals acquired for gas–liquid flow analysis are
weak, so the differences between each flow pattern are hard
to be distinguished. In this study, we proposed to utilize the
fluid oscillation induced by a bluff body to strengthen the
signals [12], [13]. Moreover, gas–liquid flow is known as
a typical kind of complex, sensitive and nonlinear system
whose behaviors are essentially difficult to be characterized

VOLUME 5, 2017
2169-3536 
 2017 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

10307



S. Huang et al.: Characterization of Gas–Liquid Two-Phase Flow by Correlation Dimension

FIGURE 1. Schematic diagram of the experimental setups.

quantitatively. We introduced the correlation dimension as
a means of analyzing fluid oscillation. As one of the frac-
tal methods, the correlation dimension is quite sensitive
to the unevenness of attractors in a system, and describes
the internal structure and characteristic quantitatively. More
specifically, it is capable of indicating the number of control
systems and the degree of freedom of system dynamics, and it
can also quantify the complexity of a system [14]. Correlation
dimension has been successfully applied to processing sig-
nals in earthquake prediction and fault diagnosis [15], [16],
providing a convincing nonlinear tool for seemingly dis-
organized, scattered and fragmented problems. Gas–liquid
two-phase flow is nonlinear and dynamic-dissipated whose
dynamic properties are surely better displayed by correlation
dimension. It is viable to apply the correlation dimension to
gas–liquid flow characterization.

The artificial neural network (ANN) is a kind of intelli-
gent information processing systems which imitate the struc-
ture and function of human brains. It has been proved to
be a useful tool for studying difficult processes that can
not be described with simple mathematical models. Many
investigations show that ANN is suitable for gas–liquid flow
characterization, especially for flow pattern identification.
For example, Fang et al. [17] resolved two-component fluid
flow regimes adopting back-propagation networks trained
on a series of simulated data of a capacitance tomog-
raphy sensor. Yan et al. [18] identified gas–liquid flow
patterns through ANN-based pressure fluctuation analysis.
Hernandez et al. [19] achieved fast classification of gas–
liquid flow regimes based on conductivity signals with ANN.
Rosa et al. [20] compared the performance of different ANNs
for flow pattern recognition in upward vertical air–water
flows. Ghosh et al. [21] predicted flow regimes using conduc-
tivity probe signals and ANN in counter-current gas–liquid
flows.

To achieve the purpose mentioned above, this study was
arranged as follows. First, vortex-induced pressure fluc-
tuation signals were acquired experimentally. Correlation
dimension was calculated based on the signals, and parame-
ters of interest that were most representative of the gas–liquid
two-phase flow behaviors were identified using ANN. The
chosen parameters were combined and used as the coordi-
nates to construct a new flow pattern map. Ultimately, quanti-
tative relationship between the parameters and the correlation
dimension was established.

FIGURE 2. Sectional view of the bluff body: (a) Overall structure;
(b) Dimensions of the bluff body (unit: mm); (c) Side view.

II. EXPERIMENTS
The gas–liquid two-phase flow experiments, adopting air and
water as working fluids, were carried out in a horizontal
loop at the ambient temperature and atmospheric pressure,
as shown in Fig. 1. The air sucked by the compressor or
the water pumped from the pool was first pressed into a
surge tank to make smooth before its flow rate was measured,
respectively. The volumetric air flow rate qvg was obtained
by the combined use of a vortex flowmeter (1.0% accuracy)
and two rotameters (1.5% accuracy) in view of range abili-
ties, while the volumetric water flow rate qvl was acquired
using an electromagnetic flowmeter (0.5% accuracy). In the
experiments the volumetric flow rates of air and water were
varied within 0.3–130 m3

· h−1 and within 0.5–18.5 m3
· h−1.

Simultaneously, the temperature and pressure of the air and
water adjacent to the flowmeters and at the test section were
also recorded to calculate the void fractions and the local
superficial velocities.

After their flow ratesweremeasured, the air andwater were
well mixed through a static mixer and flowed over a prismatic
bluff body that was mounted in the test pipe perpendicular to
the fluid flow direction. The inner diameter D of the test pipe
was 50 mm. The cross section of the bluff body was a trun-
cated isosceles triangle with a front face width w = 14 mm
embedded in the pipe, as plotted in Fig. 2. So the blockage
ratio of the bluff body to the test section was b = w/D = 0.28,
which could generate regular and intensive vortex shedding
in the bluff body wake. Herein the vortex-induced pres-
sure fluctuation over the bluff body were detected by the
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Duct-wall Differential Pressure Method (DDPM) [22], [23]
using a piezoresistive sensor with a response time 1.0 ms.
The two pressure tappings were located 1.0D upstream
and 0.2D downstream of the front face of the bluff body,
where the signals with better quality, stability and intensity
could be acquired. The pressure signals were collected by a
500-MHz-bandwidth digital oscilloscope. The sampling rate
of 1 kHz was employed throughout the experiments and
104 points were included in each data set.

The upstream and downstream straight pipes connecting
the bluff body were 70D and 50D long, which ensured the
flow patterns fully developed in the test section. During each
group of experiments the water flow rate was kept constant,
whereas the air was added in incremental amounts step by
step.When themaximum air flow rate reached, thewater flow
rate was shifted to a new value, and then the air flow rate was
repeated to increase from 0 gradually. Correspondingly, the
flow pattern in the test section was transformed from a single-
phase flow to bubble, bubble/plug transitional, plug, slug, and
annular flow. The flow patterns were observedmanually from
a section of transparent pipe installed in front of the bluff
body.

The local volumetric air flow rate at the test section was
derived from the perfect gas equation:

qvg,test =
qvg(ttest + 273.15)(pg + patm)
(tg + 273.15)(ptest + patm)

(1)

where qvg, tg, and pg were the volumetric flow rate, tem-
perature, and pressure of the single-phase air measured in
front of the static mixer, ttest and ptest were the temperature
and pressure of the gas–liquid mixture measured at the test
section, and patm represents the atmospheric pressure.

The experiments were conducted at ambient temperature
and atmospheric pressure; therefore, the volumetric water
flow rate kept invariant due to its negligible compressibility.
Hence the flow-rate based void fraction was calculated by

β =
qvg,test

qvg,test + qvl
(2)

where qvl was the volumetric water flow rate measured in
front of the static mixer.

The superficial velocities of the gas and liquid phase were
computed from

ug =
4qvg,test
πD2 (3)

ul =
4qvl
πD2 (4)

III. CALCULATION OF CORRELATION DIMENSION
Themethod proposed byGrassberger and Procaccia [24], was
adopted to calculate the correlation dimension D2 basing on
reconstruction of phase space, with embedding dimension m
and time delay τ . Since the computation cost of D2 increased
markedly with the increase of m, three thousand data points
were used in this study to compromise between the appropri-
ate amount for obtaining D2 and the computation efficiency.

A. SELECTION OF PARAMETERS
The embedding dimension m and the time delay τ directly
affected the reliability of quantitative analysis of the fractal
characteristics, and it was assumed that the choice ofm and τ
were inseparable and complementary to each other.

Generally, m should satisfy the condition: m ≥ 2d + 1,
where d was the true dimension of the space in which
the attractor of the original state space was located [25].
If m was small, it would produce many false crosses so that
the attractor of the system could not be depicted correctly;
otherwise, if m was too large, the noise of the time series was
embedded in the phase space and the characteristics of the
original system would be masked by noise. The embedding
dimensionmwas determined when the correlation dimension
became stable with the increment of m.
On the other hand, if τ was too small, two points in the

phase space would be very close to each other and the trajec-
tory might squeeze to the same position in the phase space,
which would lead to the difficulties in revealing the internal
information and miscellaneous errors. If τ was too large, two
points in the phase space would lose association resulting in
dramatic changes of dynamic shape and the simple geometric
objects would become more complex, preventing the acquisi-
tion of good reflection of characteristics and inherent law of
the system. In this study, the C-C method proposed by Kim
with good anti-noise ability [26], [27], was used to calculate
the time delay τ .

B. RECONSTRUCTION OF PHASE SPACE
The given time series of a dynamic system xk = x(k1t),
(k = 1, 2, 3, . . . ,N ) was embedded into a m-dimensional
space to fully expose the information contained in the time
series. For this phase space, it was converted into a set as
follows:

Xn(m, τ ) =
{
xn, xn+k , xn+2k , . . . , xn+(m−1)k

}
(5)

where τ = k1t was the time delay, 1t was the sam-
pling interval, Xn was the N vector in m-dimensional space,
n = 1, 2, 3 . . . ,M , and M = N − (m − 1)τ was the
total number of vectors in reconstructedm-dimensional phase
space.

So the reconstructed phase space was defined as

X = [X1(m, τ ),X2(m, τ ), · · · ,XM (m, τ )]T (6)

If k was equal to 2, then X could be expressed as [28]

X =


x1 x3 . . . x2m−1
x2 x4 . . . x2m
x3 x5 . . . x2m+1
. . . . . . . . . . . .

xN−2m+2 xN−2m+4 . . . xN

 (7)

We reconstructed the original dynamical rules through the
point trajectory which described the evolution from an initial
state and represent the history of the system [29]. In this
paper, we employed the fractal feature, the correlation dimen-
sion, to describe the complexity of the system.
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C. CALCULATION PROCEDURE
First we calculated the distance between all the vectors in
the phase space. We defined the phase point Xi, which was
chosen arbitrarily from the M data points, as the reference
phase point and calculated the spatial distance dij between Xi
and the other M − 1 phase points:

dij =
∥∥Xi − Xj∥∥ (8)

where Xi and Xj were the two points in the phase space
reconstruction.

After calculating all the points, the correlation integral
could be obtained as

C(r) =
2

M (M − 1)

∑
θ (r − dij), r > 0 (9)

where r > 0, and 1 ≤ i ≤ j ≤ M.
C(r) represented the percentage of the number of point

pairs in the phase space whose radius was smaller than r , and
θ (x) was the Heaviside function, which was defined as

θ (x) =

{
0, x < 0
1, x ≥ 0

(10)

Therefore, the correlation dimension D2 was calculated by
the correlation integral C(r) and the radius r with

D2 =
dlnC(r)
dlnr

(11)

D2 was regarded as the slope of the lnC(r)-lnr line
segments when r was in a relatively small value and the
correlation of lnC(r) with lnr was indicated approximately
straight. With a growing m, D2 increased and became satu-
rated gradually [17].

IV. RESULTS AND DISCUSSION
A. RAW PRESSURE FLUCTUATIONS
ACROSS THE BLUFF BODY
Typical fluctuating pressure signals across the bluff body
of each of the flow patterns observed in the experiments
are given in Fig. 3. As for the bubble flow, Kármán vortex
street could still be maintained in despite of a dispersion
of gas within the liquid continuum, and the fairly regular
pressure fluctuation as shown in Fig.3a corresponded to the
fluid oscillation induced by the regular vortex shedding.
In the other four flow patterns, however, pressure fluctuations
exhibited pronounced diversity in frequency and amplitude
variation. Regular vortex shedding disappeared. The pressure
fluctuations obtained under other experimental conditions are
similar to those in Fig.3 within an identical flow pattern. The
differences in the raw signals of various flow patterns provide
a feasibility to identify gas–liquid flow patterns based on the
pressure fluctuations across a bluff body. However, it is hardly
possible to discern flow patterns quantitatively from the time
series of the signals, so advanced methods of processing and
analyzing the pressure fluctuations are needed.

FIGURE 3. Vortex-induced pressure fluctuations: (a) Bubble flow;
(b) Bubble/plug transitional flow; (c) Plug flow; (d) Slug flow;
(e) Annular flow.

FIGURE 4. Distribution of the correlation dimensions in different
flow patterns.

B. CONSTRUCTION OF THE CORRELATION DIMENSION
BASED FLOW PATTERN MAP
As given in Fig. 4, the correlation dimension of each flow
pattern was calculated in accordance to the steps described in
Section 3. For all the flow patterns, the values of the correla-
tion dimensions distributed widely in general, which revealed
the complex dynamic essence of the gas–liquid flow systems
due to the intricate and random motion of dispersed phase.
In addition, the existence of the bluff body and the vortex
shedding under certain conditions made the flow structure
more complicated.

The correlation dimensions of the bubble and the annular
flows were comparatively larger than those of the other flow
patterns. When the fraction of the dispersed phase was below
a certain value, its existence had merely limited influence on
the generation of the vortex shedding behind the bluff body
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FIGURE 5. Structure of the artificial neural network using ul, ug and D2 as
inputs.

in the continuous phase. While with the increase of the void
fraction, the dispersed phase suppressed the yielding of vortex
shedding, so the dynamic characteristics of the gas–liquid
system became relatively simple and the corresponding corre-
lation dimension decreased. As for the bubble and the annular
flows, the content of the dispersed phase were comparatively
low; therefore, their correlation dimensions increased.

Different flow patterns had different correlation dimension
distribution. It is possible to utilize the correlation dimension
extracted from the vortex-induced pressure fluctuations as a
rational characteristic indicator for gas–liquid two-phase flow
pattern recognition. We introduced the correlation dimen-
sion into the construction of a novel flow pattern map. The
back propagation (BP) network, one of the most widely used
ANNs, was employed to simplify the construction process,
helping select the appropriate variables from a large quan-
tity of flow parameters to form the horizontal and vertical
ordinates on the map. The adopted feed-forward topology,
consisting of one input layer of 2 or 3 input neurons, one
hidden layer of 20 sigmoid neurons and one output layer of
5 neurons, is presented in Fig. 5. The BP network was trained
by the scaled conjugate gradient back propagation algorithm,
and its performance was evaluated using the cross-entropy
algorithm whose consecutive decrease in six iterations was
taken as the termination criterion of the training process [30].

Flow parameters, such as gas superficial velocity ug, liquid
superficial velocity ul, total superficial velocity u, void frac-
tion β and correlation dimension D2, constituting a number
of two-element or three-element combinations, were fed into
the ANN as the input layer. About two-thirds of the exper-
imental data was randomly selected for training, whereas
the remaining was used for testing. For each combination of
inputs, the ANN was trained ten times independently while
the model accuracy was the average value of the ten runs.
The results of partial combinations are shown in Fig. 6. It is
found that the ug, ul and D2 combination as the ANN’s input
achieved the best accuracy for flow pattern identification,
and the recognition accuracies of the other combinations
were basically in the range of 0.7–0.8 or less. Therefore,

FIGURE 6. Partial flow pattern recognition accuracies of the artificial
neural network using different combinations of inputs.

FIGURE 7. The constructed gas–liquid two-phase flow pattern map.

ug and ul are determined as the most appropriate variables to
be involved in the correlation dimension based flow pattern
map.

By trial and error, various forms of ug, ul and D2
combination were used to construct flow pattern map that
can distinguish gas–liquid two-phase flow patterns with
clear boundaries and reasonable accuracies. Ultimately, we
adoptedug/D2 as the horizontal coordinate and ul/D2 as the
vertical coordinate to shape the new flow pattern map, as
demonstrated in Fig. 7. The distinction of different flow pat-
terns is considerably acceptable in many industrial applica-
tions, except for themixing of the bubble/plug transition flow.
Due to the absence of objective criterion during the transition
of flow patterns, some mixed and overlapping problems on
the boundary between adjacent flow patterns were inevitable.
Moreover, we also plotted the results on some current existing
flow pattern maps, such as the Bake’s map, it shows that the
distinction performance of the proposed method is superior.

C. RELATIONSHIP BETWEEN THE CORRELATION
DIMENSION AND THE SUPERFICIAL VELOCITIES
Fig. 7 indicates that the transition of gas–liquid flow pat-
terns was strongly correlated with the superficial velocities
and the correlation dimension. In this section, we further
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FIGURE 8. Correlation dimension versus gas superficial velocity:
(a) Bubble flow at ul0 = 2.19m/s; (b) Plug flow at ul0 = 1.12 m/s;
(c) Slug flow at ul0 = 2.64 m/s; (d) Annular flow at ul0 = 0.28 m/s.

examined the relationship between these variables. Since the
flow patterns varied with both the gas superficial velocity and
the liquid superficial velocity, the following discussion only
accounted for the results at a fixed liquid superficial velocity
to simplify the analysis. The tendency of the correlation
dimension versus the gas superficial velocity is presented
in Fig. 8, and the initial liquid superficial velocity ul0 was
maintained invariant in its each subfigure. It is noted that
the cases for the bubble/plug transitional flow are not given
because this flow pattern did not appear adequately during the
experiments and its tendency exhibited no obvious regularity.

Fig. 8a shows the correlation dimension of bubble flows
at initial liquid superficial velocity ul0 = 2.19 m/s. The
correlation dimension decreased gradually with the increase
of the gas superficial velocities, suggesting that the com-
plexity of the gas–liquid bluff body wake was lowered by
the introduction of more amount of gas. Fig. 8b and Fig. 8c
respectively shows the correlation dimension of the plug and
the slug flows, which both fluctuated at a relatively small

FIGURE 9. The fitting for all flow patterns with the same set of
coefficients.

value around 4.0 compared to those of the bubble flows.
As given in Fig. 8d, the correlation dimension of annular
flows exhibited more marked fluctuation with the increase of
gas superficial velocities, and its average value was about 6.0,
much bigger than those of the other three flow patterns.
It reveals that the strong separate flow of gas and liquid phase
in annular flowsmade the bluff bodywake become supremely
complex.

Since we have found that there was close relation between
the correlation dimension and the superficial velocities,
a quantitative relationship between these parameters can be
supposedly established for the entire regime with respect to
each pattern. After trials, the multivariate nonlinear fitting,
ug = ADB2u

C , was able to produce an acceptably accurate
universal correlation for all flow pattern as presented in Fig. 9,
while possessing justifiable physical meaning. On the left of
this formula was the gas superficial velocity ug, and the right
side was the product of a constant A, the correlation dimen-
sion D2 to the Bth power and the total superficial velocity u
to the C th power. The addition of gas phase within the model
resulted in certain change in the dynamic complexity of the
system, which was reflected by the correlation dimension,
with the exponent B for the degree of the influence. Since
the changing complexity was imposed on the entire system,
also included in the product was the total superficial velocity,
whose influence was reflected by the exponent C . The con-
stant A was served as an overall adjusting coefficient.

The data of all five flow patterns could be correlated by the
formula, producing the following results with the coefficient
of determination R2 = 0.993. However, for ug < 5 m/s,
the fitting contained considerable local inaccuracies which
indicated the inadequate matching with the bubble flows. For
this reason, more accurate correlations were proposed for
each flow pattern which took the same form but different
values of the coefficient. The coefficient of determination
R2 for each pattern suggested a fairly good fit, as shown in
Fig. 10a–e. Then, compiling the five pattern-specific fittings
into one graph resulted in a fitting with R2 approaching to 1
closely, that is to say, adopting different fittings for different
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FIGURE 10. The fitting for each specific flow pattern: (a) Bubble flow; (b) Bubble/plug transitional flow; (c) Plug flow; (d) Slug flow;
(e) Annular flow; (f) All flow patterns with each set of coefficients.

flow patterns achieved better results, as shown in Fig. 10f.
It is obvious that compared with the previous one, the fitting
for the bubble flow did not contain noticeable inaccuracy.
In summary, a more precise quantitative correlation between
the gas superficial velocity and correlation dimension was
established. As a result, when one of the three superficial
velocities is given, we can calculate the other two with the
aid of the correlation dimension. Furthermore, the volumetric
flow rate of gas or liquid phase can be obtained as well as the
void fraction.

V. CONCLUSIONS
The correlation dimension extracted from the fluctuating
pressure induced by a bluff body was applied to characterize
gas–liquid two-phase flow behaviors in this study. With the
help of a trained ANN for selecting appropriate coordinate
combinations of flow parameters and the correlation dimen-
sion, a new gas–liquid flow pattern map was constructed,
which was able to distinguish between the bubble, bubble/
plug transitional, plug, slug, and annular flows with quite
reasonable accuracy. Furthermore, quantitative relationships
between the correlation dimension and the superficial veloci-
ties were established by the universal and the pattern-specific
fittings with the coefficients of determination R2 close to 1.
Inevitably, the establishment of this method is rather subjec-
tive and may lack universality, so more tests are needed to be
conducted to evaluate and extend its applicability under other
experimental conditions.
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