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ABSTRACT Considering the requirement of high accuracy and nonlinear problems in drive systems, a novel
adaptive position tracking control approach based on neural networks is presented for permanent magnet
synchronous motors with full-state constraints. The neural networks technique is employed to approximate
the unknown nonlinear functions. Then, the barrier Lyapunov functions are used to restrict the state variables
within a bounded compact set to improve the property of system. The proposed adaptive neural network
controllers can guarantee that all closed-loop variables are bounded, and the full state variables do not exceed
their constraint spaces. Simulation results show the effectiveness and the potentials of the theoretic results
obtained.

INDEX TERMS Adaptive neural control, permanent magnet synchronous motors, full-state constraints,
barrier Lyapunov functions.

I. INTRODUCTION
Recently, permanent magnet synchronous motors (PMSMs)
have attracted more andmore attentions owing to their simple
and robust construction, high power density and ruggedness
over other kinds of motors. Nevertheless, the dynamic model
of PMSMs is high nonlinear, strong coupling and multivari-
able. Besides, PMSMs are easily influenced by parameter
variations and external load disturbances. Therefore, it is nec-
essary to find optimal and efficient controllers for PMSMs,
which will be filled with many challenges. A lot of work
has been done to solve the nonlinear problem of PMSMs.
Then many advanced nonlinear control methods have been
proposed and applied to control PMSMs for a higher per-
formance, such as fuzzy logic control [1]–[3], sliding mode
control [4]–[6], dynamic surface control [7], [8], backstep-
ping [9]–[11], Hamiltonian control [12], and other control
methods [13], [14].

In the above control methods, the backstepping approach
has shown its superiority in designing controllers for uncer-
tain systems, especially when the disturbances or uncer-
tainties do not satisfy the matching conditions. At present,
the backstepping method has been successfully applied in
the control system of PMSMs [15]–[17]. But, the state

constraints are ignored on the aforementioned control meth-
ods of PMSMs. The state variables such as rotor angular
velocity, currents, should be constrained by the inherent prop-
erties of the PMSMs. The mathematical model of PMSMs
is nonlinear, including the nonlinear coupling of speed and
current. So it can’t guarantee that the state variables are
always within the desired set only under the control quantity.
For example, the excessive voltage and current affect the
security of the system. Therefore, it is necessary to consider
the full-state constraints [18]–[21] in the control of PMSMs.
To ameliorate the traditional widely used Lyapunov theorem
and satisfy the constraint conditions of the PMSMs system,
some researchers proposed a new kind of Lyapunov func-
tion named barrier Lyapunov function (BLF) [22]–[27] to
restrict the state interval. When the constraint signal tends to
expected conditions, the value of Lyapunov function will tend
to infinity. The constraint variables can be guaranteed in the
given range by BLFs. To the best of our knowledge, there are
no researches on the permanent magnet synchronous motor
(PMSM) with full-state constraints, which motivates us for
this study.

In addition, many adaptive control methods are pro-
posed in [28]–[31] to solve the uncertain nonlinear
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functions, such as the methods based on neural net-
works (NNs) [32]–[34] or fuzzy logic systems (FLS)
[35]–[38], which are introduced to dispose of the nonlinear
systems with parametric uncertainty. The uncertain informa-
tion can be approximated by NNs, which can be employed to
control ill-defined or complex systems. So, the radial basis
function (RBF) NNs are widely used to approximate the
uncertain nonlinearities [39]–[45].

According to the above researches, an adaptive neural
control based on the barrier Lyapunov functions (BLFs) is
proposed for PMSMs drive system. Compared with the extant
accomplishments, the superiorities of the proposed control
can be summarized as follows:

1) In our work, RBF NNs are applied to approximate
unknown nonlinear functions and the BLFs are employed in
PMSMs and the full state variables of PMSMs are restricted
in a bounded compact set in order to improve the property of
the system;

2) Compared with the adaptive backstepping control
in [36] with four adaptive laws, only one adaptive law is
needed for the proposed approach, which will reduce the
online computation burden and make it more suitable for
practical applications.

The rest of the paper is organized as follows. Section 2
describes dynamic mathematical model of PMSMs. Adaptive
neural network controllers are designed for the PMSMs drive
system with full-state constraints in Section 3. Section 4 tes-
tifies the stability of this method. In Section 5, simulation
results are given to demonstrate the effectiveness of the pro-
posed scheme. Ultimately, some conclusions are presented in
Section 6.

II. PROBLEM FORMULATION AND PRELIMINARIES
The dynamicmathematical model of PMSM [16] is described
in the well-known (d − q) frame as:

dθ
dt
= ω,

J
dw
dt
=

3
2
np[(Ld − Lq)id iq +8iq]− Bω − TL ,

Lq
diq
dt
= −Rsiq − npωLd id − npω8+ uq,

Ld
did
dt
= −Rsid + npωLqiq + ud

(1)

where id and iq stand for the d−q axis currents, ud and uq are
the d − q axis voltages for the system control inputs, θ , ω, J ,
TL , B, np,8 and Rs represent the rotor position, rotor angular
velocity, rotor moment of inertia, load torque, viscous friction
coefficient, pole pair, flux linkage and stator resistance, Ld
and Lq are the d − q axis inductance, respectively.
For simplicity, the following symbols are represented as:

x1 = θ, x2 = ω, x3 = iq, x4 = id , a1 =
3np8
2

,

a2 =
3np(Ld − Lq)

2
, b1 = −

Rs
Lq
, b2 = −

npLd
Lq

,

b3 = −
np8
Lq

, b4 =
1
Lq
, c1 = −

Rs
Ld
,

FIGURE 1. Adaptive neural control system block diagram for PMSM.

c2 =
npLq
Ld

, c3 =
1
Ld
. (2)

Using the above symbols, the mathematical model of
PMSM driver system can be rewritten as:

ẋ1 = x2,

ẋ2 =
a1
J
x3 +

a2
J
x3x4 −

B
J
x2 −

TL
J
,

ẋ3 = b1x3 + b2x2x4 + b3x2 + b4uq,

ẋ4 = c1x4 + c2x2x3 + c3ud . (3)

The control orientation is to devise adaptive NNs con-
trollers such that the reference signal xd is tracked well by
the state variable x1. Besides, all the states are constrained in
the compact sets, and xi is required to satisfy that |xi| < kci
where kci > 0 is a constant.

The adaptive neural control system structure for PMSM is
illustrated in Fig.1. The RBF NNs are employed to approx-
imate the continuous function ϕ (z) : Rq → R as ϕ̂ (z) =
W ∗T S (Z ) where Z ∈ �Z ⊂ Rq is the input variable of the
NNs and q is the input dimension, W ∗ =

[
8∗1, . . . , 8

∗
l

]T ,
is the weight vector with l being the NNs node number. The
definition of NN and parameters are shown in [45]. From
[45], we know ||Wi(Si(k))||2 ≤ li, (i = 1, · · · , n).
Assumption 1:There exist positive constantsA0,A1,A2,A3

such that xd and its derivatives satisfy |xd | ≤ A0 < kc1 and∣∣∣x(i)d ∣∣∣ ≤ Ai.
III. ADAPTIVE NEURAL CONTROLLERS DESIGN WITH
FULL-STATE CONSTRAINTS
In this section, adaptive neural controllers are designed for the
PMSM drive system with full-state constraints. The tracking
error variable is defined as z1 = x1 − xd with the reference
signal xd and the variables z2 = x2−α1, z3 = x3−α2, z4 = x4
with αi being a virtual controller.

Define a compact set �z := {|zi| < kbi , i = 1, ..., 4},
which kbi will be specified later.
Step 1: Choose a barrier Lyapunov function

V1 =
1
2
log(

k2b1
k2b1 − z

2
1

) (4)

where kb1 is a positive constant, kb1 = kc1 − A0. The time
derivative of V1 is computed by

V̇1 = Kz1 ż1 = Kz1 (z2 + α1 − ẋd ) (5)
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where Kz1 = z1/(k2b1−z
2
1) and Kzi = zi/(k2bi−z

2
i )(i = 2, 3, 4)

will be applied in the following process. The virtual controller
is constructed as α1 = −k1z1 + ẋd , then

V̇1 = −k1Kz1z1 + Kz1z2. (6)

Step 2: Choose the barrier Lyapunov function as

V2 = V1 +
J
2
log(

k2b2
k2b2 − z

2
2

). (7)

Obviously, V̇2 can be calculated by

V̇2 = V̇1 + JKz2 ż2 = −k1Kz1z1 + Kz1z2
+Kz2 (a1x3 + a2x3x4 − Bx2 − TL − J α̇1). (8)

Remark 1: In the practical system, TL is unknown but its
bound is |TL | ≤ d . Furthermore, −Kz2TL ≤

1
2ε21
K 2
z2 +

1
2ε

2
1d

2

with ε1 being an arbitrary small positive constant.
Then, V̇2 can be written as

V̇2 = −k1Kz1z1 + Kz2 (a1(z3 + α2)+ f2(Z2))+
1
2
ε21d

2

(9)

where f2(Z2) = a2x3x4 − Bx2 − J α̇1 + (k2b2 − z22)Kz1 +
Kz2/2ε

2
1 , Z2 = [x1, x2, x3, x4, xd , ẋd , ẍd ]. By using the RBF

NNs, for any ε2 > 0, there exists a RBF NN W T
2 S2(Z2)

such that f2(Z2) = W T
2 S2(Z2) + δ2(Z2) where δ2(Z2) is the

approximation error satisfying |δ2(Z2)| ≤ ε2.

Kz2 f2(Z2) = Kz2 (W
T
2 S2 + δ2)

≤
‖W2‖

2 K 2
z2S

T
2 S2

2l22
+
l22
2
+
K 2
z2

2
+
ε22

2
. (10)

Construct the virtual controller α2 as follows

α2 = −
1
a1

(k2z2 +
1
2
Kz2 +

Kz2 θ̂S
T
2 S2

2l22
) (11)

where θ̂ is the estimation of θ and θ will be given later.
Substituting (10), (11) into (9) yields

V̇2 ≤ −k1Kz1z1 − k2Kz2z2 + Kz2a1z3 +
1
2
ε21d

2

+
(‖W2‖

2
− θ̂ )K 2

z2S
T
2 S2

2l22
+
l22
2
+
ε22

2
. (12)

Step 3: The barrier Lyapunov function V3 is defined as

V3 = V2 +
1
2
log(

k2b3
k2b3 − z

2
3

). (13)

Then, V̇3 can be computed as

V̇3 ≤ −
2∑
i=1

kiKzizi + Kz3 (f3(Z3)+ b4uq)+
1
2
ε21d

2

+
(‖W2‖

2
− θ̂ )K 2

z2S
T
2 S2

2l22
+
l22
2
+
ε22

2
(14)

where f3(Z3) = b1x3+b2x2x4+b3x2+a1Kz2 (k
2
b3
− z23)− α̇2,

Z3 = [x1, x2, x3, x4, xd , ẋd , ẍd ,
...
x d ]. Similarly, there exists

a RBF NN W T
3 S3(Z3) such that f3(Z3) = W T

3 S3(Z3) +
δ3(Z3) where δ3(Z3) is the approximation error satisfying
|δ3(Z3)| ≤ ε3.

Kz3 f3(Z3) = Kz3 (W
T
3 S3 + δ3)

≤
‖W3‖

2 K 2
z3S

T
3 S3

2l23
+
l23
2
+
K 2
z3

2
+
ε23

2
. (15)

At this present stage, construct the control law uq as

uq = −
1
b4

(k3z3 +
1
2
Kz3 +

Kz3 θ̂S
T
3 S3

2l23
). (16)

Furthermore, employing (15) and (16), (14) becomes

V̇3 ≤ −
3∑
i=1

kiKzizi +
(‖W2‖

2
− θ̂ )K 2

z2S
T
2 S2

2l22

+
(‖W3‖

2
− θ̂ )K 2

z3S
T
3 S3

2l23
+
l22
2
+
ε22

2

+
l23
2
+
ε23

2
+

1
2
ε21d

2. (17)

Step 4: Choose the following barrier Lyapunov function as

V4 = V3 +
1
2
log(

k2b4
k2b4 − z

2
4

). (18)

Afterwards, it is easy to obtain

V̇4 ≤ −
3∑
i=1

kiKzizi +
(‖W2‖

2
− θ̂ )K 2

z2S
T
2 S2

2l22

+
(‖W3‖

2
− θ̂ )K 2

z3S
T
3 S3

2l23
+ Kz4 (f4(Z4)+ c3ud )

+
l22
2
+
ε22

2
+
l23
2
+
ε23

2
+

1
2
ε21d

2 (19)

where f4(Z4) = c1x4 + c2x2x3, Z4 = [x2, x3, x4]. Simi-
larly, there exists a RBF NN W T

4 S4(Z4) such that f4(Z4) =
W T

4 S4(Z4) + δ4(Z4) where δ4(Z4) is the approximation error
contenting |δ4(Z4)| ≤ ε4.

Kz4 f4(Z4) = Kz4 (W
T
4 S4 + δ4)

≤
‖W4‖

2 K 2
z4S

T
4 S4

2l24
+
l24
2
+
K 2
z4

2
+
ε24

2
. (20)

Construct the control law ud as

ud = −
1
c3
(k4z4 +

1
2
Kz4 +

Kz4 θ̂S
T
4 S4

2l24
) (21)

and define θ = max
{
‖W2‖

2 , ‖W3‖
2 , ‖W4‖

2}.
Furthermore, putting (20) and (21) into (19), it can obvi-

ously get that

V̇4 ≤ −
4∑
i=1

kiKzizi +
4∑
i=2

(
l2i
2
+
ε2i

2

)

+

4∑
i=2

(θ − θ̂ )K 2
ziS

T
i Si

2l2i
+

1
2
ε21d

2. (22)
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Step 5: Introduce variable θ as θ̃ = θ̂ − θ . Define a barrier
Lyapunov function

V = V4 +
1
2r
θ̃2. (23)

Thus, differentiating V yields

V̇ ≤ −
4∑
i=1

kiKzizi +
4∑
i=2

(
l2i
2
+
ε2i

2

)
+

1
2
ε21d

2

+
1
r
θ̃

(
−

4∑
i=2

rK 2
ziS

T
i Si

2l2i
+

.

θ̂

)
. (24)

Based on (24), the corresponding adaptive law can be
chosen as below

.

θ̂ =

4∑
i=2

rK 2
ziS

T
i Si

2l2i
− mθ̂ (25)

where r , m, l2, l3, and l4 are positive constants.
Remark 2: Compared with the four adaptive laws (34),

(35), (36) and (37) for the adaptive backstepping control in
[36] which list in Appendix, it can be seen that the proposed
approach of this paper only needs one adaptive law and
less design parameters, which will make it more suitable for
practical applications.
Theorem 1: Suppose system (1) meet Assumption 1 and

consider the reference signals xd . Then, under the virtual
controllers α1, α2 and the adaptive neural controllers uq,
ud , all closed-loop variables are bounded, and the full state
variables don’t exceed their constraint spaces.

IV. STABILITY ANALYSIS
In order to prove that all the signals are bounded in the system,
using (25), (24) becomes

V̇ ≤ −
4∑
i=1

kiKzizi +
4∑
i=2

(
l2i
2
+
ε2i

2

)
+

1
2
ε21d

2
−
mθ̃ θ̂
r
.

(26)

In [22], it has been proved that log k2bi/(k
2
bi−z

2
i ) < z2i /(k

2
bi−

z2i ) in the set |zi| < kbi . Based on the research and utilizing
−θ̃ θ̂ ≤ − θ̃

2

2 +
θ2

2 , we have

V̇ ≤ −
4∑
i=1

ki log(
k2bi

k2bi − z
2
i

)+
4∑
i=2

(
l2i
2
+
ε2i

2

)

−
mθ̃2

2r
+
mθ2

2r
+

1
2
ε21d

2

≤ −aV + b (27)

where a = min
{
2k1,

2k2
J , 2k3, 2k4,m

}
, b =

4∑
i=2

(
l2i
2 +

ε2i
2

)
+

1
2ε

2
1d

2
+

mθ2
2r . According to (27), it can be con-

cluded that log k2bi/(k
2
bi − z2i ) and θ̃ are in constrain

intervals.

Multiplying both sides by eat , (27) is rewritten as
d(V (t)eat )/dt ≤ beat and integrating it over [0, t],
(27) becomes

V (t) ≤
(
V (0)−

b
a

)
e−at +

b
a
≤ V (0)+

b
a
. (28)

By θ̃ = θ̂ − θ , we know that θ̂ is bounded. Since z1 =
x1 − xd and xd ≤ Y0, |x1| < kb1 + Y0 ≤ kc1 . Because z1, ẋd
are bounded, α1 is bounded with |α1| ≤ ᾱ1. Then, according
to z2 = x2−α1, it follows that |x2| < ᾱ1+kb2 < kc2 . Then we
can get |x3| < kc3 and |x4| < kc4 . It can be known from the
definitions of uq, ud in (16) and (21) that uq is a function of z3
and θ̂ , ud is a function of z4 and θ̂ . Then uq, ud are bounded.
Therefore, all the signals of the closed-loop system uq, ud , xi
and θ̂ are bounded and constraint conditions of the states are
satisfied.

Owing to (28), it can be obtained

log k2b1/(k
2
b1 − z

2
1) ≤ 2

(
V (0)−

b
a

)
e−at + 2b/a. (29)

By taking exponentials on both sides of above inequality,

we have k2b1/(k
2
b1
−z21) ≤ e

2
(
V (0)− b

a

)
e−at+2b/a

. Then, it can be

obtained |z1| ≤

√
1− e

−2
(
V (0)− b

a

)
e−at+2b/a

. If V (0) = b/a,
then it holds |z1| ≤

√
1− e−2b/a. If V (0) 6= b/a, it can

be concluded that given any

√
1− e

−2
(
V (0)− b

a

)
e−at+2b/a

>√
1− e−2b/a, there exists T such that for any t > T , it has

|z1| ≤

√
1− e

−2
(
V (0)− b

a

)
e−at+2b/a

. As t → ∞, |z1| ≤√
1− e−2b/a. The z1 can be made arbitrarily small by select-

ing the design parameters appropriately.

V. SIMULATION RESULTS
In order to prove the effectiveness of the control method
proposed in this paper, a simulation of adaptive NNs control
is provided and the parameters of PMSM [36] are chosen as:

J = 0.003798Kg ·m2, B = 0.001158N · m/(rad/s),

8 = 0.1245Wb, Ld = 0.00285H, Lq = 0.00315H,

np = 3, Rs = 0.68�.

Take the TL as:

TL =
{
1, 0 ≤ t < 2.5,
1.5, t ≥ 2.5

and x1(0) = 0.2, x2(0) = x3(0) = x4(0) = 0 are defined
as the initial condition for the PMSM in the simulation. The
reference signal is selected as xd = sin (5t).
(a). Simulation for the adaptive NNs controllers with full-

state constraints. Considering the system efficiency and con-
trol performance, we select the the design parameters as
k1 = 20, k2 = 30, k3 = 200, k4 = 40, r = 0.01, m = 0.2,
l2 = l3 = l4 = 0.5. Besides, the NNs W T

2 S2(Z2), W
T
3 S3(Z3)

and W T
4 S4(Z4) contain nine nodes with centers spaced in the

interval [−8, 8] and widths being equal to 2.
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FIGURE 2. (a) x1 and xd with full-state constraints. (b) x1 and xd without
full-state constraints.

FIGURE 3. (a) The errors with full-state constraints. (b) The errors without
full-state constraints.

All the states are restricted in |x1| < 2.5, |x2| < 50, |x3| <
25, |x4| < 25. Given the state constraints and initial states
and using the MATLAB to perform the feasibility check,
we obtain the optimal design parameters kb1 = kc1 − A0 =
1.5. kb2 = 20, kb3 = 20, kb4 = 25.

(b). Simulation for the backstepping control method with-
out full-state constraints. The design parameters are selected

FIGURE 4. (a) uq with full-state constraints. (b) uq without full-state
constraints.

FIGURE 5. (a) ud with full-state constraints. (b) ud without full-state
constraints.

as k1 = 20, k2 = 30, k3 = 200, k4 = 40, r1 = r2 = r3 =
0.01, m1 = m2 = m3 = 0.2, l3 = l4 = 0.5.
By using the presented control approach, it can be seen

that the results of simulations are given Figs.2-6, where
Fig.2(a)-Fig.6(a) reveal the control method proposed in this
paper and Fig.2(b)-Fig.6(b) display the backstepping con-
trol method without full-state constraints. Fig.2 shows the

10386 VOLUME 5, 2017
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FIGURE 6. (a) The space of id , iq and ω with full-state constraints. (b) The
space of id , iq and ω without full-state constraints.

trajectories of x1, xd , and these Figs show that the desired
reference signals can be tracked well by the system output.
Fig.3 is the errors of z1, z2, z3, and it can be observed that
Fig.2(a) can make the errors in a smaller range. Fig.4-Fig.5
represent the simulation results of uq and ud , where the
control voltage of Fig.4(b) is larger than normal value in
tracking process. Fig.6 reflects the state parameters of x2,
x3, x4. From the simulation, we know that the controllers
have better robustness to resistance load disturbances and
parameter changes.
Remark 3: From the simulations, it can be clearly seen that

both two kinds of methods can gain good control effects.
Compared the above two sets of simulation results, it is
easily observed that iq of Fig.6(b) is changing in the range of
−100 to 100, exceeding the reasonable range of the current.
In contrast, iq of Fig.6(a) is varying in the range of −2 to 6,
which mean that the proposed method in this paper is more
suitable for practical engineering.

VI. CONCLUSION
An adaptive neural control approach based on the BLFs has
been addressed to improve the property for PMSMs. The
NNs are exploited to approximate the unknown nonlinear
functions. In addition, the state variables are restrained in
a bounded compact set. The raised adaptive neural control
method has resolved the problem of the constrained state
variables, meanwhile, the desired reference signal can be
tracked well by the system output even with the existence
of the parameter uncertainties and load torque disturbance.
Besides, the online computation burden is reduced. The effec-
tiveness and robustness are proved by the simulation results

of the proposed control approach. The proposed scheme can
be applied not only in PMSMs but also for a class of nonlinear
systems. The future research will combine this method with
command filtering and consider the problem of PMSMs with
iron loss.

APPENDIX
The adaptive fuzzy control laws and adaptive laws in [36] are
listed as:

a1 = −k1z1 + ẋd , (30)

α2 =
1
a1

(−k2z2 − z1 + B̂x2 + T̂L + Ĵ ȧ1), (31)

uq =
1
b4

(−k3z3 −
1
2
z3 −

z3θ̂ST3 S3
2l23

), (32)

ud =
1
c3
(−k4z4 −

1
2
z4 −

z4θ̂ST4 S4
2l24

), (33)

.

T̂ L = −r1z2 − m1T̂L , (34)
.

B̂ = −r2z2x2 − m2B̂, (35)
.

Ĵ = −r3z2ȧ1 − m3Ĵ , (36)
.

θ̂ =

4∑
i=2

r4
2l2i

z2i S
T
i Si − m4θ̂ . (37)
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