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ABSTRACT This paper addresses the distributed secure estimation problem over wireless sensor networks
subject to random multichannel jamming attacks. Each sensor’s measurement is divided into ny (the dimen-
sion of measurement signal) components and transmitted via ny relevant wireless channels. The attacker
is an active adversary in the sense that sensors’ measurements through wireless transmission channels
are randomly dropped if the corresponding channels are successfully jammed. By employing a piecewise
homogeneous Markov chain, a sophisticated two-level switching multichannel jamming attack model is
developed. From the perspective of the attacker, this attack model is promising and makes the wireless
channels highly vulnerable, because the attacker can randomly and arbitrarily decide when and where to
launch the attacks. We then focus our attention on the secure estimation of a target signal with the caveat
that some of the measurements can be incomplete induced by the attacks. A system theoretic framework
is then developed to cast the network-based security problem into an H∞ estimation theory problem of
a piecewise homogeneous Markov jump system. Criteria for analyzing H∞ estimation performance and
designing resilient estimators against noises and attacks are also presented. The effectiveness of the proposed
results is illustrated through a military F404 aircraft engine system.

INDEX TERMS Distributed secure estimation, jamming attack, wireless sensor network, piecewise
homogeneous Markov chain, multichannel transmission.

I. INTRODUCTION
Recent advances in hardware and wireless communication
technologies have enabled the development and application
of wireless sensor networks (WSNs) in a widespread areas,
such as military (battlefield surveillance), health (elderly
patient wellness monitoring) and environment (chemi-
cal detection in a contaminated environment). Generally,
a WSN consists of a large number of smart sensor devices
that are spatially deployed either very close to the phe-
nomenon or inside the region of interest [1]. These sensors are
usually powered by finite battery and possess data sensing,
data processing and communication capabilities. As indicated
in [2], a critical issue in WSNs is to design an efficient
distributed collaborative signal processing algorithm to track
a target through noisy and unreliable network environment.
Furthermore, the core part in collaborative signal process-
ing lies in the distributed estimation or filtering, which has

aroused ever-increasing research interest over the past several
years. We refer the reader to [3]–[7] and many references
therein for related work.

The broadcast nature of the wireless transmission medium
renders WSNs vulnerable to various malicious attacks [8].
This is because WSNs rely on deployed energy-constrained
sensors to cooperatively perform an overall task by broad-
casting data with the neighboring sensors. As a result, sen-
sors’ data can be potentially manipulated by cyber attacks.
Typical attacks can be roughly classified as eavesdropping
attacks [9], [10], node capture attacks [8], [11], stealthy
attacks [12], false data injection attacks [13]–[15], denial-
of-service (DoS) attacks, etc. Thereinto, DoS attacks, which
aim to prevent sensors’ data from reaching their destinations,
rendering the data unavailable, have been widely studied in
the literature, see, e.g., [16]–[18]. As a typical DoS technique,
jamming attacks [19]–[21] are well-known threats as they
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disrupt the radio frequencies on the wireless communica-
tion channels and lead to channel congestions [22]. Besides,
from the attacker’s viewpoint, jamming attacks require little
prior knowledge about the system/target and do not need any
special hardware to launch them. Whereas, they seriously
threaten WSNs operating reliably in real time. Hence, how to
assess the trustworthiness of sensors’ data makes the security
a challenging issue in WSNs. Although the study of a jam-
ming attack is not new, its impact on a distributed estimation
protocol is significant due to the fact that the corrupted sensor
data will be propagated and disseminated in an epidemic way
over a WSN [23]. To the best of the authors’ knowledge, the
distributed estimation problem over WSNs in the presence
of random multichannel jamming attacks has not been ade-
quately addressed yet. In contrast to deterministic or constant
jamming, the difficulty may lie in that random multichan-
nel jamming attacks are cost effective as the attackers can
randomly and arbitrarily choose when to launch the attacks
and which specific channels to jam, but also hard to track
and remove by detectors and estimators due to their random
jamming behaviors. Consequently, these attacks pose new
challenges to the WSN-based application development and
make the distributed secure estimation problem much more
complicated, which motivates the present study.

Different from the traditional information theoretic studies
on secure communication which mainly involve the protec-
tion of data, such as adopting frequency hopping or spread
spectrum communication, locating and bypassing the jam-
ming area, rerouting traffic and implementing prioritized
transmission [24], [25], in this paper, we will focus on
investigating the distributed estimation performance under
the random multichannel jamming attacks from the system
theoretic perspective. Unlike most previous studies which are
mainly devoted to passively detecting and eliminating the
malicious attacks [21], we will then develop a distributed
secure estimation framework which pro-actively admits and
utilizes the corrupted sensor measurement.

The main contributions of this work are summarized as
follows: i) A sophisticated two-level switching multichan-
nel jamming attack model will be developed. More specif-
ically, the attack model involves two levels of switching.
At the low level, a Markov chain is introduced to model
random jamming, where the state space of the Markov chain
corresponds to all possible modes of attacks. At the high
level, the variations of the transition probabilities of the
low-level Markov chain fall into two categories: determin-
istic average dwell time switching and stochastic switch-
ing. This provides a sophisticated model for the attacker to
intelligently implement the random jamming without being
easily detected or corrected. We will focus on jamming
attacks in sensor measurement transmission channels. This
is particularly important because sensors need to first mea-
sure the target signal, then compute estimations and further
share their estimations with the neighboring sensors. In other
words, the corrupted sensor measurements will be propagated
among the neighboring sensors; ii) A refined system theoretic

framework to address the distributed secure estimation prob-
lem in the presence of random multichannel jamming attacks
in WSNs will be presented. The WSN-based security prob-
lem will be mapped into an H∞ estimation theory problem
based on the stochastic stability of a piecewise homoge-
neous Markov jump system. Thus, the framework enables
one to study stability and performance analysis issues of
WSNs under such attacks; and iii) Novel criteria for analyz-
ing secure estimation performance and designing distributed
secure estimators will be established. We will analytically
and numerically investigate the impact of the considered two-
level switching multichannel attacks on the estimation per-
formance, and show that under what conditions the resultant
estimation error system will converge even in the presence of
such attacks.

The rest of this paper is organized as follows. In Section II,
the two-level switching multichannel jamming attack model
is presented and the distributed secure estimation problem
is formulated. Section III presents the performance analysis
results on distributed secure consensus estimation in detail.
In Section IV, the design criteria on the existence of desired
distributed attack-mode-and-variation-dependent consensus
estimators are provided. Section V validates the effective-
ness of the proposed distributed secure consensus estimation
method by considering a military aircraft gas turbine engine
system. Finally, Section VI draws a conclusion.

FIGURE 1. A schematic diagram of a distributed secure estimation
problem for target tracking over a wireless sensor network subject to
jamming attacks on measurement transmission channels.

II. PROBLEM FORMULATION
The system considered for a distributed secure estimation
problem of target tracking is composed of N cooperative
sensors and a moving target in a monitoring region over a
WSN, as shown in Fig. 1.

A. NOTATIONS
Throughout the paper, we useRn to denote the n-dimensional
Euclidean space and Rn×m to represent the set of all the real
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n×mmatrices. For symmetric matrices X and Y , the notation
X ≤ Y (respectively, X < Y ) means that X − Y is negative
semidefinite (respectively, negative definite).Pr{·} represents
the occurrence probability of an event. E{·} represents the
mathematical expectation of a stochastic variable. ‖·‖ denotes
the induced matrix 2-norm or the Euclidean vector norm as
appropriate. |·| denotes the absolute value of a scalar.⊗ stands
for the Kronecker product for matrices. diag{·} represents a
diagonal matrix. N denotes the set of nonnegative integers.
I is an identity matrix with an appropriate dimension. Let
asterisk ‘*’ denote a term that is induced by symmetry in
symmetric block matrices. The superscript ‘T ’ denotes the
transpose of a matrix with vectors as a special case. If a
matrix is invertible, the superscript ‘−1’ represents the matrix
inverse. The symbol

∑
denotes the summation of a sequence.

The space of square-summable vector functions over [0,∞)
is denoted as l2[0,∞) and for any w(k) ∈ l2[0,∞), its norm

is given by ‖w(k)‖ =
√∑

∞

k=0 w
T (k)w(k). Matrices, if not

explicitly stated, are assumed to have appropriate dimensions.

FIGURE 2. A typical architecture of a smart sensor with main components
such as sensing unit, processing unit, storage unit, transceiver unit and
power unit.

B. A PRESCRIBED COMMUNICATION TOPOLOGY
In aWSN setting, a group ofN smart sensor nodes are usually
deployed in a monitoring region to cooperatively track the
moving target. A typical architecture of such a smart sensor
device is depicted in Fig. 2. Each of these smart sensors
is equipped with radio transceivers and interconnected via
wireless radio channels. Therefore, each sensor may possess
a limited communication range due to finite power. In other
words, only a subset of sensors can sense the target signal, and
that each sensor is capable of sharing its state estimation with
a limited fraction of sensors in its communication range, see
Fig. 1. The communication topology among these N sensor
nodes over a WSN is modeled by a weighted directed graph
G = (V, E,A) with V = {1, 2, · · · ,N } denoting an index
set of N nodes, E ⊆ V × V representing an edge set of
paired nodes and A = [aij] ∈ RN×N standing for a weighted
adjacency matrix. A directed edge of G is denoted by (i, j),
which means that node i can receive information from node
j or node j can send its information to node i. The adjacency
elements aij associated with the directed edges of the graph
are positive, i.e., aij > 0 ⇔ (i, j) ∈ E . It is assumed that

self-loops are excluded in the graph, i.e., aii = 0, i ∈ V .
Denote Ni = {j ∈ V : (i, j) ∈ E}, then an element of Ni
is called a neighbor of node i. Denote D = diagiN {di} with
di =

∑N
j=1 aij. The Laplacian matrix of the directed weighted

graph G is defined as L = [lij]N×N = D −A.

C. TARGET DYNAMICS
The target motion is described by a discrete-time linear time-
invariant system of the following state-space representation

s(k + 1) = As(k)+ Bw(k), s(0) = s0 (1)

zs(k) = Es(k)+ Fw(k) (2)

for all k ∈ N, where s(k) ∈ Rns is the state of the target
at the k-th time step; w(k) ∈ Rnw belonging to l2[0,∞) is
the exogenous disturbance input; zs(k) ∈ Rnz is the objective
output of the target to be estimated. The objective output zs(k)
can be regarded as an the internal measurement of the target
and is not transmitted through a communication network,
thus it is considered to be secure; s0 is the initial state of the
target; and A,B,E and F are known constant matrices with
appropriate dimensions.

The ideal measurement of the target state signal for sensor
i is given by

ysi (k) = Cis(k), ∀ i ∈ V, (3)

where ysi (k) ∈ Rny is the external measurement output from
the target and needs to be transmitted through a communica-
tion network, thus being vulnerable to cyber attacks; and Ci,
for all i ∈ V , are known constant observation matrices with
appropriate dimensions.

D. A TWO-LEVEL SWITCHING MULTICHANNEL JAMMING
ATTACK MODEL
Sensors in WSNs are often equipped with on-board
processors. After receiving measurement from the target sig-
nal, each sensor runs an estimator to compute a state esti-
mation of the target signal. In most of the existing results,
the measuring of the target is explicitly assumed to be suc-
cessful as long as the target moves within the monitoring
region of a sensor [3], [26], [27], which leads to

ỹi(k) = ysi (k), ∀ i ∈ V (4)

at each time step k , where ỹi(k) ∈ Rny is the input of
estimator i. However, this ideal assumption is not always true
in practice when malicious attacks occur in wireless trans-
mission channels. For example, in presence of DoS attacks,
the transmission of sensor measurement from the target to
remote sensors may be blocked since typical DoS attacks
can jam the channels over a WSN. In this sense, the input
of an estimator and the ideal measurement output may not be
identical.

In the following, we consider the scenario that there is an
attacker which degrades the remote estimation performance
by jamming the wireless measurement channels between the
target and sensors, as shown in Fig. 1. The attacker is an active
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adversary in the sense that the sensors’ measurement will
be passively dropped once the attacker successfully jammed
the wireless channels. Generally, there are three cases after
the attacker launched an attack: Case (i) the sensors’ mea-
surements of the target signal will successfully arrive at
their destinations if the attacker fails to jam the transmission
channels. For example, in some circumstances, the attacker
has to give up jamming certain channels due to a limited
energy budget [16]; Case (ii) the sensors’ measurement of
the target signal will be partially lost if the jamming of
transmission channels is not heavy; andCase (iii) the sensors’
measurement of the target signal will be completely lost if the
transmission channels are severely jammed.

Based on the observations mentioned above, we propose
the following target measurement model on sensor i under
multichannel attacks

ỹi(k) = 3iysxi (k)+ Divi(k), ∀ i ∈ V, (5)

where 3i ∈ Rny×ny are prescribed attack model parameter
matrices by the attacker, ysxi (k) = ysi (k) − yxi (k) and y

x
i (k)

is the output of estimator i which will be defined later.
In (5), the term 3iyxi (k) is introduced to compensate the
effects of malicious attacks against estimation performance
and also plays an important role in successfully achieving tar-
get tracking. Moreover, ỹi(k) is corrupted by a measurement
noise vi(k) ∈ Rnw which belongs to l2[0,∞). For all i ∈ V ,
Di are known constant matrices with appropriate dimensions.
It is assumed that the attack model parameter matrices 3i
have the following diagonal structure

3i = diag{λi,1, λi,2, · · · , λi,ny}, (6)

where λi,p ∈ [0, 1] are prescribed constants, ∀ p =
1, 2, · · · , ny. Obviously, due to its diagonal feature of 3i,
the scenario of multichannel attacks is fully incorporated. For
each index p, the parameter λi,p can be used to character-
ize the transmission status of sensor i’ measurement output
ysxi,p(k) so as to reflect the jamming status of measurement
channel p under the attacks. For example, the case λi,p = 1
corresponds to the ideal transmission of ysxi,p(k), which means
that there is no jamming through channel p and the p-th mea-
surement ysxi,p(k) is successfully delivered to remote estimator
i. When 0 < λi,p < 1, it characterizes the case of partial
transmission of ysxi,p(k). In this case, the measurement channel
p may be slightly congested. If λi,p = 0, however, it reduces
to the worst case of outage of the measurement channel p,
which means that sensor i’s p-th measurement output ysxi,p(k)
is completely lost during transmission.

In practical WSNs environments, to incarnate phenom-
ena such as varying network queues and varying network
loads, a wireless transmission channel usually needs to have
memory or modes [28], [29]. One way to model depen-
dence between different working modes is by letting the
wireless transmission channel be governed by the mode of
an underlying Markov chain. Then the effects of varying
network queues and varying network loads can be mod-
elled by a transition from one mode to another mode of the

Markov chain. In this sense, when the measurement outputs
are transmitted to remote estimators, wireless transmission
channels may possess Markovian characteristics and depend
on each working mode of the current network status. On the
other hand, the strategy of applying multichannel attacks
in (5) is in nature deterministic. Such a deterministic attack
policy may lead to an excess energy consumption of the
attacker while energy constraint is a natural concern for var-
ious types of attackers [16]. Alternatively, the attacker may
randomly decide to jam the wireless channels or to sleep in
order to save the energy. Besides, under a deterministic attack
policy, robust detectors and estimators can be designed to
analyze, detect and handle attacks so that a cunning attacker
should carefully design his attack strategy to deceive detec-
tors and robust estimators [13]. Hence, in the presence of
a smart attacker, some random or more complicated attack
policies may pose major difficulties for remote estimators.
Motivated by these facts, we modify (5) to a sophisticated
target measurement attack model by introducing a random
process {rk , k ≥ 0} as follows

ỹi(k) = 3
rk
i y

sx
i (k)+ Divi(k), ∀ i ∈ V, (7)

where

3
rk
i = diag{λrki,1, λ

rk
i,2, · · · , λ

rk
i,ny} (8)

λ
rk
i,p ≤ λ

rk
i,p ≤ λ

rk
i,p, ∀ i ∈ V; p = 1, 2 · · · , ny (9)

with λ
rk
i,p, λ

rk
i,p ∈ [0, 1] being known constants. In the

sequel, the process {rk , k ≥ 0} is described by a discrete-
time Markov chain and takes values in the finite set R =
{1, 2, · · · ,R} corresponding to all possible modes under
attacks. The mode transition probability matrix (TPM) is
given as 5σk+1 = [πσk+1uv ]R×R and with transition probabil-
ities (TPs) given by:

Pr(rk+1 = v|rk = u) = πσk+1uv , (10)

where πσk+1uv for all u, v ∈ R denotes the TP from mode u
at time k to mode v at time k + 1, and

∑R
v=1 π

σk+1
uv = 1 for

all u ∈ R. A simple illustration of of the proposed random
multichannel attack model (7) is given in Fig. 3.

Analogous to the process {rk , k ≥ 0} which describes the
random and time-varying characteristics of the attack model
parameter matrices 3rk

i , a switching signal {σk , k ≥ 0} is
introduced to consider the TP of {rk , k ≥ 0} to be of time-
varying property. Additionally, {σk , k ≥ 0} is assumed to
take values in a finite set S = {1, 2, · · · , S}. It should be
pointed out that the assumption of time-varying TPs in (10)
is partially motivated by the piecewise homogeneous Markov
chains studied in [30], where the switching signal σk is merely
restricted to be a random process. By taking the variations
of the TP matrix in the finite set S into consideration, the
attacker can neatly implement his attack policy based on
some specific missions. To elaborate this point, the switching
signal {σk , k ≥ 0} is further considered as the following two
categories:
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FIGURE 3. A random multichannel jamming attack model governed by a Markov chain {rk ,k ≥ 0} in measurement
transmission channels, where at attack mode rk = u = 1, measurement through transmission channel 1 is successfully sent to
remote estimator i ; measurement through transmission channel 2 is partially arrived at estimator i ; and measurement
through transmission channel ny is completely lost.

• Deterministic Switching. In this case, {σk , k ≥ 0} is
governed by a high-level deterministic switching signal,
more specifically, a dwell time switching signal. For a
switching time sequence 0 = k0 < k1 < k2 < · · · , σk is
continuous from the right everywhere and may be either
autonomous or controlled [31]. When k ∈ [kp, kp+1),
the σkp -th TP matrix is active and h̄p = kp+1 − kp is
called the dwell time of the switching signal σk between
switching instants kp and kp+1.

• Stochastic Switching. In this case, {σk , k ≥ 0} is
governed by a high-level homogeneous Markov chain.
The TPM of σk is defined as � = [ωhl]S×S with TPs
given by

Pr(σk+1 = l|σk = h) = ωhl,

where ωhl > 0, ∀ h, l ∈ S, denotes the TP from 5h at
time k to 5l at time k + 1 and

∑S
l=1 ωhl = 1 for all

h ∈ S .
Remark 1: Under either deterministic switching or stochas-

tic switching, all the possible cases of 51, 52, · · · , 5S

with TPs πσk+1uv defined in (10) can be encapsulated into a
database with σk being a high-level command signal assigned
by the attacker. At each time step k , the attacker sends a
command σk = h, ∀ h ∈ S to select a TPM 5h so as to
carry out the multichannel attacks in (7). For each individual
measurement channel p, ∀ p = 1, 2, · · · , ny, the attack mode
is determined by the Markov chain rk because the state space
R corresponds to all the possible modes of the multichannel
attacks. Therefore, the attacker can allocate different attack
modes by taking energy budget into account and construct
them into a database indicated by both the Markov chain rk
and the high-level switching signal σk . To emphasize such a
feature, we refer to (7) as a two-level switching multichannel
jamming attack model. The principle of how the attacker
carries out such two-level multichannel jamming attacks is
demonstrated in Fig. 4.

FIGURE 4. Scheme of two-level switching multichannel jamming attacks.

E. DISTRIBUTED
ATTACK-MODE-AND-VARIATION-DEPENDENT CONSENSUS
ESTIMATORS
To estimate the state of the target, sensor i is assumed to run
a consensus-based estimator of the form

xi(k + 1) = Axi(k)+ Girk ,σk x̃i(k)+ K
i
rk ,σk ỹi(k) (11)

yxi (k) = Cixi(k) (12)

zxi (k) = Exi(k), (13)
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where xi(k) ∈ Rns is the state estimation computed by esti-
mator i; x̃i(k) =

∑
j∈Ni

aij(xi(k)− xj(k)) is a state consensus
term of estimator i which guarantees the agreement of the
whole sensor network on estimating the target state signal
over time; ỹi(k) ∈ Rny is the input of estimator i defined
in (7); yxi (k) ∈ Rny is the measurement output of estimator
i; zxi (k) ∈ Rnz represents an estimation of the target output
signal zs(k); the initial condition of estimator i is xi(0) = x0i .
For all rk = u ∈ R; σk = h ∈ S; i ∈ V , Giu,h and K

i
u,h are the

gain matrices to be determined.
Remark 2: Note that the gain matrices Girk ,σk and K i

rk ,σk
in (11) arise from the consensus term x̃i(k) and the local
luenberger-like observer term ỹi(k), respectively. From the
definition of x̃i(k), it is clear that estimator i not only uses
its own state estimation xi(k) but also takes into account state
estimation information xj(k) collected from its all underlying
neighbors in Ni. Thus, sensors in the proposed distributed
estimation framework are capable of cooperatively monitor-
ing the behavior of the target based only on neighbor-to-
neighbor communication, i.e., achieving target tracking in a
fully distributed fashion by using only local information of
a specific sensor and its neighbors. Generally, information
exchanges and intercommunication among a group of sensors
can achieve better tracking accuracy, particularly when there
exist malicious attacks on sensor measurement channels.
From (11), it can be also seen that the proposed estimator i
is not only dependent on attack modes rk but also dependent
on TPM variation modes σk , which renders our distributed
estimators (11) more resilient with regard to security attacks
on sensors’ measurement. In the following, estimators in the
form of (11) are referred to as distributed attack-mode-and-
variation-dependent consensus estimators (DACEs).

F. A DISTRIBUTED SECURE CONSENSUS ESTIMATION
PROBLEM
For sensor node i, ∀ i ∈ V , define a state estimation error
vector exi (k) = s(k) − xi(k) and an output estimation error
vector ezi (k) = zs(k) − zxi (k). Substituting (7) and (12)
into (11) and combining (1), (2) and (13) yield the following
estimation error dynamics

exi (k + 1) = (A− K i
u,h3

u
i Ci)e

x
i (k)+ Bw(k)− K

i
u,hDivi(k)

+Giu,h
∑
j∈Ni

lijexj (k) (14)

ezi (k) = Eexi (k)+ Fw(k). (15)

To simplify subsequent development, we denote ẽx(k) =
[exT1 (k), exT2 (k), · · · , exTN (k)]T , ẽz(k) = [ezT1 (k), ezT2 (k), · · · ,
ezTN (k)]T and ṽ(k) = [vT1 (k), v

T
2 (k), · · · , v

T
N (k)]

T , and let Ã =
IN ⊗A, B̃ = [BT , BT , · · · , BT ]T , C̃ = diag{C1, C2, · · · , CN },
D̃ = diag{D1, D2, · · · , DN }, Ẽ = IN ⊗E , F̃ = [FT , FT , · · · ,
FT ]T , G̃u,h = diag{G1

u,h, G
2
u,h, · · · , G

N
u,h}, K̃u,h = diag{K 1

u,h,
K 2
u,h, · · · , K

N
u,h} and L̃ = L⊗ IN .

For all u ∈ R; i ∈ V , recalling that the attack model
parameter matrices 3u

i in (14) are unknown, to facilitate

further analysis, we define the following matrices

3̂u
i = diag{

λ
u
i,1+λ

u
i,1

2
,
λ
u
i,2+λ

u
i,2

2
, · · · ,

λ
u
i,ny+λ

u
i,ny

2
} (16)

3̌u
i = diag{

λ
u
i,1−λ

u
i,1

2
,
λ
u
i,2−λ

u
i,2

2
, · · · ,

λ
u
i,ny−λ

u
i,ny

2
}. (17)

Then, one has

3u
i = 3̂

u
i + 3̃

u
i (18)

for all u ∈ R; i ∈ V , where 3̃u
i = diag{λ̃ui,1, λ̃

u
i,2, · · · , λ̃

u
i,ny}

and |λ̃ui,p| ≤
λ
u
i,p−λ

u
i,p

2 , ∀ p = 1, 2, · · · , ny. Thus, we have

‖3̃u
i ‖ ≤ 3̌

u
i (19)

for all u ∈ R; i ∈ V . Denote 3u = diag{3u
i , 3

u
2, · · · , 3

u
N },

3̂u = diag{3̂u
i , 3̂

u
2, · · · , 3̂

u
N }, 3̌u = diag{3̌u

i , 3̌
u
2, · · · , 3̌

u
N },

3̃u = diag{3̃u
i , 3̃

u
2, · · · , 3̃

u
N } and ěx(k) = 3̃uC̃ ẽx(k). The

estimation error dynamics (14) and (15) can be rewritten in a
compact form as follows

ẽx(k + 1) = Au,hẽx(k)+Bu,hěx(k)+ B̃w(k)+Du,hṽ(k)

(20)

ẽz(k) = Ẽ ẽx(k)+ F̃w(k), (21)

where Au,h = Ã + G̃u,hL̃ − K̃u,h3̂uC̃ , Bu,h = −K̃u,h and
Du,h = −K̃u,hD̃ for all u ∈ R; h ∈ S .

To proceed with, the following definition with regard to
stochastic stability is recalled to describe the main problem
of this paper more precisely.
Definition 1: System (20) with w(k) ≡ 0 and ṽ(k) ≡ 0 is

said to be stochastically stable if

E

{
∞∑
k=0

‖ẽx(k)‖2|s0,r0,σ0

}
<∞

holds for any initial condition s0, r0 ∈ R and σ0 ∈ S.
To quantify the estimation performance, we introduce the

following quadraticH∞ noise attenuation performance index
as a system performance metric

J∞(w, v) = E

{
1
N

∞∑
k=0

N∑
i=1

‖ezi (k)‖
2

}
− βγ 2

∞∑
k=0

‖w(k)‖2

− (1− β)γ 2 1
N

∞∑
k=0

N∑
i=1

‖vi(k)‖2, (22)

where γ > 0 is a prescribed H∞ performance level and
β ∈ (0, 1) is a weighting factor which explicitly explains
how the external disturbancew(k) and the measurement noise
vi(k) affect estimation performance separately at a different
weighting rate.

Therefore, the distributed secure estimation problem to
be addressed in the paper can now be transformed into an
H∞ consensus estimation problem and can be formulated as
follows: For given scalars γ > 0, β ∈ (0, 1) and λui,p, λ

u
i,p ∈

[0, 1], ∀ u ∈ R, the objective is to design desired DACEs of
the form (11)-(13) such that
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• (Stochastic Stability) Under the two-level multichannel
attack model (7) with parameter matrices given by (8)
and (9), the resultant estimation error system of the
form (20) and (21) with w(k) ≡ 0 and ṽ(k) ≡ 0 is
stochastically stable for any initial condition; and

• (H∞ Noise Attenuation Performance) For all nonzero
w(k), vi(k) ∈ l2[0,∞), ∀ i ∈ V , the resultant estimation
error system of the form (20) and (21) satisfies the
following performance constraint J∞(w, v) < 0 for zero
initial condition.

III. ANALYSIS OF DISTRIBUTED SECURE ESTIMATION
PERFORMANCE
In this section, criteria on secure estimation performance
analysis for the resultant error system (20) and (21) will be
derived. Recalling that a two-level multichannel attack model
is proposed in the preceding section, the subsequent analysis
procedure is divided into two parts based on a deterministic
high-level switching signal {σk , k ≥ 0}, more precisely, the
average dwell time (ADT) switching, and a stochastic high-
level switching signal {σk , k ≥ 0}.

A. DETERMINISTIC HIGH-LEVEL SWITCHING
In this subsection, the variation of the TPMs 51, 52, · · · ,
5S is subject to a typical class of deterministic switching
signal, i.e., the ADT switching. In this case, the number of
switches of the TP matrices in a finite interval is bounded and
the average time between two consecutive switches is not less
than a constant. Note that the concept of ADT was originally
proposed in [32] for continuous-time switched systems. For
ease development, the definition of ADT in the discrete-time
case is recalled as follows.
Definition 2 [31]: For any kT ≥ k0 and any switching

signal σk , where k0 ≤ k < kT , let Nσ (kT , k0) denote
the switching numbers of σk over the interval [k0, kT ).
If Nσ (kT , k0) ≤ N0 + (kT − k0)/Ta holds for N0 > 0 and
Ta > 0, then N0 is called the chatter bound and Ta is called
the ADT.

Then, the aim is to find a class of ADT switching signals
{σk , k ≥ 0} to guarantee the stochastic stability and H∞
performance of the resultant error system (20) and (21).
The corresponding result is presented in the following
theorem.
Theorem 1 For given scalars α, β ∈ (0, 1), γ > 0 and

δ > 1, under the two-level multichannel attackmodel (7) with
parameter matrices given by (8) and (9), where λui,p, λ

u
i,p ∈

[0, 1], ∀ u ∈ R are known scalars, if there exist matrices
Pu,h > 0 of appropriate dimensions and scalars ρu > 0 such
that

Pu,h ≤ δPu,l, ∀ h 6= l (23)

4u,h =

4(1)
u,h 4

(2)
u,h 4

(3)
u,h

∗ −P̃u,h 0
∗ ∗ −NI

 ≤ 0 (24)

for all u ∈ R; h, l ∈ S, where

4
(1)
u,h = diag{4(1,1)

u,h ,−ρuI ,−βγ
2I ,−(1− β)γ 2/NI }

4
(1,1)
u,h = −(1− α)Pu,h + ρuC̃

T 3̌T
u 3̌uC̃

4
(2)
u,h = [P̃u,hAu,h, P̃u,hBu,h, P̃u,hB̃, P̃u,hDu,h]T

4
(3)
u,h = [Ẽ, 0, F̃, 0]T , P̃u,h =

∑
v∈R

πhuvPv,h,

then the resultant estimation error system (20) and (21) is
stochastically stable and achieves a prescribed H∞ perfor-
mance level γ for any switching signal with ADT satisfying

τa > τ ∗a = −
ln(δ)

ln(1− α)
. (25)

Proof: See Appendix A. �

B. STOCHASTIC HIGH-LEVEL SWITCHING
In this subsection, the variation of the TPMs 51, 52, · · · ,
5S is governed by a high-level homogeneous Markov chain
{σk , k ≥ 0}. Without loss of generality, it is assumed that
{σk , k ≥ 0} is independent on fk−1 = σ {r1, r2, · · · , rk−1},
where fk−1 is a σ -algebra generated by {r1, r2, · · · , rk−1}
[30]. The following theorem provides a sufficient condition
to ensure the stochastic stability of the the resultant error
system (20) and (21) with a prescribedH∞ performance level
when the TPMs5h for all h ∈ S are time varying in the sense
of stochastic variation.
Theorem 2 For given scalars β ∈ (0, 1) and γ > 0, under

the two-level multichannel attack model (7) with parameter
matrices given by (8) and (9), where λui,p, λ

u
i,p ∈ [0, 1],

∀ u ∈ R are known scalars, the resultant estimation error
system (20) and (21) is stochastically stable and achieves a
prescribed H∞ performance level γ if there exist matrices
Pu,h > 0 of appropriate dimensions and scalars ρu > 0 such
that

4̌u,h =

 4̌(1)
u,h 4̌

(2)
u,h 4

(3)
u,h

∗ −P̌u,h 0
∗ ∗ −NI

 ≤ 0 (26)

for all u ∈ R; h ∈ S, where

4̌
(1)
u,h = diag{4̌(1,1)

u,h ,−ρuI ,−βγ
2I ,−(1− β)γ 2/NI }

4̌
(1,1)
u,h = −Pu,h + ρuC̃

T 3̌T
u 3̌uC̃

4̌
(2)
u,h = [P̌u,hAu,h, P̌u,hBu,h, P̌u,hB̃, P̌u,hDu,h]T

P̌u,h =
∑
l∈S

ωhl
∑
v∈R

π luvPv,l .

Proof: See Appendix B. �

IV. DESIGN OF DISTRIBUTED
ATTACK-MODE-AND-VARIATION-DEPENDENT
CONSENSUS ESTIMATORS
In this section, criteria for designing desired DACEs of the
form (11) will be presented when the TPMs 51, 52, · · · ,
5S governed by {σk , k ≥ 0} are time-varying in the sense
of deterministic variation and stochastic variation, respec-
tively. The attack-mode-and-variation-dependent estimator
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gain parameters Giu,h and K i
u,h, ∀ i ∈ V; u ∈ R; h ∈ S ,

will be solved out such that the resultant estimation error
system (20) and (21) is stochastically stable and has a pre-
scribed H∞ performance level.

The following theorem provides a criterion on the exis-
tence of DACEs (11) in the case of deterministic variation.
Theorem 3 For given scalars α, β ∈ (0, 1), γ > 0, δ > 1

and % > 0, under the two-level multichannel attack model
(7) with parameter matrices given by (8) and (9), where
λui,p, λ

u
i,p ∈ [0, 1], ∀ u ∈ R are known scalars, if there exist

matrices Pu,h > 0, Xu,h, Ḡu,h, K̄u,h of appropriate dimensions
and scalars ρu > 0 such that

Xu,h ≤ δXu,l, ∀ h 6= l (27)

4̄u,h =

4(1)
u,h 4̄

(2)
u,h 4

(3)
u,h

∗ %2P̃u,h − %XTu,h − %Xu,h 0
∗ ∗ −NI

 ≤ 0

(28)

for all u ∈ R; h, l ∈ S, where 4̄(2)
u,h = [XTu,hÃ + Ḡu,hL̃ −

K̄u,h3̂uC̃,−K̄u,h,XTu,hB̃,−K̄u,hD̃]
T , then the proposed dis-

tributed secure consensus estimation problem is solvable by
desired DACEs in the form of (11) for any switching signal
with ADT satisfying (25).Moreover, the admissible estimator
gain parameters in (11) can be given by

G̃u,h = X−Tu,h Ḡu,h, K̃u,h = X−Tu,h K̄u,h, ∀ u ∈ R; h ∈ S. (29)
Proof: See Appendix C. �

The following theorem presents a criterion on the existence
of admissible DACEs with the form (11) for the estimation
error system (20) and (21) in the case of stochastic variation
of the TPMs 51, 52, · · · , 5S .
Theorem 4 For given scalars β ∈ (0, 1), γ > 0 and

% > 0, under the two-level multichannel attack model (7)
with parameter matrices given by (8) and (9), where
λui,p, λ

u
i,p ∈ [0, 1], ∀ u ∈ R are known scalars, if there exist

matrices Pu,h > 0, Xu,h, Ḡu,h, K̄u,h of appropriate dimensions
and scalars ρu > 0 such that

4̂u,h =

 4̌(1)
u,h 4̄

(2)
u,h 4

(3)
u,h

∗ %2P̌u,h − %XTu,h − %Xu,h 0
∗ ∗ −NI

 ≤ 0

(30)

for all u ∈ R; h ∈ S, then the proposed distributed secure
consensus estimation problem is solvable by desired DACEs
in the form of (11) with gain parameters given by (29).

Proof:The proof is similar to the counterpart in the proof
for Theorem 3. �
Remark 3 Based on Theorems 3 and 4, the proposed dis-

tributed secure consensus estimation problem can be con-
verted into the following optimization problem

minimize
z

(λ) subject to (27) and (28) (or (30)),

where λ = γ 2 and z is the set of all feasible solutions
from linear matrix inequalities (LMIs) (27) and (28) in Theo-
rem 3 or (30) in Theorem 4. In this case, by solving the above

FIGURE 5. Distributed secure estimation for an F404 engine monitoring
system under cyber attacks.

minimization problem, one can solve out desired resilient
DACEs (11), while guaranteeing the stability and the optimal
H∞ performance level γ =

√
λ of the resultant estimation

error system (20) and (21) under the two-level switching
jamming attacks.

V. AN ILLUSTRATIVE EXAMPLE
In this section, to demonstrate the effectiveness and applica-
bility of the proposed secure consensus estimation method,
the target model is concerned with a military gas turbine
engine, i.e., a GE F404 engine, in operational use with the
RAAF fleet of F/A-18 aircraft [35].

Practically, gas turbine enginesmay be disturbed by uncon-
trolled external forces, such as wind gusts, gravity gradi-
ents, structural vibrations, and sensor noise, which generally
degrade the engine system performance. For example, ran-
dom vibration of aircraft engine systemmay affect the fatigue
life of the engine so that accurate fatigue analysis should be
conducted and the engine may be changed inexpensively at
an early stage if required. Therefore, one of the objectives
in the simulation is to take into account the effects of the
external disturbance modeled by w(k) and sensors’ noise
(measurement noise) indicated by vi(k) when estimation and
assessment of engine condition are performed. On the other
hand, to extract engine condition assessment information,
an on-board engine monitoring system (EMS) is usually uti-
lized [35]. In the following, we consider that the EMS consists
of a group of smart sensors to monitor the engine condition
assessment data. Sensors share their measurements among
themselves through wireless channels for further analyzing
and processing, such as computing estimations of the engine’s
state signal, as illustrated in Fig. 5. In the simulation, 6
interacting sensors are deployed to form a local interaction
network with its topology shown in Fig. 5. Moreover, in a
military environment, sensors are not always available to
receive exact engine condition assessment information due
to the existence of cyber adversaries. Jamming attacks on
wireless transmissions and further sensormeasurement losses
may be present in an F404 engine monitoring system. In this
case, how to provide a secure estimation method to track such
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an aircraft engine system through wireless data transmis-
sions subject to multichannel jamming attacks and noise is
important and necessary. We consider the following
continuous-time linearized model of the F-404 engine origi-
nally presented in [35]

ṡ(t) =

 −1.46 0 0.2480
0.1643 −0.4 −0.3788
0.3107 0 −2.23

 s(t)+
 0.2

0.8
−0.2

w(t),
where s(t) = [s1(t), s2(t), s3(t)]T with s1(t), s2(t) represent-
ing the horizontal position and s3(t) denoting the altitude of
the aircraft, respectively, and w(t) is the external disturbance
input. By the zero-order hold equivalent method with a sam-
ple period h = 0.1sec, a discrete-time model of the engine
system is derived in the form of (1) with

A =

 0.8673 0 0.2022
0.0145 0.9608 −0.0316
0.0259 0 0.8032

 ,B =
 0.0165

0.0789
−0.0177

 .
Other system parameters in (2) and (5) are given as E =
[1 0 1], F = 1, Ci = diag{1 + 0.1i, 1 + 0.1i, 1 + 0.1i},
Di = [1/i, 1/i,−1/i]T , i ∈ V = {1, 2, · · · , 6}.
It is assumed that there are two attack modes in (7), i.e.,

rk = u ∈ {1, 2} and the unknown model parameter matrices
3u
i at each attack mode are given as follows:

• On sensor 1, diag{1, 0.2, 0} ≤ 31
1 ≤ diag{1, 0.5, 0} and

diag{1, 0.2, 1} ≤ 32
1 ≤ diag{1, 0.5, 1};

• On sensor 2, diag{0.1, 1, 0} ≤ 31
2 ≤ diag{0.6, 1, 0} and

diag{0.1, 0.4, 0.2} ≤ 32
2 ≤ diag{0.5, 0.8, 0.6};

• On sensor 3, diag{0, 0.5, 1} ≤ 31
3 ≤ diag{0, 0.8, 1} and

diag{1, 0.3, 0.3} ≤ 32
3 ≤ diag{1, 0.8, 0.5};

• On sensor 4, diag{0, 0.3, 0} ≤ 31
4 ≤ diag{0, 0.7, 0} and

diag{0.6, 0.5, 1} ≤ 32
4 ≤ diag{0.8, 0.9, 1};

• On sensor 5, diag{0.4, 0, 0.2} ≤ 31
5 ≤ diag{0.9, 0, 0.6}

and diag{0.3, 0.2, 0.1} ≤ 32
5 ≤ diag{0.7, 0.4, 0.3}; and

• On sensor 6, diag{1, 0.5, 0} ≤ 31
6 ≤ diag{1, 0.8, 0} and

32
6 = diag{1, 1, 1}.

As can be seen from the above attack model parameter
matrices, the jamming status at mode 1 is more severe than
the one at mode 2 since sensors’ measurements through some
channels may be completely lost due to successful attacks
on those channels. Therefore, the attacker can turn off a few
attacks at mode 2 in order to save the energy. Regarding
how to select a specific attack mode at every time of instant,
the attacker may be based on some prescribed tasks related
to energy issues or even purely carries out random attacks to
deceive detectors and estimators. For simplicity, it is assumed
the high-level switching signal has two modes, i.e., σk = h ∈
{1, 2}. Set β = 0.4 and ρ = 1.

In the case of deterministic variation, applying Theorem 3
with α = 0.01 and δ = 1.02, it is found that the proposed
distributed secure estimation problem is solved by desired
DACEs in the form of (11) for any switching signal {σk , k ≥
0} with ADT satisfying τa > τ ∗a = 1.9703. The optimal H∞
noise attenuation level is given by γmin = 1.6039. In the case

FIGURE 6. Attack modes {rk ,k ≥ 0} and variation modes {σk ,k ≥ 0}.

FIGURE 7. The F404 engine state signal s(k) = [s1(k), s2(k), s3(k)]T and
its estimations xi (k) = [x1

i (k), x2
i (k), x3

i (k)]T , ∀ i ∈ V , on each sensor.

of stochastic variation, applying Theorem 4, we find that the
proposed distributed secure estimation problem is solved by
desired DACEs in the form of (11) with the optimalH∞ noise
attenuation level given by γmin = 1.6026. Letting the external
disturbance and measurement noise on each sensor node be
w(k) = cos2(k)/(1+ (k+1)2) and vi(k) = 2e−0.1iksin(0.4k),
∀ i ∈ V . It can be verified that w(k), vi(k) ∈ l2[0,∞).
Choose the initial conditions s0 = [π/5, π/6, π/8]T and
x i0 = [rand, rand, rand]T , where rand is a random number
satisfying (0, 1). In the sequel, for brevity, only the simulation
under stochastic high-level switching is provided. Applying
the obtained DACEs to the discretized model of the engine
system, Fig. 6 illustrates the evolutions of attack modes rk
and variation modes σk ; Fig. 7 shows the trajectories of
the target state s(k) and state estimations xi(k) on sensors;
while Fig. 8 demonstrates the output estimation errors ezi (k)
on sensors. Hence, it can be seen that the designed DACEs
well estimate the target states, which verifies the effective-
ness of the proposed distributed secure consensus estimation
method.
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FIGURE 8. The output estimation errors ez
i (k) = zs(k)− zx

i (k), ∀ ∈ V ,
on each sensor.

FIGURE 9. Random samples of the actual H∞ performance level γ .

FIGURE 10. Relationship between the weighting factor β and the
resultant optimal H∞ performance level γmin.

We next run additional 100 random simulations on cal-
culating the actual H∞ performance level due to random
switching in the paper, and the simulation results are pre-
sented in Fig. 9. It is seen that the H∞ performance is
always guaranteed. Eventually, by choosing different values
of the weighting factor β, and applying the corresponding
result derived from Theorem 4, we obtain the relationship
between β and the minimal value of the weighting average
H∞ performance level γmin, as illustrated in Fig. 10, from
which it is shown that one can properly select the weighting
factor β to obtain desirable weighting H∞ performance, thus
the introduction of β increases the flexible dimensions in the
solution space for the formulated H∞ optimization problem.

VI. CONCLUSION
The distributed secure estimation problem over wireless
sensor networks subject to random multichannel jamming
attacks has been studied. Each sensor’s measurement has
been divided into multiple components according to the
dimension of measurement signal and then transmitted via
multiple wireless channels. An active adversary has been
present to jam sensors’ measurement transmission channels.

When a specific measurement channel has been successfully
jammed, the corresponding measurement has been dropped
dependent on the jamming status of the channel. Specifi-
cally, a two-level switching attack model has been devel-
oped to capture the random attack strategies through mul-
tiple measurement channels. Then, distributed attack-mode-
and-variation-dependent consensus estimators have been
designedly proposed to achieve secure consensus estimation
for target tracking. Criteria for designing desired distributed
estimators have been also presented to guarantee the stochas-
tic stability of the resultant estimation error system with a
prescribed system performance index. An aircraft gas turbine
engine system has been borrowed to illustrate the effective-
ness of the proposed distributed secure consensus estimation
method.

APPENDIX
A. PROOF OF THEOREM 1
The proof is twofold. In the first part, the stochastic stability
of the resultant error systemwill be proved. In the second part
of the proof, the H∞ performance will be considered.
i) Proof of the stochastic stability. Let w(k) ≡ 0 and

ṽ(k) ≡ 0. Consider a Lyapunov functional candidate for the
system (20) and (21) of the following quadratic form

V (ẽx(k), rk , σk ) = ẽTx (k)Prk ,σk ẽx(k). (31)

Then, from the point (ẽx(k) = ẽx , rk = u, σk = h) for all
u ∈ R and h ∈ S, calculating the forward difference along
the system (20) yields

1V (ẽx , u, h) = E
{
V (ẽx(k + 1), rk+1, σk+1)|ẽx ,u,h

}
−V (ẽx , u, h)

= ẽTx (k)
(
A T
u,hP̃u,hAu,h − Pu,h

)
ẽx(k)

+ 2ẽTx (k)A
T
u,hP̃u,hBu,hěx(k)

+ ěTx (k)B
T
u,hP̃u,hBu,hěx(k). (32)

Since ěx(k) = 3̃uC̃ ẽx(k), we know from (19) that

ěTx (k)ěx(k) = ẽTx (k)C̃
T 3̃T

u 3̃uC̃ ẽx(k)

≤ ẽTx (k)C̃
T 3̌T

u 3̌uC̃ ẽx(k). (33)

Then, we further obtain

ρuẽTx (k)C̃
T 3̌T

u 3̌uC̃ ẽx(k)− ρuěTx (k)ěx(k) ≥ 0, (34)

where ρu > 0, ∀ u ∈ R.
Adding the left-hand side of (34) to (32) and letting θ (k) =

[ẽTx (k), ě
T
x (k)]

T , one has

1V (ẽx , u, h) ≤ θT (k)2u,hθ (k), (35)

where 2u,h = [2(p,q)
u,h ]2×2 is a symmetric block matrix

with its entries given by 2
(1,1)
u,h = A T

u,hP̃u,hAu,h −

Pu,h + ρuC̃T 3̌T
u 3̌uC̃ , 2

(1,2)
u,h = A T

u,hP̃u,hBu,h, and 2
(2,2)
u,h =

BT
u,hP̃u,hBu,h − ρuI .
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Thus, applying Schur complement [33] to (24), it is
straightforward to derive that

1V (ẽx , u, h) ≤ −αẽTx (k)Pu,hẽx(k). (36)

Adding up 1V (ẽx , u, h) from ks to k and taking expecta-
tions, it follows from (36) that

E
{
V (ẽx(k), rk , σk )|ẽx (ks),rks ,σks

}
≤ (1− α)k−ksE

{
V (ẽx(ks), rks , σks )

}
. (37)

Recalling Pu,h ≤ δPu,l , at each switching instant k = ks,
one has

E
{
V (ẽx(ks), rks , σks )

}
≤ δE

{
V (ẽx(ks), rks , σk̃s )

}
. (38)

Combining (37) and (38) yields

E
{
V (ẽx(k), rk , σk )|ẽx (k0),rk0 ,σk0

}
≤ (1− α)k−ksδE

{
V (ẽx(ks), rks , σk̃s )|ẽx (k0),rk0 ,σk0

}
≤ · · · ≤ (1− α)k−k0δNσ (k,k0)E

{
V (ẽx(k0), rk0 , σk0 )

}
≤ (1− α)k−k0δN0+

k−k0
τa E

{
V (ẽx(k0), rk0 , σk0 )

}
= δN0e(k−k0)(ln(1−α)+

ln(δ)
τa

)E
{
V (ẽx(k0), rk0 , σk0 )

}
. (39)

If (25) holds, then we have ln(1 − α) + ln(δ)
τa

< 0, i.e.,
eln(1−α)+ln(δ)/τa < 1. Denote ε = eln(1−α)+ln(δ)/τa and η =
δN0 . Then, (39) can be rewritten as

E
{
V (ẽx(k), rk , σk )|ẽx (k0),rk0 ,σk0

}
≤ ηεk−k0E

{
V (ẽx(k0), rk0 , σk0 )

}
. (40)

Therefore, it follows form (40) that

E


Nσ (kT ,k)∑
k=0

V (ẽx(k), rk , σk )|ẽx (k0),rk0 ,σk0


≤ η(1+ ε + · · · + εNσ (kT ,k))V (ẽx(k0), rk0 , σk0 )

=
η(1− εNσ (kT ,k)+1)

1− ε
V (ẽx(k0), rk0 , σk0 ). (41)

Noting that ε ∈ (0, 1), thus one has

lim
kT→∞

E


Nσ (kT ,k)∑
k=0

V (ẽx(k), rk , σk )|ẽx (k0),rk0 ,σk0


≤

η

1− ε
V (ẽx(k0), rk0 , σk0 ). (42)

On the other hand, recalling that V (ẽx , u, h) =

ẽTx (k)Pu,hẽx(k), it is easy to obtain

lim
kT→∞

E


Nσ (kT ,k)∑
k=0

V (ẽx(k), rk , σk )|ẽx (k0),rk0 ,σk0


≥ lim

kT→∞
E


Nσ (kT ,k)∑
k=0

φ‖ẽx(k)‖2|ẽx (k0),rk0 ,σk0

, (43)

where φ = minu∈R,h∈S (λmin(Pu,h)).

Together with (42) and (43), we have

lim
kT→∞

E


Nσ (kT ,k)∑
k=0

‖ẽx(k)‖2|ẽx (k0),rk0 ,σk0


≤

η

φ(1− ε)
V (ẽx(k0), rk0 , σk0 ) <∞. (44)

Following Definition 1, the resultant estimation error system
with w(k) ≡ 0 and ṽ(k) ≡ 0 is stochastically stable.
ii) Proof of the H∞ noise attenuation performance. For all

nonzero w(k), vi(k) ∈ l2[0,∞), ∀ i ∈ V , we denote J̃ (ks) =
1
N ẽ

T
z (ks)ẽz(ks)−βγ

2wT (ks)w(ks)− (1−β)γ 2/NṽT (ks)ṽ(ks).
Similar to the discussion in the first part of the proof, it is

not difficult to derive from (24) that

1V (ẽx(k), rk , σk )+ E
{
J̃ (k)

}
≤ −αẽTx (k)Pu,hẽx(k). (45)

Then, we have

E
{
V (ẽx(k + 1), rk+1, σk+1)|ẽx ,u,h

}
≤ (1− α)E {V (ẽx(k), rk , σk )} − E

{
J̃ (k)

}
. (46)

Therefore, for any σk = h ∈ S, summing up (46) from k0
to k yields

E
{
V (ẽx(k), rk , h)|ẽx (k0),rk0 ,h

}
≤ (1− α)k−k0E

{
V (ẽx(k0), rk0 , h)

}
−

k−1∑
q=k0

(1− α)k−q−1E
{
J̃ (q)

}
. (47)

Under zero initial condition, one has that E{V (ẽx(k0),
rk0 , h)} = 0 and E{V (ẽx(k), rk , h)|ẽx (k0),rk0 ,h} ≥ 0. Thus,
we obtain

∞∑
k=k0

k−1∑
q=k0

(1− α)k−q−1E
{
J̃ (q)

}
≤ 0, (48)

which means that
∑
∞

q=k0 J̃ (q) < 0. After simple computa-
tion, it is easy to find that J∞(w, v) < 0 holds for a guaranteed
H∞ performance level γ . This completes the proof. �

B. PROOF OF THEOREM 2
Consider that the Lyapunov functional candidate has the
same form of (31). Emanating from the point (ẽx(k) = ẽx ,
rk = u, σk = h) for all u ∈ R and h ∈ S, we have

1V (ẽx , u, h) = E
{
V (ẽx(k + 1), rk+1, σk+1)|ẽx ,u,h

}
−V (ẽx , u, h)

= ẽTx (k + 1)P̌u,hẽx(k + 1)

− ẽTx (k)Pu,hẽx(k). (49)

Similar to the proof for Theorem 1, we first prove the
stochastic stability and let w(k) ≡ 0 and ṽ(k) ≡ 0. Then,
according to (20) and (34), one can get

1V (ẽx , u, h) ≤ ẽTx (k)(A
T
u,hP̌u,hAu,h + ρuC̃T 3̌T

u 3̌uC̃

−Pu,h)ẽx(k)+ 2ẽTx (k)A
T
u,hP̌u,hBu,hěx(k)
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+ ěTx (k)(B
T
u,hP̌u,hBu,h − ρuI )ěx(k)

= θT (k)2̌u,hθ (k), (50)

where θ (k) = [ẽTx (k), ě
T
x (k)]

T and 2̌u,h = [2̌(p,q)
u,h ]2×2 is a

symmetric block matrix with its entries given by 2̌(1,1)
u,h =

A T
u,hP̌u,hAu,h−Pu,h+ρuC̃T 3̌T

u 3̌uC̃ , 2̌
(1,2)
u,h =A T

u,hP̌u,hBu,h,
and 2̌(2,2)

u,h = BT
u,hP̌u,hBu,h − ρuI . By virtue of Schur

complement, it can be seen from (26) that 2̌u,h < 0. Thus,
one has 1V (ẽx(k), rk , σk ) < 0. Then, following a similar
pattern of the proof of [34, Th. 1], it can be shown that

E
{
∞∑
k=0
‖ẽx(k)‖2|s0,r0,σ0

}
< ∞. By Definition 1, it can be

concluded that the resultant error system (20) is stochastically
stable.

Next, we establish the H∞ performance for the system
(20) and (21) in the case of nonzero w(k), vi(k) ∈ l2[0,∞),
∀ i ∈ V . Denote J̃ (k) = 1

N ẽ
T
z (k)ẽz(k)−βγ

2wT (k)w(k)−(1−
β)γ 2/NṽT (k)ṽ(k).

Then, we have

1V (ẽx(k), rk , σk )+ J̃ (k) ≤ θ̌T (k)2̃u,hθ̌ (k), (51)

where θ̌ (k) = [ẽTx (k), ě
T
x (k),w

T (k), v̌T (k)]T and 2̃u,h =

[2̃(p,q)
u,h ]4×4 is a symmetric block matrix with its entries given

by 2̃(1,1)
u,h = A T

u,hP̌u,hAu,h − Pu,h + ρuC̃T 3̌T
u 3̌uC̃ + 1

N Ẽ
T Ẽ ,

2̃
(1,2)
u,h = A T

u,hP̌u,hBu,h, 2̃
(1,3)
u,h = A T

u,hP̌u,hB̃, 2̃
(1,4)
u,h =

A T
u,hP̌u,hDu,h, 2̃

(2,2)
u,h = BT

u,hP̌u,hBu,h − ρuI , 2̃
(2,3)
u,h =

BT
u,hP̌u,hB̃, 2̃

(2,4)
u,h = BT

u,hP̌u,hDu,h, 2̃
(3,3)
u,h = −βγ 2I +

B̃T P̌u,hB̃ + 1
N F̃

T F̃ , 2̃(3,4)
u,h = B̃T P̌u,hDu,h and 2̃(4,4)

u,h =

−
(1−β)γ 2

N I +DT
u,hP̌u,hDu,h. By Schur complement, it can be

readily seen that 2̃u,h < 0 is equivalent to 4̌u,h < 0 in (26).
Thus, one has

J̃ (k) < −1V (ẽx(k), rk , σk ). (52)

Summing up (52) from k = 0 to k = kT , where
kT →∞, under zero initial condition thatE{V (ẽx(0), r0, σ0)} =
0 and E{V (ẽx(k), rk , σk )|ẽx (0),r0,σ0} ≥ 0, we finally obtain∑
∞

k=0 J̃ (k) < 0, which means that J∞(w, v) < 0 holds. This
completes the proof. �

C. PROOF OF THEOREM 3
Preforming a congruence transformation to (24) by
diag{I , P̃−1u,hXu,h, I } and letting Ḡu,h = G̃u,hXu,h and K̄u,h =
K̃u,hXu,h, it is straightforward to have (28) where %2P̃u,h −
%XTu,h−%Xu,h is replaced by−%X

T
u,hP̃

−1
u,h%Xu,h. Recalling that

(Xu,h − %P̃u,h)T P̃
−1
u,h(Xu,h − %P̃u,h) ≥ 0 (53)

for all % > 0. Obviously, (53) can be rewritten as

−XTu,hP̃
−1
u,h%Xu,h ≤ %

2P̃u,h − %XTu,h − %Xu,h, (54)

which implies (28). Furthermore, (27) ensures (23) for all
h 6= l; u ∈ R; h, l ∈ S. On the other hand, it is seen from (28)
that %2P̃u,h − %XTu,h − %Xu,h < 0. In other words, Xu,h > 0,
thus, (29) is verified. This completes the proof. �
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