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ABSTRACT A reliable wireless sensor network (WSN) is defined as a network that functions satisfactorily,
in terms of both its coverage and connectivity to the sink(s), throughout its intended mission time. Deploying
reliable WSNs is especially important for critical Internet of Things (IoT) applications, such as industrial,
structural health-monitoring, and military applications. In such applications, failure of the WSN to carry
out its required tasks can have serious effects, and hence, cannot be tolerated. However, the deployment of
reliable WSNs is a challenging problem. This is primarily attributed to the fact that sensor nodes are subject
to random failures due to different factors, such as hardware failures, battery depletion, harsh environmental
conditions, and so on. In this paper, the problem of deploying a WSN with a specified minimum level
of reliability at a minimum deployment cost is addressed. This problem is coined the minimum cost
reliability constrained sensor node deployment problem (MCRC-SDP). The MCRC-SDP is proved to be an
NP-Complete. An ant colony optimization algorithm coupled with a local search heuristic is proposed as a
solution. Extensive experimental results demonstrate the effectiveness of the proposed approach in finding
high-quality solutions to the problem.

INDEX TERMS Wireless sensor networks, sensor node deployment, network reliability, ant colony
optimization, greedy heuristic, local search.

I. INTRODUCTION
Over the past decade, rapid advances in the fabrication of
wireless Sensor Nodes (SNs) have broadened the range of
applications of Wireless Sensor Networks (WSNs) to include
residential, industrial, commercial, healthcare and military
applications. As a result, WSNs have become one of the
key technologies for realizing the Internet of Things (IoT)
concept, playing the pivotal role of detecting events and mea-
suring physical and environmental quantities of interest [1].
It is currently estimated that the WSN market will grow to
$1.8 billion by 2024 [2]. Some of the important IoT appli-
cations place stringent reliability requirements on the WSN.
For example, reliability of the WSN is considered one of
the most essential attributes for industrial applications [3].
In such applications, the failure of the network to carry out
its required tasks can have serious effects and hence cannot
be tolerated.

A reliableWSN is defined as a network that functions sat-
isfactorily, in terms of both its coverage of the targeted Region
of Interest (RoI) and its connectivity to the sink(s), throughout

its intended mission time. In other words, the WSN pro-
vides a connected cover of the targeted RoI throughout its
mission time. The mission time for a WSN is application-
dependent and can either be the intended lifetime of the
network or the time interval between regular network mainte-
nance operations. However, the deployment of reliableWSNs
is a challenging problem. This is primarily attributed to the
fact that SNs are subject to random failures due to dif-
ferent factors, such as hardware failures, battery depletion,
harsh environmental conditions, etc. [4]. Hence, to guarantee
the reliable operation of a WSN during its intended mis-
sion time, the presence of redundant SNs in the network
becomes essential. However, for many applications for which
SNs are equipped with expensive hardware, minimizing the
total deployment cost remains a primary concern. There-
fore, the level of SN redundancy in the WSN must be care-
fully quantified, such that the network meets the minimum
reliability requirements imposed by the application while
avoiding an unnecessary increase in the network deployment
cost.
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Reviewing the literature on the topic of WSN deployment
reveals that there is a considerable amount of research on
the problem of minimizing the deployment cost of WSNs
under different assumptions and for different types of applica-
tions [5]. This problem is formulated as a constrained combi-
natorial optimization problem, where the objective function
is the network deployment cost and the constraints are that
the deployed network meets the application’s coverage and
connectivity requirements under the given assumptions. This
optimization problem has been proven to be NP-Complete
even under ideal assumptions [6]. A large number of stud-
ies [7]–[14] have proposed different algorithms to solve this
problem, i.e. to find a connected cover of the targeted RoI
that is cost-optimal. However, the functionality of a WSN
deploymentwhich consists of a single cost-optimal connected
cover cannot be guaranteed throughout a given network mis-
sion time. This is because, by definition, a cost-optimal con-
nected cover has no or little SN redundancy, and hence the
occurrence of SN failures during the network mission time
will compromise the functionality of the network in terms of
coverage and/or connectivity.

Recent studies have addressed WSN fault-tolerance in
conjunction with SN deployment e.g. [15]–[18]. In [15], the
authors address the problem of Grid-based Coverage with
Low-cost and Connectivity-guarantee (GCLC). They pro-
pose an Ant Colony Optimization (ACO) algorithm which
attempts to find cost-optimal connected covers of a grid-
based RoI. The proposed ACO also attempts to alleviate the
energy-hole problem, which is the problem of fast energy
depletion of SNs near the sink node. For this, the proposed
ACO may add redundant SNs (near the sink node) to a cost-
optimal connected cover based on a simple SN energy load
metric. The study in [15] is extended in [16], where the
proposed ACO is coupled with a deterministic algorithm. The
proposed deterministic algorithm adds one or more redun-
dant SNs to a cost-optimized connected cover to avoid the
energy-hole problem around any heavily loaded SN. How-
ever, besides assuming grid-based RoIs only, both studies
do not consider the fact that SN failures may occur due to
factors other than energy depletion such as random hardware
failures. That is, the failure of any of the SNs which are
not heavily loaded in the proposed deployment strategies
will still compromise the functionality of the WSN in terms
of coverage and/or connectivity. The study in [17] focuses
on finding cost-optimal k-coverage regular patterns for SN
deployment for 4 ≤ k ≤ 9. The authors propose a frame-
work to generate cost-optimal regular deployment patterns
from regular tessellations of a 2-D plane. There are several
limitations to this study. First, connectivity is not addressed
as part of the WSN functionality. Second, the results are
only applicable to area coverage and not to target coverage
which is the type of coverage required in many WSN appli-
cations (i.e. industrial monitoring). Finally, the study assumes
that SNs can be deployed in regular patterns, which in turn
means that an SN can be deployed on any point within the
RoI. This assumption is invalid for many WSN applications

where some locations/points in the RoI are not accessible or
feasible for SN deployment. The study in [18] proposes a
Genetic Algorithm (GA) which attempts to find cost-optimal
deployments that satisfy k−coverage and m−connectivity.
The authors assume that target coverage is required and that
there are a finite number of locations in the RoI where an SN
can be deployed. However, the study does not explicitly con-
sider the reliability of the network as a deployment objective
and hence does not link the deployment cost with the expected
failure rates of the SNs used in deployment.

Therefore in order to deploy cost-efficient reliable WSNs,
it is important to use a deployment strategy that considers
network reliability explicitly as a design requirement while
ensuring that the deployment cost is minimized. Consider-
ing the reliability requirement offers a method to predict
the level of SN redundancy required to maintain the WSN
functionality (in terms of both its coverage of the RoI and
its connectivity to the sink node) throughout its mission time
based on the failure rates of its constituent SNs. To the best
of our knowledge, considering WSN reliability explicitly as
a design requirement for deployment in conjunction with
cost-minimization has not been addressed before in the WSN
literature.

Devising this deployment strategy is the main objective of
this paper. To achieve this objective, the ability to measure the
reliability of a given WSN is required, i.e. a reliability metric
is required. Recent studies have proposed different reliability
metrics for WSNs subject to random SN failures [19]–[21].
In [19], the authors present a reliability metric for message
delivery in WSNs. The proposed metric is derived for WSNs
of a specific clustered configuration, where each cluster is
assumed to monitor a specific target location in the RoI.
They define the reliability of message delivery between a sink
node and a given cluster as the probability that there exists a
functional multi-hop wireless path between the sink node and
at least one operational SN in that cluster. In [20], the authors
propose a reliability metric for WSNs using a combinatorial
approach [22]. They adopt the practical assumption that the
WSNs can have an arbitrary configuration where SNs can
monitor multiple target locations in the RoI and that each
target location can be monitored by multiple SNs. However,
they define the network functionality in terms of the degree of
target coverage only. Connectivity of SNs with a designated
sink node is not considered. The study in [21] extended the
reliability metric proposed in [20] by redefining network
functionality to include the connectivity between SNs and the
sink node.

In this paper, we focus on the problem of deploying a
WSN that meets a specified minimum level of reliability (as
required by the application at hand) defined over a given
mission time in such a way that results in the minimum
network deployment cost. We coin this problem the Mini-
mum Cost Reliability-Constrained Sensor Node Deployment
Problem (MCRC-SDP). We mathematically formulate the
MCRC-SDP as a combinatorial optimization problem and
prove that it is NP-Complete. Based on the promising
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performance of ACO coupled with Local Search (LS) heuris-
tics in solving complex combinatorial optimization prob-
lems [23]–[25], we propose an ACO-based approach to solve
our deployment problem. ACO is a metaheuristic optimiza-
tion approach in which a group or ‘‘colony’’ of artificial
agents or ‘‘ants’’ cooperate using the concept of stigmergy
(i.e. the indirect communication between the artificial ants
mediated by their environment in the form of a chemical
called pheromone) to find high quality solutions to intractable
combinatorial optimization problems. To measure the relia-
bility of the network, we adopt the reliability metric proposed
in [20] with the extended functionality definition in [21],
which includes both the coverage and connectivity aspects
of the network and is suitable for any arbitrary configuration
of the network. To the best of our knowledge, the proposed
algorithm is the first algorithm to solve the MCRC-SDP.

The rest of this paper is organized as follows. In Section II,
the MCRC-SDP is formally defined. The proposed ACO-
based approach for solving the stated problem is proposed
in Section III. In Section IV, the experimental results are
presented and discussed. Finally, the paper is concluded in
Section V.

II. PROBLEM DEFINITION
In this section, the MCRC-SDP is formally defined as a
combinatorial optimization problem. We start by defining the
WSN model in Section II.A. We then present the adopted
WSN reliability metric in Section II.B. Finally, we math-
ematically formulate the MCRC-SDP and prove that it is
NP-Complete in Sections II.C – II.D, respectively.

A. WIRELESS SENSOR NETWORK MODEL
We assume that the RoI is modeled as a two-dimensional area
in which there is a finite set of locations that require some
form of monitoring (e.g. motion, image...etc.) using static
SNs. These locations are called target points and they repre-
sent the vital locations or assets that require monitoring in the
RoI. We denote the set of target points T =

{
t1, t2, . . . , t|T |

}
.

We assume that there is a finite set of possible deployment
locations for SNs, which we call deployment points, at which
SNs may be deployed. This assumption is valid for most
criticalWSN applications, where the topology or layout of the
targeted RoI is known prior to the WSN deployment. Hence,
careful examination of that RoI yields a finite set of feasible
possible deployment locations, i.e. deployment points. We
denote the set of deployment points D =

{
d1, d2, . . . , d|D|

}
.

All SNs available for deployment are assumed to be able
to communicate wirelessly and have the same fixed commu-
nication range denoted by rc. Sensed data acquired by the
deployed SNs are relayed to a sink node with an arbitrary
fixed position in the RoI denoted by d0.

B. WIRELESS SENSOR NETWORK RELIABILITY METRIC
As discussed in Section I, all types of SNs are prone to
random failures during the network mission time, denoted
by T, due to a variety of factors. Accordingly, each SN can be

modeled as a two-state device, where the states are on and off.
An SN in the on state is functional in terms of both sensing its
surrounding environment (i.e. coverage) and communicating
wirelessly with its neighbors (i.e. connectivity). On the other
hand, an SN in the off state is assumed to have failed perma-
nently in terms of both its coverage and connectivity.

Let the set of deployed SNs in a WSN be denoted by
S={dk}, k ∈ [1, 2, . . . , |D|]. The set S={dk} is a connected
cover of a given set of target points T , where S ⊆ D and
dk ∈ S are the deployments points where SNs are actually
deployed. Similar to [19]–[21], we assume that each deployed
SN, denoted by its deployment location dk , is characterized
by a failure probability denoted by λk . This failure probability
is equal to the probability that a given SN dk will fail during
T, i.e. the probability that the state of dk will change from
on to off during T. This probability can be estimated for a
given T using the reliability function of a given SN type,
which is in turn modeled using rigorous reliability testing
techniques and/or gathering empirical data on the used SN
type [26], [27].

Following the combinatorial approach [22] in evaluating
reliability adopted in [20] and [21], the reliability of a given
WSN S, which is the probability that the WSN remains
functional during T, by can be expressed as follows:

R(S) =
∑

X⊆S
[f (X) ∗ Prob(X)], (1)

where X is a given state of the network and f (X) is the net-
work structure function value at that given state. The network
state X is defined as the subset of SNs in S that fail during T.
Assuming that SNs fail independently, the probability of a
given network state X is given by:

Prob (X) =
∏
dk∈X

λk ∗
∏

dk∈(S−X)

(1− λk) (2)

On the other hand, the network structure function f (X) is
defined as the binary function that denotes whether the WSN
is functional at a given network state X (f (X) = 1), or not
(f (X) = 0). In this paper, we adopt the network functionality
definition in [21], which assumes that the WSN is functional
at a given state X if the following two conditions are met:

1. Each target point t` ∈ T , ` = 1, . . . , |T | is within
the coverage range of at least one functional SN. Let
Y `(X) be the set of functional SNs covering the target
point t`. Accordingly, this condition can be expressed
as, |Y `(X)| 6= 0,∀` = 1, . . . , |T | where Y `(X) ⊆
(S− X).

2. In each set Y `(X), there is at least one SN dk ∈ Y `(X)
that has at least one single- or multi-hop path to the
sink node, dsink . This implies that the SNs along this
path are functional. Hence, the events detected at any
target point t` can be relayed back to the sink node. Let
the set Z`(X) be the set of SNs {dk} ∈Y `(X) that are
connected to the sink node. Hence Z`(X) ⊆ Y `(X).
This condition can be expressed as

∣∣Z`(X)∣∣ 6= 0,
∀` = 1, . . . , |T |.
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In [20], the authors present an efficient depth-first-search-
based algorithm to calculate the above WSN reliability met-
ric. The proposed algorithm searches for the network states
that correspond to f (X) = 1, i.e. the tolerable SN failure
combinations. The proposed algorithm significantly reduces
the required number of network structure function evalu-
ations needed to calculate the reliability of a given WSN
deployment. For further details on the reliability metric and
proposed algorithm, we refer the reader to [20]. In this paper,
we use the reliability metric proposed in [20] coupled with
the above network functionality definition to evaluate the
reliability of a WSN deployment.

C. THE MINIMUM COST RELIABLITY CONSTRAINED
SENSOR NODE DEPLOYMENT PROBLEM
As discussed earlier in Section I, this paper addresses the
problem of deploying aWSN that meets a specifiedminimum
level of reliability, denoted by Rmin, defined over a given
mission time at the minimum network deployment cost. The
reliability requirement of theMCRC-SDP implicitly includes
three sub-requirements. The first two sub-requirements are
the fulfillment of the coverage and connectivity functionality
aspects according to theWSNmodel presented in section II.A
and the network functionality definition presented in
section II.B. The third sub-requirement is that the WSN must
possess a certain level of robustness against the random fail-
ures of its constituent SNs. This robustness, in turn, requires
introducing a certain level of SN redundancy in the network
deployment. However, SN redundancy in a given network can
greatly increase the energy consumption of the network, the
demand on the limited bandwidth and the level of internal
interference [28], assuming that all the deployed SNs are
activated at the same time, thus defeating the purpose of
introducing the redundancy in the first place. Therefore, some
form of SN activity planning is required to increase the fault
tolerance of the WSN without introducing any degradation in
its performance.

As such, we can restate the MCRC-SDP to be the problem
of finding a number of non-overlapping minimal connected
covers of the targeted RoI such that the combined relia-
bility level of these minimal connected covers would meet
or exceed the specified minimum level of reliability Rmin
and the total number of deployed SNs (i.e. the deployment
cost) is minimized. A minimal connected cover is defined
as a connected cover which contains no redundant SNs.
These minimal connected covers are activated in an orthog-
onal manner as follows: a single minimal connected cover
is activated at any given point in time during T while the
SNs belonging to the remaining connected covers are put in
sleep mode. Since there are no redundant SNs in a minimal
connected cover, energy consumption, bandwidth usage and
internal interference are kept at a minimum. This activated
minimal connected cover remains active until its functionality
is compromised due to the expected random failures of its
constituent SNs. At that point, the remaining functional SNs
belonging to this minimal connected cover are put in sleep

mode and another minimal connected cover is activated. This
procedure is continued until either the mission time of the
network T elapses or there are no remaining deployed min-
imal connected covers of uncompromised functionality. The
first event means the WSN deployment remained functional
throughout T while the second event means that the WSN
has failed. According to the statement of the problem, the
probability of the first event is equal to Rmin and that of the
second event is equal to 1− Rmin.
Let S = {S1, S2, . . . ,SN } be the superset of N non-

overlapping connected covers in a given WSN deployment.
For simplicity, we assume here that the WSN is homo-
geneous, i.e. composed of the same type of SNs. The
MCRC-SDP can then be formulated as follows:

min

{
|S| =

N∑
k=1

|Sk |

}
(3)

Subject to:

Sk ⊆ D ∀k = 1, . . .N ,N ≤ NUB (4)

Sk
⋂

Sk ′ = ϕ,∀k, k
′

= 1, . . . ,N , k 6=k
′

, (5)

R (S) = R (S1,S2, . . . ,SN )

= 1−
∏N

k=1
(1− R (Sk)) ≥ Rmin, (6)

8(Sk ) = 0 ∀k = 1, . . . ,N , (7)

The objective function of the MCRC-SDP expressed in (3)
is simply the minimization of the total number of deployed
SNs belonging to all N non-overlapping minimal connected
covers, i.e. |S|, which corresponds to minimizing the total
deployment cost of the network. Equations (4)-(7) express
the constraints of the optimization problem. Equation (4)
constrains all the connected covers to be subsets of D, earlier
defined as the set of possible SN deployment locations in the
targeted RoI. Equation (4) also sets the number of connected
covers N to be less than or equal to NUB, which is defined as
the the upper bound on the number of connected covers for a
givenMCRC-SDP instance, i.e. for a given {T , D} tuple. The
process of estimating this upper bound is detailed in
Section II.D. Equation (5) expresses the disjoint property
imposed on the N connected covers, while equation (6)
expresses the reliability constraint of the problem. In (6), the
total reliability of theWSNdeployment, i.e. ofS, is calculated
in terms of the reliability of the N connected covers assuming
they are activated orthogonally. Finally, (7) further constrains
each of the N connected covers in S to be a minimal con-
nected cover, i.e. to contain no redundant SNs, where 8(Sk )
is a binary function that returns 0 if the connected cover Sk is
a minimal connected cover and 1 otherwise.

Note that if Sk is a minimal connected cover, the only state
of Sk that would correspond to a unity network structure
function (i.e. f (X) = 1) is the state of no SN failures
(i.e. X = ϕ). This is because a minimal connected cover
has no redundant SNs and hence the failure of one or more
SNs would compromise the coverage and/or the connectivity
conditions defined in Section II.B.
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D. UPPER BOUND OF THE NUMBER OF
CONNECTED COVERS N
For a given MCRC-SDP instance, i.e. for a given {T ,D}
tuple, the upper bound for the number of connected covers
(minimal or non-minimal) cannot exceed the upper bound for
the number of covers, i.e. SN sets which meet the coverage
constraint only. Therefore, we can use the upper bound of
covers as the upper bound of the number of connected covers,
which is denoted by NUB. Although finding the maximum
number of covers for a given MCRC-SDP instance is an
NP-complete problem [25], we can estimate the upper bound
of the number covers with the following method. Assume
that all deployment points in D have SNs deployed on them.
Next, find the target point in T that has the least number
of SNs that cover it. We will call this target point a critical
target point. The upper bound for the number of covers,
and hence the upper bound on the connected covers NUB as
well, is therefore equal to the number of SNs covering the
critical target point. This is because a cover of the RoI cannot
provide full coverage of T without providing coverage of the
critical target point. Hence, the maximum number of covers
cannot exceed the number of SNs covering the critical target
point when each cover contains a single SN covering the
critical target point. To illustrate this, Fig. 1 shows an RoI
with T = {t1, t2, t3} and D = {d1, d2, d3, d4, d5, d6}. As can
be observed from the figure, target points t1 and t3 are both
covered by 3 SNs located on deployment points d1, d2, d6
and d2, d3, d5 respectively, while target point t2 is covered by
only two SNs deployed on deployment points {d3 and d4}.
Therefore, t2 is the critical target point and the upper bound
of the number of connected covers NUB for this example is 2.

FIGURE 1. A Region of Interest containing three target points
T =

{
t1, t2, t3

}
and six possible SN deployment points

D = {d1,d2,d3,d4,d5,d6}. Assuming SNs are deployed on all six
deployment points, we find that upper bound for connected covers is
Nmax = 2.

E. CLASSIFICATION OF MCRC-SDP AS
AN OPTIMIZATION PROBLEM
The MCRC-SDP expressed in (3)–(7) is a combinatorial
constrained optimization problem. In this section, we prove
that the MCRC-SDP is NP-complete. To prove that, we start
by considering the decision problem that corresponds to the

MCRC-SDP. We will call this the decision problem the Reli-
ability Constrained SN Deployment Problem (RC-SDP). The
RC-SDP can be expressed as follows:
RC-SDP: given D, T ,NUB (NUB ∈ Z+), Rmin (Rmin ∈

[0, 1]), Does a superset S = {S1, S2, . . . ,SN } ⊆ D exists,
such that the following conditions are true?

1. Sk ⊆ D ∀k = 1, . . .N ,N ≤ NUB
2. Sk

⋂
Sk ′ = ϕ, ∀k, k

′

= 1, . . . ,N , k 6=k
′

;

3. R (S) = 1−
∏N

k=1 (1− R (Sk)) ≥ Rmin;
4. 8(Sk ) = 0 ∀k = 1, . . . ,N .
Theorem 1: RC-SDP is NP
Proof: ∵ It is straightforward to prove that for any given

superset S = {S1,S2, . . . ,SN ⊆ D the problem’s conditions
can be checked in polynomial time to decide if the corre-
sponding answer/output to any given superset S is a YES. The
computational complexity of checking each of the problem’s
conditions is given, in order, as follows:

1. O(|D|), where
∑N

k=1 |Sk | = |S| ≤ |D|;
2. O

(
maxk

{
|Sk |2

})
, k = 1, . . . ,N ;

3. O(maxk
{
|Sk |3

}
);

4. O(maxk
{
|Sk |3

}
)

The computational complexity of checking the third and
fourth conditions is the same since checking whether a
connected cover Sk is minimal or not comes automatically
through calculating its reliability R (Sk). The computational
complexity of calculatingR (Sk) is dictated by the complexity
of the structure function evaluation, which is themost compu-
tationally expensive routine in the search algorithm presented
in [20] and [21]. Checking the two network functionality con-
ditions, i.e. checking the network coverage of the set of target
points T and the connectivity to the sink at a given network
state, has a computational complexity of O(|Sk | ∗ |T |) and
O(|Sk |3), respectively. This gives an overall computational
complexity of O(maxk

{
|Sk |3

}
), where 0 < |Sk | ≤ |D|.

∴ RC-SDP is NP �
Theorem 2: RC-SDP is NP-hard.
Proof: Using the method of restriction, we let NUB = 1

and Rmin = ε � 1. This means that we are looking at
a single connected cover deployment and that any non-zero
value of reliability is acceptable. This restriction converts the
RC-SDP to the problem of deciding whether there exists a
single connected cover S ⊆ D of size/cardinality |S| ≤ |D|
that provides full coverage of T and is connected to the given
sink node. This latter problem has been proved NP-complete
in [29].
∴ RC-SDP is NP-hard �
From theorems 1, 2→ RC-SDP is NP-complete �

III. ANT COLONY OPTIMIZATION BASED APPROACH FOR
DEPLOYING RELIABLE WIRELESS SENSOR NETWORKS
In this section, we present our proposed ACO approach for
solving the MCRC-SDP expressed in (3)–(7). First, we dis-
cuss how theMCRC-SDP is represented as a connected graph
for ACO application, i.e. define the construction graph of
the problem. Then, the ants’ tour construction procedure is
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described, including the ants’ neighborhood definitions and
heuristic information. This is followed by the formulation of
the cost function used for evaluating the quality of the solu-
tions obtained by the ants. We then describe the pheromone
management scheme followed by the LS procedure which we
propose to be coupled with the ACO algorithm to enhance the
quality of the obtained solutions. Finally, we summarize the
steps of the proposed algorithm.

A. CONSTRUCTION GRAPH
In any ACO algorithm designed to solve a given optimization
problem, ants build solutions incrementally by executing ran-
domized walks or tours through a connected graph G(V , E),
where V is the set of the graph’s vertices and E is the set of
all the edges between the vertices in V . Therefore, the first
step in designing an ACO algorithm to solve a given opti-
mization problem is to represent the problem as a connected
graph G(V , E) by defining the sets V and E in terms of the
problem’s variables. For the MCRC-SDP at hand, the ACO
construction graph is identical to the problem’s graph defined
by the set of deployment points D and the location of the
sink node denoted by d0. Hence, V corresponds to the set
of possible deployment points and the sink node location (i.e.
V ≡ {d0,D} = {d0, d1, d2, . . . , d|D|}) and E corresponds
to the set of undirected arcs/links connecting the deployment
points and the sink node in V with each other.

B. TOUR CONSTRUCTION
The ants’ search behavior in a given construction graph is
primarily influenced by a probabilistic transition rule, which
controls how each ant selects its next vertex (i.e. deployment
point) to visit during the construction of its tour (i.e. its solu-
tion to the problem). The probabilistic transition rule is in turn
defined by three elements: the neighborhood definition(s),
the heuristic information used by the ant and the pheromone
trail values between the vertices of the construction graph. In
this section we will discuss the first two elements while the
pheromone management is discussed in Section III.E.

1) BASIC IDEA
Each ant a, a = 1, . . . ,m, starts its tour at the sink node loca-
tion d0, which is an arbitrary location inside the boundaries
of the RoI. Let the solution to the problem at hand which
corresponds to the ant’s tour be denoted by Sa, initialized by
an empty superset, i.e. Sa = ϕ. Ant a then starts constructing
a solution to the problem by consecutively building connected
covers through transitioning among the deployment points in
the construction graph. Let the index of the connected covers
built by ant a be denoted by k , where k = 1 in the beginning
of the ant’s tour. An SN is deployed at each deployment point
visited by ant a and the deployment point is added to the
connected cover that ant a is currently building, denoted by
Sak . The connectivity of Sak to the sink node is maintained in
each ant’s transition by selectively defining the neighborhood
of the ant’s probabilistic transition rule (i.e. the candidate
deployment points selected for the next transition), which

will be discussed in the next sub-section. The building of
Sak concludes when complete coverage of the target points in
set T is achieved. The completed connected cover Sak is then
added to the ant’s solution superset Sa. To check if the ant’s
tour is complete, R(Sa) is calculated using (6) and compared
to the given minimum reliability level Rmin. If R

(
Sa
)
≥ Rmin,

then ant a’s tour is concluded. Otherwise, the index k is
incremented and ant a starts building a new connected cover
through transitioning between the deployments points in the
construction graph, excluding the points belonging to the
connected cover(s) the ant built and added to Sa so far. Ant
a continues building connected covers until R

(
Sa
)
meets or

exceeds Rmin. At this point the solution corresponding to ant
a’s tour is denoted Sa = {Sa1,S

a
2, . . . ,S

a
Na}.

2) HEURISTIC INFORMATION AND
NEIHBOURHOOD DEFINITIONS
At each tour construction step, ant a applies a probabilistic
transition rule to select which deployment point it will visit
next. The probability that ant a, currently at deployment
point di, i = 0, 1, . . . , |D|, will select deployment point
dj, j = 1, 2, . . . |D|, to visit next is given by:

paij =


[τij]α[ηaj ]

β∑
d`∈Na

i
[τil]α[ηa`]

β
, if dj ∈ Na

i

0, otherwise

(8)

where τij is the pheromone trail value between deployment
points di (or sink node if i = 0 at the beginning of the tour)
and dj, ηaj is the heuristic value of adding the deployment
point dj to the connected cover currently being built by ant
a, i.e. Sak , N

a
i is the feasible neighborhood of ant a at its

current position in the construction graph at di, and α and
β are parameters that control the influence of the pheromone
trail values and heuristic information on paij, respectively.

The definition of the feasible neighborhoodNa
i of ant a at

a given current position di depends on whether the next tran-
sition the ant is making is an intra-connected cover transition
or inter-connected cover transition. Ant a makes an intra-
connected cover transition when the current connected cover
its building, i.e. Sak , is not yet complete after the addition of the
deployment point di at which the ant is currently present, i.e.
Sak 6= ϕ. On the other hand, ant a makes an inter-connected
cover transition when its previous transition has completed
Sak but its tour is not yet complete, i.e. R

(
Sa
)
< Rmin. In this

case, the next transition of a is the start of a new connected
cover, i.e. k = k + 1 and Sak = ϕ.
For an intra-connected cover transition, the feasible neigh-

borhood Na
i of ant a at a given current position di is defined

as follows:

Na
i =

{
Na
ieff , Na

ieff 6= ϕ

Na
ifull, Na

ieff = ϕ,
(9)

whereNa
ifull is defined as the set of deployment points within

the communication range rc of any deployment point belong-
ing to Sak . Let the set D

− be the set of deployment points not
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visited so far by ant a in its current tour. The set Na
ifull can

then be expressed as follows:

Na
ifull = {dj ∈ D

−
:

∥∥∥djdj′∥∥∥ ≤ rc, for any dj′ ∈ Sak} (10)

The set Na
ieff , on the other hand, is a subset of deployment

points belonging toNa
ifull that would offer a coverage gain for

Sak , i.e. the addition of any of the deployment points belonging
toNa

ieff to S
a
k would result in the coverage of uncovered target

points inT by Sak . Let the coverage gain of a deployment point
dj ∈ Na

ifull be denoted by gaj . We define the coverage gain gaj
as the number of uncovered target points by Sak that would
be covered if an SN is deployed at dj, i.e. if dj is added to
the current connected cover Sak . Hence, the set Na

ieff can be
expressed as follows:

Na
ieff = {dj ∈ Na

ifull : gaj 6= 0} (11)

For an inter-connected cover transition, on the other hand,
the feasible neighborhood Na

i of ant a at a given current
position di is defined as:

Na
i = Na

sink , (12)

whereNa
sink is defined as the set of deployment points belong-

ing to D− which are within a distance equal to the SN
communication range rc. Note that at the beginning of the
tour, i = 0 and D− = D. Accordingly, we can express Na

sink
as follows:

Na
sink = {dj ∈ D

−
:
∥∥djd0∥∥ ≤ rc} (13)

The neighborhood definitions in (9) and (12) are designed
to achieve two goals. The first goal is to guarantee the con-
nectivity of each cover built by ant a. Since all ants start
their tours at d0, the neighborhood definitions guarantee that
each added deployment point to Sak will be connected to the
sink node via single or multi-hop communication. The sec-
ond goal is to minimize the probability of adding redundant
deployment points to any of the connected covers built by the
ants, i.e. minimize the probability of ants constructing tours
that correspond to infeasible solutions to theMCRC-SDP that
violate the redundancy constraint expressed in (7). This goal
is achieved specifically through the neighborhood definition
in (9). The neighborhood definition restricts the candidate
deployment points for the ant’s next transition to points which
belong to the set Na

ifull and have a non-zero coverage gain,
i.e. Na

ieff . In the case where Na
ieff = ϕ, however, adding a

redundant deployment point to Sak may occur.
The heuristic value of adding deployment point dj to a

current connected cover Sak being built by ant a, denoted by
ηaj , is directly proportional to its coverage gain gaj and is
defined as:

ηaj = gaj + 1 (14)

Equation (14) applies to both types of ant’s transitions,
namely, the intra- and inter-connected cover transitions,
where in the latter case the uncovered target points are the

entire set T , since the current connected cover Sak in this case
is empty, i.e. Sak = ϕ.
ALGORITHM 1 summarizes the ants’ tour construction

procedure.

Algorithm 1 Tour Construction Procedure in the Proposed
ACO Algorithm

Procedure TOUR_CONSTRUCTION (a)
1 Input: D, T , d0, Rmin, λ, τij for i = 0, 1, . . . , |D|, j = 1, 2, . . . , |D|
2 Initialize: Sa = ϕ, R

(
Sa
)
= 0, k = 0,D− = D, ant starts tour at

d0(i = 0)
3 While R(Sa) < Rmin
4 Build a new connected cover: k ← k + 1, Sak = ϕ, Tcov = ϕ
5 While Tcov 6= T (i.e. Sak is not a complete connected cover)
6 IdentifyNa

i using (9) and (12)
7 Calculate coverage gain gj∀dj ∈ Na

i
8 Apply transition rule in (8) to choose next deployment point
9 Update Sak
10 Update Tcov (i.e. update coverage of Sak )
11 End While
12 Update Sa : Sa ← {Sa,Sak }
13 Calculate R(Sak ) and Update R(S

a)
14 Update D− : D− ← D− − Sak
15 End While
16 Output: Sa = {Sa1,S

a
2, . . . ,S

a
Na

, R
(
Sa
)

C. COST FUNCTION
To evaluate the quality of the solution to the MCRC-SDP
corresponding to the tour constructed by ant a, i.e. Sa =
{Sa1,S

a
2, . . . ,S

a
Na}, the following cost function is used:

C(Sa) = ω1

∑Na

k=1
|Sk | + ω2

∑Na

k=1
8(Sk) , (15)

where the first term of the cost function,
∑Na

k=1 |Sk | =∣∣Sa∣∣, represents the total number of deployment points (i.e.
deployed SNs) belonging to the Na connected covers in Sa

multiplied by a constant weight ω1. The second term of the
cost function penalizes every connected cover that contains
redundancy i.e. that is not a minimal connected cover by a
penalty equal to the constant weight ω2.
Since the objective of the MCRC-SDP is to minimize

the total deployment cost of the network, i.e. minimize∑Na
k=1 |Sk | =

∣∣Sa∣∣, the weights ω1 and ω2are set such that the
cost assigned to the solutions follow the following criterion.
All the solutions which meet both the reliability and the
redundancy constraints expressed in (6) and (7), respectively,
have a lower cost than all the solutions that meet the relia-
bility constraint but fail to meet the redundancy constraint,
i.e. solutions that have one or more non-minimal connected
covers. As such, if ω1 is set to unity such that the first term
of the cost function is equal to the total number of deployed
SNs (i.e. the deployment cost), then ω2 must be greater than
|D| (since the maximum value of

∣∣Sa∣∣ is |D|). Accordingly,
we set ω1 = 1 and ω2 = |D| + 1.

D. LOCAL SEARCH PROCEDURE
As discussed earlier, the proposed ACO algorithm for solv-
ing the MCRC-SDP is coupled with an LS procedure that
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helps the algorithm find higher quality solutions to the prob-
lem [23], [24]. In each iteration of the algorithm, after the ants
have completed the construction of their tours/solutions, the
LS procedure is applied to each of the constructed solutions
with the objective of reducing its cost as evaluated by the cost
function in (15). ALGORITHM 2 shows the pseudo code of
the proposed LS procedure.

Algorithm 2 Local Search Procedure for the Proposed Algo-
rithm

Procedure LOCAL_SEARCH
1 Input: Sa =

{
Sa1,S

a
2, . . . ,S

a
Na

}
, C(Sa), R(Sa)

2 Initialize: CLS
(
Sa
)
← C(Sa), SaLS ← Sa, R(SaLS )← R(Sa)

3 Satemp ← SaLS , R(S
a
temp)← R(SaLS )

4 For k = 1, . . . ,Na
5 If 8(Sak ) = 1, i.e. if Sak is not a minimal connected cover
6 Prune Sak until there are no redundant deployment points. Let

pruned Sak be denoted Sakp
7 Update Satemp : S

a
k ← Sakp

8 Update R(Satemp)
9 If R(Satemp) ≥ Rmin
10 Update SaLS :S

a
k ← Sakp. R(S

a
LS )← R(Satemp)

11 CLS
(
Sa
)
← CLS

(
Sa
)
− ω2

12 Else
13 SaLS remains unchanged→ CLS

(
Sa
)
remains unchanged

14 Satemp ← SaLS , R(S
a
temp)← R(SaLS )

15 End If
16 End If
17 End For
18 Output: R(SaLS ),CLS

(
Sa
)

The operation of the LS procedure can be described as
follows. Assuming the LS is applied on the solution Sa =

{Sa1,S
a
2, . . . ,S

a
Na} constructed by ant a, the first step of the

LS procedure is to determine whether any of the connected
covers in Sa violates the redundancy constraint in (7), i.e.
8(Sak ) = 1, for any k = 1, . . . ,Na. If all the connected covers
are minimal connected covers, i.e. Sa is a feasible solution,
the LS procedure returns Sa and its corresponding reliability
R
(
Sa
)
unchanged. On the other hand, if one or more of the

connected covers in Sa have redundant deployment points,
the LS attempts to reduce the cost C(Sa) by converting
these connected covers to minimal connected covers. This
procedure is carried out as follows. For each non-minimal
connected cover Sak , the LS procedure prunes Sak by remov-
ing redundant deployment points. A redundant deployment
point in Sak is a deployment point whose removal from the
connected cover will not compromise its coverage or con-
nectivity. Redundant deployment points can be identified by
examining the tolerable failure combinations produced by the
search algorithm used to calculate R(Sak ) [20].
Let the pruned connected cover be denoted Sakp. The LS

procedure then updates the combined reliability of Sa accord-
ingly (i.e. substitutingR(Sak ) withR(S

a
kp) in (6)). If the updated

combined reliability of Sa exceeds or meets Rmin, the pruned
connected cover Sakp replaces S

a
k in the solution S

a, otherwise
Sak is kept without change in Sa. The same above steps
are repeated for every non-minimal connected cover in Sa.
Accordingly, for every pruned connected cover that replaces a

non-minimal connected cover in Sa, the costC(Sa) is reduced
by the value of ω2 = |D| + 1.

E. PHEROMONE MANAGEMENT
After all the ants have constructed their tours and the
LS procedure has been applied to the corresponding solu-
tions, pheromone trail values are updated according to the
MAX-MIN Ant System (MMAS) [30] updating rule which
can be expressed as follows:

τij← (1− ρ) τij +1τ ibij , (16)

where i = 0, 1, . . . , |D| , j = 1, . . . , |D|, ρ ∈ (0, 1) is the
pheromone evaporation factor and the added pheromone trail
1τ ibij can be given by the following equation:

1τ ibij =

{
1/Cib, if dj ∈ Sib

0, otherwise,
(17)

where Sib is the best solution found by the ants in the current
iteration of the algorithm (i.e. iteration-best solution) and Cib

is its cost evaluated by the cost function expressed in (15).
According to the MMAS pheromone update rule, only the
ant which found the solution with the highest quality (i.e.
the lowest cost) gets to deposit pheromone on the arcs of the
construction graph.
Note that pheromone is deposited on all the arcs leading to

the deployment point dj ∈ Sib. This is because the proposed
algorithm rewards the inclusion of a deployment point in
the iteration-best solution, regardless of its position in the
solution (i.e. regardless of the connected cover to which it
belongs). The reasoning behind this is that the inclusion
of such advantageous deployment points in different con-
nected covers can lead to different but equally good solutions
to the problem. Thus, exploring different permutations of
these deployment points is essential to finding high quality
solutions.
Since the MMAS pheromone update rule strongly exploits

the best solution found in each iteration, upper and lower
limits, denoted τmax and τmin, are imposed on the pheromone
trail value on each arc of the construction graph. This strategy
is called pheromone constraining and is followed to avoid
a stagnation situation where the algorithm converges pre-
maturely to good but sub-optimal solutions. This is due to
the excessive increase of the pheromone trails on the arcs
leading to the deployment points belonging to those solutions.
Pheromone constraining ensures that the probability of an
ant a on deployment point di selecting a deployment point
dj ∈ Na

i is always greater than zero. The value of τmax is
given by:

τmax = 1/ρCbs, (18)

where Cbs is the best solution found so far by the algorithm
(i.e. best-so-far solution). Note that every time Higher quality
solution is found and Cbs is updated, the value of τmax is
updated accordingly. On the other hand, the value of τmin is
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given by:

τmin = τmax/b, (19)

where b is a constant that is set by experimentation.

Algorithm 3 The Proposed Ant Colony Optimization Algo-
rithm for Solving the MCRC-SDP

Ant Colony Optimization Algorithm for Solving MCRC-SDP
1 Input: D, T , d0, Rmin, λ, NUB, rs, rc, m, ρ, itmax , itc
2 Initialize: it = 0, Cbs = ∞,Sbs = ϕ, τ0 = 1
3 While (it < itmax & itc > 0)
4 Increment iterations counter: it ← it + 1
5 For a = 1, . . . ,m
6 Apply TOUR_CONSTRUCTION (a) procedure to build Sa

7 Calculate tour cost C(Sa) using (15)
8 Apply LOCAL_SEARCH procedure: Sa ← SaLS ,

C
(
Sa
)
← CLS

(
Sa
)
, R(Sa)← R(SaLS )

9 End For
10 Identify iteration-best solution Sib and cost Cib

11 Update pheromone trails using (16), (17)
12 If Cib < Cbs

13 Update best solution so far: Sbs ← Sib, Cbs ← Cib

14 Re-initialize convergence counter itc to starting value
15 Else
16 Decrement convergence counter: itc ← itc − 1
17 End If
18 Apply Pheromone constraining to τmax and τmin (18), (19)
19 End While
20 Output: Sbs = {Sbs1 ,S

bs
2 , . . . ,S

bs
Nbs
}, Cbs

F. SUMMARY OF THE PROPOSED ALGORITHM
ALGORITHM 3 summarizes the different steps in the pro-
posed ACO algorithm for solving the MCRC-SDP. The input
to the proposed ACO algorithm includes all the MCRC-SDP
instance parameters (D,T , d0, λ,Rmin,NUB, rs, rc) and the
ACO related parameters (m, ρ, itmax , itc). The ACO parame-
ters itmax and itc are defined as themaximum allowed number
of iterations the algorithm can carry out and the number
of successive iterations the algorithm can carry out with no
enhancement in the best so far solution cost Cbs before it
is terminated, i.e. before it is decided that the algorithm has
converged.

In the first step of the proposed algorithm, the best-so-
far solution cost Cbs is initialized to a high value in order to
ensure that it is replaced by the best solution cost found in the
first iteration. All Pheromone trails are initialized to unity to
ensure that they are constrained to the upper limit calculated
at the end of the first iteration using (18). Then, each ant a,
for a = 1, . . . ,m, constructs its tour/ solution Sa according to
the tour construction procedure presented in Section II.B and
summarized in Table 1. The cost of ant a’s solution C

(
Sa
)

is evaluated using (15). Then the LS procedure presented in
Section II.D and summarized in ALGORITHM 2 is applied
to Sa. It should be noted that if the LS procedure produced
no reduction in the value of C

(
Sa
)
, it returns the original

solution and cost unaltered. After these steps are applied for
each ant, the iteration-best solution Sib and the corresponding
cost Cib are identified and used to update the pheromone trail
values using (16) and (17). Next, the best-so-far solution is

updated if Cib is less than the current Cbs and the values of
τmax and τmin are updated accordingly using (18) and (19).
The pheromone constraining procedure follows as described
in Section III.E. Finally, the algorithm is terminated if it goes
through itmax iterations or if it goes through itc iterations with
no enhancement in the best-so-far solution cost Cbs.

IV. EXPERIMENTAL WORK AND DISCUSSION
In this section, we conduct a series of experiments with
two main objectives. The first objective is to determine the
optimum setting of the parameters of the proposed ACO
algorithm, specifically the settings for α and β, which control
the influence of the pheromone trail values and heuristic
values on the ants’ probabilistic transition rule. The second
objective is to evaluate the performance of the proposed ACO
algorithm in solving the MCRC-SDP defined in Section II.
Since, to the best of our knowledge, the proposed algorithm
is the first algorithm to solve the MCRC-SDP, we benchmark
its performance with a Greedy Heuristic (GH) which uses
the same heuristic information and the same basic idea of
solution construction that is adopted in the proposed ACO
algorithm. The performance of both methods is measured in
terms of two metrics: their success rate in obtaining feasible
solutions for the MCRC-SDP (specifically solutions that do
not violate the redundancy constraint) and the quality of the
obtained solutions, i.e. the deployment cost which is equal to
the total number of deployment points in the connected covers
comprising the solutions.

A. EXPERIMETAL SETUP
In the conducted experiments, we generate instances of the
MCRC-SDP of different problem scales and different values
of the minimum required reliability Rmin. We assume that the
RoI is a two-dimensional square area equal to 100× 100 m2.
The target points in the set T , the possible SN deploy-
ment points in the set D and the location of the sink node
d0 are all generated randomly inside the perimeter of the
RoI. The scale of the problem is identified by the sizes
of the sets D and T , denoted by |D| and |T | respectively.
For each problem scale, the upper bound of the number
of connected covers NUB is calculated using the procedure
presented in Section II.D. We denote each problem scale a
test case. We adopted a random generation of the test cases’
data sets for a fair and thorough evaluation of the proposed
algorithm.

Since the value of Rmin affects the degree of difficulty
of the problem (the higher the value the more difficult the
problem instance), three values for Rmin are considered,
namely Rmin = 0.99, 0.999 and 0.9999, for test case,
i.e. each test case generates three problem instances, one
for each of the three Rmin values. Table 1 shows the data
pertinent to each test case, namely, the values of |D|, |T |
and NUB.

For all problem instances, we set rs = 30m, rc = 50m and
λ = 0.02. The ACO parameters are set as follows: ρ = 0.5,
m = 30, itmax = 100, itc = 20 and b = 10.
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B. TUNING THE ACO ALGORITHM PARAMETERS
The ACO parameters α and β control the effect of the
pheromone trail values and heuristic values on ants’ proba-
bilistic transition rule, i.e. on the probability of next deploy-
ment point selection paij as expressed in (8). It is therefore
important to find their optimum configuration that result
in the best average solution quality obtained by the ACO
algorithm. In ACO literature, values of both α and β can
vary between 1 and 5, with the optimum configuration largely
depending on the type of problem the ACO algorithm is
designed to solve and whether or not the algorithm is coupled
with an LS procedure [30].

TABLE 1. Test cases.

In order to find the optimum configuration of α and β
for the MCRC-SDP, we selected two problem instances at
random from the twenty four problem instances generated
from the eight test cases in Table 1, namely test case TC3 for
Rmin = 0.9999 and TC6 for Rmin = 0.99. For both selected
problem instances, the proposed ACO algorithm is applied
using twenty-five possible combinations of α and β, with
each parameter ranging between 1 and 5. To account for the
heuristic nature of the ACO algorithm, the algorithm is run
ten independent times at each of the twenty-five parameters’
settings.

FIGURE 2. The average deployment cost obtained from applying the
proposed ACO algorithm on test case TC3 at Rmin = 0.9999. The best
combination of α and β is

(
1,3

)
.

Fig. 2 and Fig. 3 show the average value of the total number
of deployment points, i.e. the average deployment cost, in
the obtained solutions the versus α and β. Fig. 2 shows that
there is an advantage in setting α = 1 and β = 3, at
which the minimum average number of deployment points is
obtained. Fig. 3 also shows that theminimum average number
of deployment points is obtained by setting α = 1 and β = 3
in addition to setting α = 2 and β = 5. Hence, in the

FIGURE 3. The average deployment cost obtained from applying the
proposed ACO algorithm on test case TC6 at Rmin = 0.99. The best
combinations of α and β are

(
1,3

)
and (2,5).

TABLE 2. Parameters of the proposed ACO algorithm.

following experiments we set α = 1 and β = 3. Table 2
lists the values of the proposed ACO algorithm parameters.

C. COMPARISON WITH THE GREEDY HEURSITIC
Since, to the best of our knowledge, the proposed approach
is the first algorithm for solving the minimum cost reliability
constrained sensor node deployment problem, a benchmark
approach is required to evaluate the performance of the pro-
posed algorithm. Similar to the studies in [7], [13] and [25],
we benchmark the performance of the proposed ACO algo-
rithm, in terms of the quality of the obtained solutions, using
a Greedy Heuristic (GH). The GH uses the same heuristic
information adopted in the proposed ACO algorithm. It also
follows the same basic idea of constructing solutions to
the MCRC-SDP by consecutively building connected cov-
ers until the combined reliability of the connected covers
meets or exceeds the specified minimum reliability Rmin. The
pseudo code of the GH is given in ALGORITHM IV.

The input to GH includes all the MCRC-SDP instance
parameters: D, T , d0, Rmin, λ, NUB, rs and rc. The GH is
initialized by an empty solution superset (i.e. S = ϕ) and
a connected cover index k = 0. The GH then proceeds in
rounds. In each round, a deployment point is added to the
connected cover with the current index k , denoted by Sk .
Similar to the proposed ACO algorithm, connectivity to the
sink node located at d0 is achieved by constricting the candi-
date deployment points for inclusion to Sk in a given round
to the set Nnext . Similar to the neighborhood set Na

i defined
in Section III.B and expressed in (9) and (12), the definition
of the set Nnext depends on whether the current round is an
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intra- or inter- connected cover round. For an intra-connected
cover round, Nnext has a similar definition to the set Na

ifull
expressed in (10), which includes all the deployment points
which have not been added in previous rounds to the solution
and are within the communication range rc of any of the
deployment points belonging to Sk . For an inter-connected
cover round (which includes the first round, i.e. the start of the
first connected cover), on the other hand, Nnext has a similar
definition to the setNa

sink , which includes all the deployment
points which have not been added in previous rounds to the
solution and are within the communication range rc of the
sink node located at d0.

Algorithm 4 Greedy Heuristic in Comparison With the Pro-
posed ACO Algorithm

Procedure GREEDY_HEURISTIC
1 Input: D, T , d0, λ, Rmin, NUB, rs, rc
2 Initialize: S = ϕ, R (S) = 0, k = 0,D− = D
3 While R(S) < Rmin
4 Build a new connected cover: k ← k + 1, Sk = ϕ, Tcov = ϕ
5 While Tcov 6= T (i.e. Sk is not a complete connected cover)
6 If Sk = ϕ, i.e. the beginning of Sk
7 Nnext = {dj ∈ D− :

∥∥djd0∥∥ ≤ rc
8 Else
9 Nnext = {dj ∈ D− :

∥∥∥djdj′ ∥∥∥ ≤ rc for any dj′ ∈ Sk
10 End If
11 Calculate coverage gain gj∀dj ∈ Nnext
12 UpdateSk by adding dj ∈ Nnext with gj = gmax
13 Update Tcov (i.e. update coverage of Sk )
14 End While
15 Update S : S← S ∪ Sk
16 Calculate R(Sk ) and Update R(S)
17 Update D− : D− ← D− − Sk
18 End While
19 Output: S = {S1,S2, . . . ,SN , R (S)

For both types of rounds, the GH calculates the coverage
gain gj, as defined in Section III.B, of all the deployment
points dj ∈ Nnext and adds the point with the highest gain,
denoted by gmax , to Sk . In the case where more than one
deployment point have the maximum gain or if none of the
deployment points belonging to Nnext have a non-zero cov-
erage gain, the GH chooses a deployment point from Nnext
randomly. The GH terminates when the combined reliability
of the constructed connected covers meets the reliability con-
straint, i.e. R (S) ≥ Rmin.

Tables 3, 4 and 5 summarize the results obtained from
applying the proposed ACO algorithm and the GH described
above to the eight test cases in Table 1 at Rmin = 0.99, 0.999
and 0.9999 respectively. The tables show the lowest (‘Best’),
highest (‘Worst’) and the average (‘Avg.’) total number of
deployment points in the connected covers constituting the
solutions obtained from both methods in ten independent
runs. The tables also show the success rate (‘SR’) in percent-
age of each method in finding a solution to each MCRC-SDP
instance that fulfills all the constraints of the problem, i.e.
a feasible solution. Since fulfilling the problem constraints
expressed in (4), (5) and (6) is guaranteed by the solution
construction procedure followed by both methods, SR is
actually the success rate of each method in finding solutions

TABLE 3. Comparison between the proposed ACO algorithm and the
greedy heuristic on the test cases at Rmin = 0.99.

TABLE 4. Comparison between the proposed ACO algorithm and the
greedy heuristic on the test cases at Rmin = 0.999.

TABLE 5. Comparison between the proposed ACO algorithm and the
greedy heuristic on the test cases at Rmin = 0.9999.

that fulfill the redundancy constraint expressed in (7) as well
as the other constraints. For each problem instance, the best
results between both methods are written in bold.

From the results shown in Tables 3, 4 and 5, it can be
observed that the proposed ACO algorithm has a success
rate of 100% for all the twenty four problem instances under
consideration, whereas the success rate of the GH does not
exceed 70% and is on average considerably lower than 70%.
For all the problem instances, the GH was capable of finding
solutions that satisfy the MCRC-SDP constraints expressed
in (4)-(6), i.e. it was capable of constructing solutions con-
sisting of non-overlapping connected covers with a combined
reliability greater than or equals the specified minimum value
Rmin. However, it failed in a considerable number of runs in
obtaining solutions that satisfy the redundancy constraint, i.e.
solutions that consist only of minimal connected covers.
This implies that the GH can consistently obtain feasible

solutions to the relaxed version of the MCRSDP problem,
which has the same objective function and constraints as the
original version but excluding the redundancy constraint. The
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failure of the GH in consistently constructing feasible solu-
tions to the original, more restrictive version of the MCRC-
SDP can be attributed to the ‘greedy’ method if follows
in constructing connected covers, which aims at reducing
the chance of adding redundant deployment points to con-
nected covers but fails to eliminate it completely. A redundant
deployment point or points can be added to a given con-
nected cover Sk in the following case. At any given stage in
constructing Sk , all the deployment points belonging to the
set Nnext happen to have a zero coverage gain. In this case,
the GH selects a deployment point at random from Nnext
to maintain connectivity of Sk . Hence, the selected deploy-
ment point is redundant to Sk in terms of coverage but non-
redundant in terms connectivity thus far. However, depending
on the deployment points selected by the GH in the following
rounds till the completion of Sk , this redundant deployment
point(s) in terms of coverage may become redundant in
terms of connectivity as well, meaning that its elimination
from Sk would not compromise its coverage or connectivity.
Hence, such a deployment point(s) becomes fully redun-
dant and consequently Sk becomes a non-minimal connected
cover.

On the other hand, the results show that the proposed ACO
algorithm is consistently capable of finding feasible solutions
to the MCRC-SDP with a success rate of 100% over all
tested problem instances. This is attributed to the design of
the ACO algorithm’s cost function expressed in (15). As dis-
cussed earlier, the ACO solution/tour construction procedure
is similar to GH in terms of the underlying basic idea and
heuristic information used in deployment points’ selection.
Hence, some ants may construct infeasible tours due to the
violation of the redundancy constraint if one or more of the
connected covers in the corresponding solutions are non-
minimal. However, the cost function penalizes these infea-
sible tours and consequently as the algorithm progresses, the
pheromone trail levels (which are updated at the end of each
iteration using (16)) will reinforce feasible tours and increase
the proportion of ants which construct feasible solutions over
that of ants which construct non-feasible ones. This process
is accelerated by the use of the proposed LS procedure, which
converts non-feasible tours into feasible ones by eliminating
redundant deployment points from connected covers in the
case where this elimination would not lead to the violation
of the reliability constraint, i.e. the reduction of combined
reliability R(S) below Rmin.

It can also be observed from the tabulated results that
for each of the eight test cases, the success rate of the GH
declines as the value of Rmin increases. This behaviour is
expected since the number of connected covers required to
satisfy the reliability constraint increases with the increase of
the value of Rmin. As the number of connected covers the GH
has to construct to meet Rmin increases, the probability that
a non-minimal connected cover is constructed increases as
well. Consequently, this increases the probability that the GH
obtains a non-feasible solution with one or more non-minimal
connected covers which constitutes a failure.

Results also show that the quality of the obtained solu-
tions by the proposed ACO algorithm is superior to that
of the solutions obtained by the GH by more than 20%
on average. In all the problem instances, the highest total
number of deployment points in the solutions (i.e. ‘Worst’
solution) obtained by the ACO algorithm is lower than the
lowest total number of deployment points in the solutions
(i.e. ‘Best’ solution) obtained by the GH. This implies that
even for the problem instances where the GH succeeded in
obtaining solutions consisting only of minimal covers (i.e.
feasible solutions) with a success rate higher than null, the
proposed ACO algorithm was capable of finding feasible
solutions with significantly higher quality, i.e. solutions of
a lower deployment cost. This is attributed to the search
efficiency of the proposed ACO algorithm, which is capable
of finding solutions that consist of minimal connected covers
of smaller sizes than the minimal connected covers in the
feasible solutions obtained by the GH. Furthermore, the ACO
solutions have higher combined reliability levels than those of
the GH solutions. This is because the reliability of a minimal
connected cover is inversely proportional with its size, since
reliability in this case is equal to the probability of the single
event that all the deployed SNs are ‘on’. This probability
increases when there are fewer deployed SNs, i.e. when there
are fewer deployment points in the minimal connected cover.

Test cases TC3, TC4 and TC8 show a greater advantage
of the proposed ACO algorithm over the GH in terms of
solution quality as compared to the rest of the test cases at
the three considered levels for Rmin. This can be attributed to
the following. In these problem instances, the GH obtained
solutions that consisted of an entire additional connected
cover when compared to the solutions obtained by the ACO
algorithm. This is because the GH constructs one or more
minimal connected covers of non-optimal size (i.e. with lower
reliability) in its earlier rounds, i.e. at the beginning of con-
structing a solution to the problem. This has caused the GH
to have to construct an additional connected cover to meet
the reliability constraint. This situation does not occur in the
solutions obtained by the ACO due to its search efficiency.

V. CONCLUSION
In this paper, we considered the problem of deploying a
WSN that meets a specified minimum level of reliability
during its mission time at a minimum network deployment
cost. To minimize the internal interference, bandwidth usage
and energy consumption throughout the network’s mission
time, we defined the problem as the problem of finding a
number of non-overlapping minimal connected covers of the
targeted region of interest such that the combined reliability
level of these connected covers meets or exceeds the specified
minimum level of reliability at a minimum deployment cost.
We coined this problem the Minimum Cost Reliability Con-
strained Sensor Node Deployment Problem (MCRC-SDP).
We proved that the MCRC-SDP is NP-complete and
proposed an ACO-based approach, coupled with a local
search procedure, to solve it. Our experimental results on
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twenty four problem instances with different operational
parameters demonstrated the effectiveness of the proposed
approach in finding high-quality solutions to the problem.
Results also show that the quality of the obtained solutions
by the proposed ACO algorithm is superior to that of the
solutions obtained by a Greedy Heuristic by more than 20%
on average.
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