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ABSTRACT Decentralized output-feedback (DOF) event-triggering control for large-scale nonlinear
networked systems is examined in this paper. The Takagi–Sugenomodel is applied to describe each nonlinear
subsystem, where it shares the communication information through networks. A DOF control scheme with
event-triggering is proposed, where two event-triggering mechanisms are placed in the sensor and in the
actuator, respectively. Our goal is to design the DOF controller, which not only guarantees the stability of
closed-loop control system but also reduces the data communication in the sensor-to-controller channels
and controller-to-actuator channels. First, a novel model transformation is presented, where the closed-
loop control system is reconstructed as a constant-delay system with extra feedback interconnections.
By introducing a relaxing Lyapunov–Krasovskii functional combining with the scaled small gain theorem,
the co-design consisting of the controller gains, event-triggered parameter, and sampled period is derived in
the form of linear matrix inequality. The effectiveness of the proposed method is validated via a numerical
example.

INDEX TERMS Large-scale fuzzy systems, two-channel triggering, decentralized output-feedback control,
co-design.

I. INTRODUCTION
With the prompt development of digital technology, com-
munication networks are usually used instead of point-
to-point connections as they bring prominent advantages,
such as reduced weight, low cost, power requirements, and
simple installation [1], [2]. Unfortunately, some imperfec-
tions induced by communication networks, such as packet
dropouts, quantization errors, and time delays, can degrade
significantly the closed-loop control performance and may
even result in instability [3]–[5]. Recently, network-based
control system (NCS) has received considerable atten-
tion, and a large number of results have been published
for studying these imperfections, see [6]–[8], and the

references therein. It should be pointing out that the ana-
lyzing or designing NCS often achieves tradeoffs among the
imperfections induced by networks. More specifically, send-
ing larger information-packets will alleviate packet dropouts
and quantization errors but typically bring in longer transmis-
sion time [9], [10]. In this way, one important issue for the
application of NCS is to identify methods or techniques in
order to utilize the limited network bandwidth effectively.

For the application of NCS, control tasks consisting of
sampling, quantizing, sending plant outputs, and computing,
execute control inputs, are often carried out by com-
puters [11]. To deal with the control tasks, the previ-
ous time-triggered control often results in congestion or
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collision or longer listening time in the limited network
bandwidth as in which the control task is processed in a
periodic form. Recently, there is an increasing interest in the
event-triggering control that aims at the reduction of infor-
mation transmissions. The basic principle of event-triggering
control is to send feedback signals in terms of a specified
threshold [12]–[18]. To date, there exist several different
aliases for the event-based control, such as self-triggered
feedback [13], event-triggered feedback [14]–[16], state-
triggered feedback [17], interrupt-based feedback [18]. More
recently, the event-triggering control has been developed for
T-S fuzzy networked systems [19]–[22]. To mention a few,
the problem of event-triggering filter for T-S fuzzy systems
was investigated in [19]. The design result on event-triggered
fault detection was considered for T-S fuzzy networked sys-
tems by using SOS solvers [20]. The co-design problem with
event-triggered state-feedback control for a class of T-S fuzzy
sampled-data systems was reported in [21]. In [22], the prob-
lem of fuzzy dynamic output-feedback stabilization for a
class of discrete-time T-S fuzzy systems was studied under
an event-triggered scheme. We are aware of few attempts
making on decentralized event-triggering control for large-
scale fuzzy networked systems, which motivates us for this
study.

In this paper, the problem of decentralized event-triggered
output feedback control is studied for a class of large-scale
nonlinear network systems, where each nonlinear subsystem
is represented by a T-S model, and exchanges their informa-
tion through networks. Our goal is to design a decentralized
DOF controller with event-triggering, which guarantees the
stability of the closed-loop control system and reduces the
information communication in both the S-C channels and
C-A channels. Firstly, by using the input delay approach,
the control system with sampled-data measurement is recon-
structed as a continuous-time systemwith time-varying delay.
Then, we model the time-varying delay and event-triggered
counterpart as disturbances. By hauling out these distur-
bances, the control system is reformulated as a constant-
delay system with extra inputs and outputs. In terms of the
new model, and introducing a relaxing LKF combined with
the advantage of SSG theorem, the co-design consisting of
the DOF controller gains, event-triggering parameter, and
sampling period for the considered system is derive in the
form of LMIs. Finally, the advantage of the proposed method
is validated by a numerical example.

In summary, the main contributions are as below:
i) As the first attempt, the problem of decentralized event-
triggered DOF control with interconnections is investigated
for large-scale T-S fuzzy systems; ii) Two event-triggering
mechanisms (ETMs) placed respectively in the sensor and in
the actuator are proposed, such that the data communication is
reduced in the S-C channels and C-A channels; iii) A relaxing
LKF combined with SSG method is introduced, and the less
conservative results on the DOF event-triggering controller
design are derived in terms of LMIs comparing with the
method proposed in [23].

Notations. <n denotes the Euclidean space with
n -dimensions.<n×m is the set of n×mmatrices. P > 0 (≥ 0)
is positive definite (positive semidefinite). Sym{A} denotes
A + AT . In and 0m×n denote the n × n identity matrix and
m × n zero matrix, respectively. N represents the sets of
positive integers. The subscripts n and n × m are omitted
when the size is not relevant or can be determined from the
context. A ∈ <n×n, A−1 and AT are the inverse and transpose
of the matrix A, respectively. diag{· · ·} is a block-diagonal
matrix. l2[0,∞) refers to the space of square-summable
infinite vector sequences over [0,∞). The notation ‖·‖ is the
Euclidean vector norm, and ‖·‖2 represents the usual l2[0,∞)
norm. The notation ? indicates the symmetric term.

II. PROBLEM FORMULATION
This paper considers a continuous-time large-scale system
containing N nonlinear subsystems, where T-S model can be
applied to represent the i-th nonlinear subsystem as below:
Plant Rule Rl

i : IF ζi1(t) is F l
i1 and ζi2(t) is F l

i2 and · · ·
and ζig(t) is F l

ig, THEN
ẋi(t) = Ailxi (t)+ Bil ûi(t ik )+

N∑
j=1
j 6=i

Āijlxj(t)

yi(t) = Cixi(t), l ∈ Li := {1, 2, . . . , ri} , t ∈ [tk , tk+1)

(1)

where i ∈ N := {1, 2, . . . ,N }, Rl
i is

the l -th fuzzy inference rule, ri is the number of infer-
ence rules, F l

iφ (φ = 1, 2, . . . , g) is the fuzzy set; xi(t) ∈
<
nxi , ûi(t ik ) ∈ <

nui , yi(t) ∈ <nyi are the system state, the con-
trol input applied to the system at the instant t ik , and the mea-
sured output, respectively; ζi(t) := [ζi1(t), ζi2(t), . . . , ζig(t)]
are some measurable variables; {Ail,Bil,Ci} denotes the
l -th local model, and Āijl is the interconnection matrix
between the i-th and k-th subsystem.

Based on fuzzy blending, the i-th overall fuzzy model is
given by

ẋi(t) = Ai(µi)xi (t)+ Bi(µi)ûi(t ik )+
N∑
j=1
j 6=i

Āij(µi)xj(t)

yi(t) = Cixi(t), t ∈ [tk , tk+1), i ∈ N

(2)

where

Ai(µi) :=
ri∑
l=1

µilAil,Bi(µi) :=
ri∑
l=1

µilBil,

Āij(µi) :=
ri∑
l=1

µil Āijl . (3)

Remark 1: This paper considers the larger-scale system
with nonlinear interconnection Āijl in (1) instead of the
ones with linear interconnection Āij proposed in [23]. It is
noted that more challenges will be induced into the con-
trol of large-scale fuzzy systems when considering nonlinear
interconnection.
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Before moving on, we require firstly the following
assumptions.
Assumption 1: The sampler is clock-driven in each

subsystem. Let hi denotes the upper bound of sampling inter-
vals, it has

t ik+1 − t
i
k ≤ hi, k ∈ N (4)

where hi > 0.
Assumption 2: For each subsystem, we assume that the

S-C and C-A channels are closed via networks.
Assumption 3: The zero-order-hold is event-driven, thus

the latest sampling data are held until the next transmitting
ones come.

It is noted that in networked control systems, the tradition-
ally time-triggered control is unfavourable because of the lim-
ited bandwidth. Here, inspired in [14], two ETMswill be used
to reduce data transmissions via networks. One is located in
the sensor system that it determines when the system output
should be transmitted in the S-C channels. Another is put into
the controller system that it determines when the control input
should be transmitted in the C-A channels. In the way, both
the measured output and control input involve in the sampled-
data measurements and event-triggered control. Therefore,
the data transmission can be reduced in both the S-C and C-A
channels. Thus, a decentralized DOF fuzzy event-triggering
controller is proposed as below:
Controller Rule Rl

i : IF ζi1(t) is F l
i1 and ζi2(t) is F l

i2
and · · · and ζig(t) is F l

ig, THEN{
ẋci (t) = Ac1ilxci (t)+ Ac2ilxci

(
t ik
)
+ Bcil ŷi(t ik )

ui(t) = Ccixci(t), t ∈ [tk , tk+1), i ∈ N
(5)

where xci(t) ∈ <nxi is the controller state, ŷi(t ik ) is the mea-
sured output applied to the controller at the instant t ik , and
{Ac1il,Ac2il,Bcil,Cci} , l ∈ Li, i ∈ N are designed controller
gains with compatible dimensions.

Similarly, the overall DOF fuzzy event-triggering con-
troller can be obtained as below,{
ẋci (t) = Ac1i(µi)xci (t)+ Ac2i(µi)xci

(
t ik
)
+ Bci(µi)ŷi(t ik )

ui(t) = Ccixci(t), t ∈ [tk , tk+1), i ∈ N
(6)

where

Ac1i(µi) :=
ri∑
l=1

µilAcil,Ac2i(µi) :=
ri∑
l=1

µilAc2il,

Bci(µi) :=
ri∑
l=1

µilBcil . (7)

For the implementation of the controllers given by (6),
a solution is proposed in Fig. 1, where ŷi

(
t ik
)
denotes the

latest measurement output transmitting successfully to the
controller; ûi

(
t ik
)
denotes the latest control input transmitting

successfully to the actuator; SPs and SPc are the samplers in
the sensor and in the controller, respectively; BFs and BFc

are buffers in the sensor and in the controller, respectively;

FIGURE 1. An event-triggered DOF control scheme.

ZOHc is zero-order hold in the controller; AT is the actuator.
As shown in Figure 1, the sensor system consists of an SPs,
an BFs and an ETMs, the controller system consists of
an ZOHc, and SPc, an BFc and an ETMc. At each sampling
instant, the ETMs and ETMc can be determined respectively
when the measurement output and control input should be
transmitted. Hence, the solution leads to a reduction of com-
munication in both the S-C and C-A channels.

To implement the presented solution, the referred two
ETMs can be represented as

ETMs: yi
(
t ik
)
is sent⇔

∥∥∥yi (t ik)− ŷi (t ik−1)∥∥∥
> σyi

∥∥∥ŷi (t ik)∥∥∥ , (8)

ETMc: ui
(
t ik
)
is sent⇔

∥∥∥ui (t ik)− ûi (t ik−1)∥∥∥
> σui

∥∥∥ûi (t ik)∥∥∥ , (9)

where
{
σyi, σui

}
are two appropriate positive scalars.

Based on the above operation, an event-triggering proposal
can be given as:

ŷi
(
t ik
)
=


yi
(
t ik
)
, when

∥∥yi (t ik)− ŷi (t ik−1)∥∥
> σyi

∥∥yi (t ik)∥∥ ,
ŷi
(
t ik−1

)
, when

∥∥yi (t ik)− ŷi (t ik−1)∥∥
≤ σyi

∥∥yi (t ik)∥∥ ,
(10)

ûi
(
t ik
)
=


ui
(
t ik
)
, when

∥∥ui (t ik)− ûi (t ik−1)∥∥
> σui

∥∥ui (t ik)∥∥ ,
ûi
(
t ik−1

)
, when

∥∥ui (t ik)− ûi (t ik−1)∥∥
≤ σui

∥∥ui (t ik)∥∥ .
(11)

It follows from (2) and (6) that the resulting closed-loop
control system is described by
ẋi(t) = Ai(µi)xi (t)+ Bi(µi)ûi(t ik )+

N∑
j=1
j 6=i

Āij(µi)xj(t)

ẋci (t) = Ac1i(µi)xci (t)+ Ac2i(µi)xci
(
t ik
)

+ Bci(µi)ŷi(t ik ), t ∈ [tk , tk+1), i ∈ N .

(12)
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III. MAIN RESULTS
This section firstly proposes a novel model transfor-
mation, where the closed-loop control system is recon-
structed as a constant time-delay system with extra feedback
interconnections. Next, based on the new model, a relaxing
LKF combined with the SSG theorem is imported, the stabil-
ity analysis and co-design for the considered system will be
presented, respectively. It will be shown that the DOF con-
troller gains, event-triggered parameter, and sampling period
can be obtained concurrently via solving a set of LMIs.

A. MODEL TRANSFORMATION
Here, we borrow the input delay approach from [25], the out-
put and input with the sampled-data measurement are‘
reformulated as

ŷi(t ik ) = ŷi(t − ηi (t)), ûi(t ik ) = ûi(t − ηi (t)), (13)

where ηi (t) = t − t ik . It follows from Assumptions 1-3 that

0 ≤ ηi (t) < hi, t ∈ [tk , tk+1), k ∈ N. (14)

It is noted that in the majority of the proposed topologies
the delay-dependent criteria are obtained by using the direct
Lyapunov method. Another method names the input-output
approach, which is based on indirect framework combined
the model reformulation and the scaled small gain theo-
rem, has been developed for a larger class of systems with
time-delays [26], [30], [31]. This paper will formulate the
two-channel event-triggering problem into the framework of
input-output stability. To do so, we first model the event-
triggered counterpart as disturbances [14], that is

eyi (t) = ŷi(t − ηi (t))− yi(t − ηi (t)), (15)

eui (t) = ûi(t − ηi (t))− ui(t − ηi (t)). (16)

Inspired in [26], we will approximate the uncertain term
x̄i(t − ηi (t)) by x̄i (t) and x̄i (t − hi) , thus it yields

hi
2
edi (t) = x̄i(t − ηi (t))−

1
2
[x̄i (t)+ x̄i (t − hi)]

=
1
2

∫
−ηi(t)

−hi

˙̄xi (t+β) dβ −
1
2

∫ 0

−ηi(t)

˙̄xi (t+α) dβ

=
1
2

∫ 0

−hi
ρi (β) ˙̄xi (t + β) dβ, (17)

where

ρi (β) =

{
1, if β ≤ −ηi (t) ,
−1, if β > −ηi (t) .

Denoting that x̄i (t) =
[
xTi (t) xTci (t)

]T , and substi-
tuting (13)-(17) into (12), the closed-loop control system is

rewritten as the feedback interconnections:

Ri1 :



˙̄xi (t) = Ai(µi)x̄i (t)+ 1
2Adi(µi)x̄i (t − hi)

+ R1
N∑
j=1
j6=i

Āij(µi)xj(t)+
hi
2 Adi(µi)edi (t)

+ R1Bi(µi)eui (t)+ R2Bci(µi)eyi (t) ,

ξdi (t) = ˙̄xi (t) ,

ξyi (t)=σyiCi
[
1
2xi (t)+

1
2xi (t−hi)+

hi
2 e
(1)
di (t)

]
,

ξui (t)=σuiCci
[
1
2xci (t)+

1
2xci (t−hi)+

hi
2 e
(2)
di (t)

]
,

Ri2 :


edi (t) = 1diξdi (t) ,

eyi (t) = 1uiξyi (t) ,

eui (t) = 1yiξui (t) ,

(18)

where i ∈ N ,
{
1yi,1ui,1di

}
denotes the uncertain operator

in Ri2, and

Ai(µi) =

 Ai(µi)
1
2
Bi(µi)Cci

1
2
Bci(µi)Ci Ac1i(µi)+

1
2
Ac2i(µi)

 ,
Adi(µi) =

[
0 Bi(µi)Cci

Bci(µi)Ci Ac2i(µi)

]
,

R1 =
[
I 0

]T
, R2 =

[
0 I

]T
,

edi (t) =

[
e(1)di (t)
e(2)di (t)

]
. (19)

In the light of the interconnected model in (18), the follow-
ing lemma is provided:
Lemma 1: Consider the feedback interconnection with

two subsystems Ri1 and Ri2 in (20), the uncertainty
1i : ξi (t) 7−→ ei (t) satisfies ‖1i‖∞ ≤ 1,

where ξi (t) =
[
ξTid (t) ξTiy (t) ξTiu (t)

]T
, ei (t) =[

eTdi (t) eTyi (t) eTui (t)
]T

, 1i = diag
{
1di,1yi,1ui

}
.

Proof: It follows from the event-triggered proposal given
in (10) and (11), one has∥∥eyi (t)∥∥ = ∥∥ŷi(t − ηi (t))− yi(t − ηi (t))∥∥

≤ σyi ‖yi(t − ηi (t))‖

= σyi

∥∥∥∥Ci [12xi (t)+ 1
2
xi (t − hi)+

hi
2
e(1)di (t)

]∥∥∥∥
=
∥∥ξyi (t)∥∥ , (20)

‖eui (t)‖ =
∥∥ûi(t − ηi (t))− ui(t − ηi (t))∥∥

≤ σui ‖ui(t − ηi (t))‖

= σui

∥∥∥∥Cci [12xci (t)+ 1
2
xci (t − hi)+

hi
2
e(2)di (t)

]∥∥∥∥
= ‖ξui (t)‖ . (21)
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In addition, consider zero-initial conditions and by using
Jensen’s inequality [29], it follows from (17) that∫ t

0
eTdi (α) edi (α) dα

=
1

h2i

∫ t

0

[∫ 0

−hi
ρi (β) ˙̄xi (α + β) dβ

]T
(?) dα

≤
1

h2i

∫ t

0

[
hi

∫ 0

−hi
ρi (β) ˙̄xTi (α + β) (?) dβdα

]
=

1
hi

∫ 0

−hi

[∫ t

0

˙̄xTi (α + β) ˙̄xi (α + β) dα
]
dβ

=
1
hi

∫ 0

−hi

[∫ t+β

β

˙̄xTi (α) ˙̄xi (α) dα
]
dβ

≤
1
hi

∫ 0

−hi

[∫ t

0

˙̄xTi (α) ˙̄xi (α) dα
]
dβ

=

∫ t

0

˙̄xTi (α) ˙̄xi (α) dα

=

∫ t

0
ξTdi (α) ξdi (α) dα. (22)

It is straightforward to find from (20)-(22) that ‖1i‖∞ ≤ 1.
Thus, completing this proof.
Remark 2: Based on the input delay method, it is easy to

see that the large-scale systems with event-triggering control
can be reconstructed into the ones with time-varying delay.
Note that the approximated method in (17) can be easily
developed for the control systems with time-varying delay.

B. STABILITY ANALYSIS
We firstly introduce the following LKF:

V (t) =
N∑
i=1

Vi(t), (23)

with

Vi(t) = x̄Ti (t)Pix̄i (t)+
∫ t

t−hi
x̄Ti (α)Qix̄i (α) dα

+ hi

∫ 0

−hi

∫ t

t+β

˙̄xTi (α)Zi ˙̄xi (α) dαdβ, (24)

where {Pi,Qi,Zi} ∈ <2nxi×2nxi , i ∈ N are symmetric matri-
ces, and Pi > 0, Zi > 0.

It should be noticed that the matrix Qi in (24) is not
necessary to be positive definite [27]. Here, the following
lemma is used to ensure V (t) > 0,
Lemma 2 [24]: Given the LKF in (23), then V (t) ≥

η ‖x̄ (t)‖2 , where x̄ (t) =
[
x̄T1 (t) , x̄

T
2 (t) , · · · , x̄

T
N (t)

]T
,

η > 0 , if there exist positive-definite symmetric matrices
{Pi,Zi} ∈ <2nxi×2nxi , and symmetric matrix Qi ∈ <2nxi×2nxi ,
such that for all i ∈ N the following LMIs hold: 1

hi
Pi + Zi −Zi

? Qi + Zi

 > 0. (25)

Based on the new model in (18) and the LKF in (23),
the stability of the control system given in (12) can be verified
by the following theorem.
Theorem 1: Consider the large-scale fuzzy system in (2)

and the decentralized DOF event-triggering controller
in (6), the stability of the control systems in (12) can be
ensured, if there exist positive-definite symmetric matri-
ces {Pi,Zi,Mi} ∈ <

2nxi×2nxi , symmetric matrices Qi ∈
<
2nxi×2nxi , matrix multipliers Gi ∈ <(8nxi+nyi+nui)×2nxi , and

positive scalars
{
σui, σyi, εi1, εi2

}
, εij(µi) ≤ ε0, such that for

all i ∈ N the following matrix inequalities hold: 1
hi
Pi + Zi −Zi

? Qi + Zi

 > 0, (26)

[
6i(µi) GiR1Aij,j 6=i(µi)
? −Eij,j 6=i(µi)

]
< 0, (27)

where

6i(µi) = 2i + σ
2
yiεi1�

T
1�1 + σ

2
uiεi2�

T
2�2

+ Sym {GiAi(µi)} ,

2i =


h2i Zi +Mi Pi 0 0

? 2i(1) Zi 0
? ? −Qi − Zi 0
? ? ? 2i(2)

 ,
2i(1) = Qi − Zi + ε0 (N − 1)R1RT1 ,

2i(2) = diag {−Mi,−εi1I,− εi2I} ,

�1 =
[
0 �11 �11 �12 0 0

]
,

�11 =

[
1
2
Ci 0

]
, �12 =

[
hi
2
Ci 0

]
,

�2 =
[
0 �21 �21 �22 0 0

]
,

�21 =

[
0

1
2
Cci

]
, �22 =

[
0

hi
2
Cci

]
,

Ai(µi) =
[
−I Ai(µi)

1
2
Adi(µi)

hi
2

Adi(µi) R1Bi(µi) R2Bci(µ̂i)

]
,

Ai(µi) =

 Ai(µi)
1
2
Bi(µi)Cci

1
2
Bci(µi)Ci Ac1i(µi)+

1
2
Ac2i(µi)

 ,
Adi(µi) =

[
0 Bi(µi)Cci

Bci(µi)Ci Ac2i(µi)

]
,

Aij,j 6=i(µi) =
[
Āi1(µi) · · · Āij,j 6=i(µi) · · · ĀiN (µi)

]︸ ︷︷ ︸
N−1

,

Eij,j 6=i(µi) = diag
{
3i1(µi) · · ·3ij(µi) · · ·3iN (µi)

}︸ ︷︷ ︸
N−1

,

3ij(µi) = εij,j 6=i(µi)Inxi ,

R1 =
[
I 0

]T
,R2 =

[
0 I

]T
. (28)
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Proof: By taking the time derivative of V (t), one has

V̇i(t) ≤ 2x̄Ti (t)Pi ˙̄xi (t)+ x̄
T
i (t)Qix̄i (t)

− x̄Ti (t − hi)Qix̄i (t − hi)

+ h2i ˙̄x
T
i (t)Zi ˙̄xi (t)−hi

∫ t

t−hi

˙̄xTi (α)Zi ˙̄xi (α) dα.

(29)

Based on Jensen’s inequality [29], it yields that

−hi

∫ t

t−hi

˙̄xi (α)Zi ˙̄xi (α) dα

≤ −

[∫ t

t−hi

˙̄xi (α) dα
]T

Zi

[∫ t

t−hi

˙̄xi (α) dα
]

= − (x̄i (t)− x̄i (t − hi))T Zi (x̄i (t)− x̄i (t − hi)) . (30)

Define the matrix multipliers Gi ∈ <(8nxi+nyi+nui)×2nxi ,
i ∈ N , and it is easy to see from (18) that

0 =
N∑
i=1

2χTi (t)GiAi(µi)χi (t)

+

N∑
i=1

2χTi (t)GiR1
N∑
j=1
j 6=i

Āij(µi)xj(t), (31)

where χi (t) =
[
˙̄xTi (t) x̄Ti (t) x̄Ti (t − hi) eTdi (t)

eTyi (t) e
T
ui (t)

]T
, Ai(µi) is defined in (28).

Note that

2x̄T ȳ ≤ κ−1x̄T x̄ + κ ȳT ȳ, (32)

where x̄, ȳ ∈ <n and scalar κ > 0.
Define the scalar parameters 0 < εij(µi) ≤ ε0, where

εij(µi) :=
ri∑
l=1
µilεijl, i ∈ N , and by using the inequality (32),

one has

N∑
i=1

2χTi (t)GiR1
N∑
j=1
j 6=i

Āij(µi)xj(t)

≤

N∑
i=1

N∑
j=1
j 6=i

χTi (t)GiR1Āij(µi)ε
−1
ij (µi)ĀTij (µi)R

T
1 G

T
i χi (t)

+

N∑
i=1

N∑
j=1
j 6=i

εij(µi)xTj (t)xj(t)

≤

N∑
i=1

N∑
j=1
j 6=i

χTi (t)GiR1Āij(µi)ε
−1
ij (µi)ĀTij (µi)R

T
1 G

T
i χi (t)

+ ε0 (N − 1)
N∑
i=1

xTi (t)xi(t). (33)

Denote positive scalars εi1 and εi2, and matrices
Mi = MT

i > 0, i ∈ N , and consider the following index

J (t) =
N∑
i=1

Ji(t)

=

N∑
i=1

∫
∞

0

{
εi1ξ

T
yi (t) ξyi (t)− εi1e

T
yi (t) eyi (t)

+ εi2ξ
T
ui (t) ξui (t)− εi2e

T
ui (t) eui (t)

+ ξTdi (t)Miξdi (t)− eTdi (t)Miedi (t)
}
dt.

(34)

It is well-known that V (0) = 0 and V (∞) ≥ 0 under zero-
initial conditions. Then, it follows from (29)-(34) that

J (t) ≤ J (t)+ V (∞)− V (0)

=

N∑
i=1

∫
∞

0

{
V̇i(t)+ εi1ξTyi (t) ξyi (t)− εi1e

T
yi (t) eyi (t)

+ εi2ξ
T
ui (t) ξui (t)− εi2e

T
ui (t) eui (t)

+ ξTdi (t)Miξdi (t)− eTdi (t)Miedi (t)
}
dt

≤

N∑
i=1

∫
∞

0
χTi (t)6i(µi)χi (t) dt, (35)

with

6i(µi) = 2i + σ
2
yiεi1�

T
1�1 + σ

2
uiεi2�

T
2�2

+ Sym {GiAi(µi)}

+

N∑
j=1
j6=i

ε−1ij (µi)GiR1Āij(µi)ĀTij (µi)R
T
1 G

T
i , (36)

where all notations are given in (28).
By applying Schur complement to (27), we have

6i(µi) < 0, which implies V̇ (t) < 0 and J (t) < 0. Together
with the relationships in (20)-(22), and by using Lemma A1
(SSG theorem) in the Appendix, the stability of the control
systems in (12) can be verified. Thus, the proof is completed.

C. CO-DESIGN
It should be pointed out that the stability results on (26)
and (27) are nonlinear matrix inequalities. In this subsection,
we will address the co-design for decentralized DOF event-
triggering control of the presented large-scale fuzzy system.
By specifying the multipliers Gi and using the matrix decom-
position approach, the co-design is transformed in the form
of LMIs as below.
Theorem 2: Given the large-scale fuzzy system in (2).

Then, a decentralized DOF fuzzy event-triggering controller
in (6) exists, which ensures the stability of the control
system (12), if there exist the positive-definite symmetric
matrices

{
P̄i, Z̄i, M̄i

}
∈ <

2nxi×2nxi , symmetric matrices Q̄i,∈
<
2nxi×2nxi ,matrices {Hi,Vi1,Ui1} ∈ <nxi×nxi , {Ac1il,Ac2il} ∈

<
nxi×nxi , Bcil ∈ <nxi×nyi ,Cci ∈ <

nui×nxi , and positive scalars
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{
σui, σyi, εi1, εi2, εijl, ε0

}
, εijl ≤ ε0 such that for all l ∈

Li, i ∈ N the following LMIs hold: 1
hi
P̄i + Z̄i −Z̄i

? Q̄i + Z̄i

 > 0,

(37)
−
ε−10

N − 1
I 0 0 �̄3 0

? − ε−1i2 I 0 σui�̄2 0
? ? − ε−1i1 I σyi�̄1 0
? ? ? 6̃il EḠiAijl,j 6=i
? ? ? ? − Eij,j 6=i

 < 0,

(38)

where

6̃il = 2̃i + Sym {E5il} ,

2̃i =


h2i Z̄i + M̄i P̄i 0 0

? Q̄i − Z̄i Z̄i 0
? ? −Q̄i − Z̄i 0
? ? ? 2̃i(1)

 ,
2̃i(1) = diag

{
−M̄i,−εi1I,− εi2I

}
,

5il =
[
5(1) 5(2) 5(3) 5(4) 5(5) 5(6)

]
,

5(1) = −

[
Ui1 I
Hi V T

i1

]
,

5(2) =

AilUi1 + 1
2
BilCci Ail

Ac1il V T
i1Ail +

1
2
BcilCi

 ,
5(3) =

1
2

[
BilCci 0
Ac2il BcilCi

]
,

5(4) =
hi
2

[
BilCci 0
Ac2il BcilCi

]
,

5(5) =

[
Bil

V T
i1Bil

]
, 5(6) =

[
0

Bcil

]
,

E =
[
I I 02nxi×(4nxi+nyi+nui)

]T
, Ḡi=

[
I
V T
i1

]
,

�̄1 =
[
0 �̄11 �̄11 �̄12 0 0

]
,

�̄11 =

[
1
2
CiUi1

1
2
Ci

]
, �̄12=

[
hi
2
CiUi1

hi
2
Ci

]
,

�̄2 =
[
0 �̄21 �̄21 �̄22 0 0

]
,

�̄21 =

[
1
2
Cci 0

]
, �̄22=

[
hi
2
Cci 0

]
,

�̄3 =
[
0

[
Ui1 I

]
0 0 0 0

]
,

Eijl,j 6=i = diag
{
εi1lInxi · · · εijl,j 6=iInxi · · · εiNlInxi

}︸ ︷︷ ︸
N−1

,

Aijl,j 6=i =
[
Āi1l · · · Āijl,j 6=i · · · ĀiNl

]︸ ︷︷ ︸
N−1

. (39)

Furthermore, the decentralized DOF fuzzy event-triggering
controller gains are calculated as

Cci = CciU
−1
i2 ,

Bcil = V−Ti2 Bcil,
Ac2il = V−Ti2 Ac2ilU

−1
i2 − BcilCiUi1U

−1
i2 − V

−T
i2 V T

i1BilCci,
Ac1il = V−Ti2 Ac1ilU

−1
i2 − V

−T
i2 V T

i1AilUi1U
−1
i2

−
1
2BcilCiUi1U

−1
i2 −

1
2V
−T
i2 V T

i1BilCci −
1
2Ac2il,

(40)

where l ∈ Li,Ui2 = V−Ti2 Hi − V
−T
i2 V T

i1Ui1, i ∈ N .
Proof: By applying Schur complement to (27), one gets
−
ε−10

N − 1
I 0 0 �3 0

? − ε−1i2 I 0 σui�2 0
? ? − ε−1i1 I σyi�1 0
? ? ? 6̄i(µi) GiR1Aij,j6=i(µi)
? ? ? ? − Eij,j6=i(µi)


< 0, (41)

where

6̄i(µi) = 2̄i + Sym {GiAi(µi)} ,

2̄i =


h2i Zi +Mi Pi 0 0

? Qi − Zi Zi 0
? ? − Qi − Zi 0
? ? ? 2̄i(1)

 ,
2̄i(1) = diag {−Mi,−εi1I,− εi2I} ,

�1 =
[
0 �11 �11 �12 0 0

]
,

�12 =

[
hi
2
Ci 0

]
, �11 =

[
1
2
Ci 0

]
,

�2 =
[
0 �21 �21 �22 0 0

]
,

�21 =

[
0

1
2
Cci

]
, �22 =

[
0

hi
2
Cci

]
,

�3 =
[
0

[
I 0

]
0 0 0 0

]
,

Ai(µi) =
[
−I Ai(µi)

1
2
Adi(µi)

hi
2

Adi(µi) R1Bi(µi) R2Bci(µi)

]
,

Ai(µi) =

 Ai(µi)
1
2
Bi(µi)Cci

1
2
Bci(µi)Ci Ac1i(µi)+

1
2
Ac2i(µi)

 ,
Adi(µi) =

[
0 Bi(µi)Cci

Bci(µi)Ci Ac2i(µi)

]
,

Aij,j 6=i(µi) =
[
Āi1(µi) · · · Āij,j 6=i(µi) · · · ĀiN (µi)

]︸ ︷︷ ︸
N−1

,

Eij,j 6=i(µi) = diag
{
3i1(µi) · · ·3ij(µi) · · ·3iN (µi)

}︸ ︷︷ ︸
N−1

,

R1 =
[
I 0

]T
, R2 =

[
0 I

]T
,

3ij(µi) = εij,j 6=i(µi)Inxi , (42)
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For simplification, the matrix multipliers Gi can be desig-
nated as

Gi =
[
Gi Gi 02nxi×(4nxi+nyi+nui)

]T
, i ∈ N (43)

where the matrices Gi ∈ <2nxi×2nxi are nonsingular.
Now, we further define [28]

Wi=

[
Ui1 I
Ui2 0

]
, Gi=

[
Vi1 •

Vi2 •

]
, G−1i =

[
Ui1 •

Ui2 •

]
,

01 := diag
{
Inxi Inui Inyi Wi Wi Wi Wi

Inyi Inui E
}
,

P̄i = W T
i PiWi, Q̄i = W T

i QiWi,

Z̄i = W T
i ZiWi, M̄i = W T

i MiWi,

(44)

where the matrix Wi ∈ <
2nxi×2nxi is nonsingular; ‘‘•’’ repre-

sents the elements satisfying GiG
−1
i = I.

By substituting the matrix multipliers Gi into (41), we real-
ize a congruence transformation by 01 in (44), and extract the
fuzzy basis functions. The inequality in (38) can be directly
derived. Finally, we perform a congruence transformation
to (26) by 02 := diag{Gi,Gi}, the inequalities (37) can be
obtained.

It is noted that the inequality

h2i Z̄i + M̄i − Sym
{[

Ui1 I
Hi V T

i1

]}
< 0 (45)

in (38) means that
Sym {Vi1} > 0
Sym {Ui1} > 0
Sym

{
Ui1V T

i1 − V
T
i1Ui1 + V

T
i2Ui2

}
> 0

(46)

holds. In this way, it can be seen that the matrices U2i are
nonsingular. Thus, the controller gains could be calculated
by (40). In addition, these two facts, i.e., 5(1) = −W T

i GiWi
and the nonsingular 5(1), imply that the matrices Gi and Wi
are nonsingular. Thus, completing this proof.

IV. SIMULATION EXAMPLES
Consider the large-scale fuzzy system as below:
Plant Rule Rl

i : IF ζi1(t) is F l
i1, THEN

ẋi(t) = Ailxi (t)+ Bil ûi(t ik )+
N∑
j=1
j 6=i

Āijlxj(t)

yi(t) = Cixi(t), l ∈ {1, 2} , t ∈ [tk , tk+1)

where

A11 =
[

0 1
−0.8 0.6

]
, Ā121 =

[
0 0

0.1 0

]
A12 =

[
0 0.9

−1.3 0.7

]
, Ā122 =

[
0 0

0.2 0

]
B11 =

[
0

0.5

]
, B12 =

[
0

0.4

]
,

C1 =
[
1 0

]

FIGURE 2. State responses of subsystem 1.

for the first subsystem, and

A21 =
[

0 1.1
−1 0.6

]
, Ā211 =

[
0 0

0.2 0

]
A22 =

[
0 0.9
−1 0.5

]
, Ā212 =

[
0 0

0.1 0

]
B21 =

[
0

0.4

]
, B22 =

[
0

0.6

]
,

C2 =
[
1 0

]
for the second subsystem.

It is straightforward to see that the open-loop system
is unstable. Here, we assume that hi = 0.001, σy1 =
0.08, σu1 = 0.04, σy2 = 0.08, and σu2 = 0.07. Note
that the free-weighting matrices method proposed in [23]
fails to obtain feasible solutions. However, given the scalars
εi1 = 10, εi2 = 10, ε0 = 0.5, and by applying Theorem 2,
we indeed obtain a feasible solution:

Ac111 =
[

4.5109 4.1842
−4.1934 −3.3908

]
,

Ac211 =
[

0.5740 1.4881
−12.5391 −10.2282

]
,

Ac112 =
2.0620 2.0962
−2.5833 −1.8043

,

Ac212 =
[

2.0455 2.5539
−11.2591 −9.2347

]
,

Bc11 =
[
−5.6291
2.5372

]
, Bc12 =

[
−5.1681
2.4856

]
Cc1 =

[
19.3201 14.9928

]
for the first subsystem, and

Ac121 =
[
1.4503 1.5681
0.3649 0.2381

]
,

Ac221 =
[
−1.2089 0.2072
−6.3197 −4.9639

]
,

Ac122 =
−0.0343 0.4256
1.6731 1.2393

,
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FIGURE 3. State responses of subsystem 2.

FIGURE 4. State responses of controller 1.

FIGURE 5. State responses of controller 2.

Ac222 =
[

0.9037 1.5714
−10.4058 −7.7552

]
,

Bc21 =
[
−5.8172
3.1303

]
, Bc22 =

[
−5.2421
2.9892

]
Cc2 =

[
7.6979 5.2961

]
for the second subsystem.

FIGURE 6. Triggering responses of control subsystem 1.

FIGURE 7. Triggering responses of control subsystem 2.

Based on the above solution and given the initial conditions
x1(0) = [1.1,−1]T , x2(0) = [1.3,−1]T , Figs. 2-5 show
that the state responses for the subsystems 1 and 2, and the
controller 1 and 2 tend to zero. Fig. 6 shows that the number
of data transmissions in the control system 1 reduces from
400 to 11 in the S-C channel, and from 400 to 78 in the
C-A channel, when using event-triggering policy. Fig. 7 shows
that the number of data transmissions in the control sys-
tem 2 reduces from 400 to 8 in the S-C channel, and from
400 to 41 in the C-A channel.

V. CONCLUSIONS
This paper studied the problem of decentralized DOF event-
triggering control for large-scale T-S fuzzy networked sys-
tems with nonlinear interconnections. An event-triggering
control scheme was proposed here, and a decentralized DOF
event-triggering controller was designed to reduce the com-
munications in both the S-C and C-A channels. A novel
model transformation was presented, and a relaxing LKF
combined with SSG method was introduced, the co-design
was implemented to obtain synchronously the DOF con-
troller gains, event-triggered parameter, and sampled period.
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Simulation results illustrate that the designed controller guar-
antees the stability of the control system and the reduction
of data transmissions. Considering the asynchronous premise
variables to the two-channel triggering scheme and applying
these theoretical results to some real-world complicated sys-
tems, such as electric ground vehicles, will be part of our
future research.

Appendix
Lemma A1 [30], [31]: Consider the interconnected sys-
tem in (12) and assume that R1 is internally stable.
The interconnected system in (12) with two subsys-
tems R1 and R2 is robustly stable for all 1 ∈ M if∥∥∥Te ◦G ◦ T−1η ∥∥∥

∞

< 1 holds for some matrices
{
Te,Tη

}
∈

T with T :=
{{
Tη,Te

}
∈ <

nη×nη × <ne×ne : Tη,Te are
nonsingular;

∥∥Tη ◦1 ◦ T−1e

∥∥
∞
≤ 1

}
.
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