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ABSTRACT Mobile edge computing (MEC) providing information technology and cloud-computing
capabilities within the radio access network is an emerging technique in fifth-generation networks. MEC
can extend the computational capacity of smart mobile devices (SMDs) and economize SMDs’ energy
consumption by migrating the computation-intensive task to the MEC server. In this paper, we consider
a multi-mobile-users MEC system, where multiple SMDs ask for computation offloading to a MEC server.
In order to minimize the energy consumption on SMDs, we jointly optimize the offloading selection,
radio resource allocation, and computational resource allocation coordinately. We formulate the energy
consumption minimization problem as amixed interger nonlinear programming (MINLP) problem, which is
subject to specific application latency constraints. In order to solve the problem, we propose a reformulation-
linearization-technique-based Branch-and-Bound (RLTBB) method, which can obtain the optimal result
or a suboptimal result by setting the solving accuracy. Considering the complexity of RTLBB cannot be
guaranteed, we further design aGini coefficient-based greedy heuristic (GCGH) to solve theMINLP problem
in polynomial complexity by degrading the MINLP problem into the convex problem. Many simulation
results demonstrate the energy saving enhancements of RLTBB and GCGH.

INDEX TERMS Mobile edge computing, computation offloading, energy minimization, branch-and-bound
method, reformulation-linearization-technique, Gini coefficient.

I. INTRODUCTION
With the rapid development of the Mobile Internet, the
Internet of Things (IoT) and the novel mobile applica-
tions (e.g., interactive gaming, virtual reality and natural
language processing, etc [1], [2]), the mobile communica-
tions technology has explosively increased during the last
decade [3]. Smart mobile devices (SMDs) gradually become
the major equipments for people’s daily life [4]. In addi-
tion, large number of IoT terminal equipments are applied
to various vertical industries [5]. Meanwhile, the novel
mobile applications typically require intensive computation
and result in high energy consumption [6]–[8]. Also, the
SMD has limited resources (e.g., CPU-cycle frequency, stor-
age, energy, etc). The conflict between resource-intensive
applications and resource-constrained SMDs poses a chal-
lenge for improving mobile users’ QoE. In particular, the
limited battery capacity becomes a major bottleneck for
SMDs [9]. In order to cope with the limited computing

ability and prolong the battery lifetime, Mobile Cloud
Computing (MCC) provides an approach for migrating the
computations to the infrastructure-based cloud server via
computation offloading [10]. However, this migration not
only increase the network load but also causes the delay
fluctuation which influences the latency-sensitive applica-
tion [11]. In order to increase the bandwidth and decrease the
latency, energy consumption and network load for compu-
tation offloading, European Telecommunications Standards
Institute (ETSI) has proposed a promising approach, Mobile
Edge Computing (MEC).

In the MEC framework, cloud computing capabilities are
provided within the Radio Access Network (RAN) in close
proximity to SMDs [12]. In the computation offloading of
MEC, a mobile application can be executed on the SMD
(local execution), or on the MEC server (edge execution).
Due to the short distance between theMEC server and SMDs,
the MEC paradigm can provide low latency, high bandwidth
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and computing agility in computation offloading. However,
both radio and computational resources are limited in MEC.
Particularly, there is limited radio frequency spectrum avail-
able in RAN. Meanwhile, compared with the infrastructure-
based cloud server, the MEC server has limited computation
capabilities considering the economic and scalable deploy-
ment constraints [13]. Thus, the MEC server may not be
qualified to deal with all SMDs’offloading computations. It is
critical to design an efficient offloading scheme. In order to
prolong SMDs’ battery lifetime, utilize radio and compu-
tational resources efficiently, we jointly optimize the selec-
tion of offloading SMDs, radio-and-computational resource
allocation in the offloading scheme. However, to the best
of our knowledge, there are few studies on this challenging
work.

Motivated by the differences between MEC and tradi-
tional MCC, we dedicate to design a computation offload-
ing mechanism for MEC. In this paper, we investigate an
energy minimization problem, which is subject to specified
delay constraints, in order to optimizes offloading selection,
radio resource allocation and computation resource allocation
jointly. We model the problem as a Mixed Integer Nonlinear
Programming (MINLP) problem, which is NP-hard. We pro-
pose an algorithm to solve the problem with adjustable solv-
ing accuracies. Furthermore, we design a heuristic algorithm
to solve the problem in polynomial complexity. The main
contributions of this paper are as follows:
1) To effectively save energy consumption on SMDs,

we jointly optimize the offloading selection, radio
resource allocation and computational resource alloca-
tion coordinately in the energy minimization problem.
To the best of our knowledge, there are few works opti-
mizing these three aspects jointly tominimize the energy
consumption in a multi-users system.

2) We propose a Reformulation-Linearization-Technique
based Branch-and-Bound method (RLTBB) with
adjustable solving accuracy to solve the energy
minimization problem. We use the Reformulation-
Linearization-Technique (RLT) relaxation technique to
convert the original problem to aMixed Boolean-convex
problem. Then, we relax the boolean variables of the
Mixed Boolean-convex problem to continues variables,
thereby obtaining a convex relaxation problem of the
original problem. Based on the convex relaxation prob-
lem, we use the Branch-and-Bound (BB) method to
solve the original problem under the specified solving
accuracy.

3) We design a Gini coefficient based greedy heuris-
tic (GCGH) to reduce the solving complexity of the
energy minimization problem. In this heuristic, through
SMD classification and Gini coefficient calculation, we
can obtain a sorted searching set. Then we greedily
allocate the radio resource and computational resource
among SMDs of the searching set. Thus we obtain
a suboptimal solution of the problem in polynomial
complexity.

The rest of the paper is organized as follows. In Section II,
we review related work. In Section III, we present the sys-
tem model of multi-device MEC computation offloading and
formulate the energy minimization problem as an MINLP
problem. In Section IV, we present both the RLTBB and
the GCGH in detail. In Section V,we present the simulation
results. Finally, the conclusion is drawn in Section VI,.

II. RELATED WORKS
The computation offloading has been attracting significant
attention in recent years. Earlier works dedicated to migrate
the computation of mobile application to an infrastructure-
based cloud server (i.e., MCC). To extend the computation
capability of SMD and prolong the lifetime of battery, differ-
ent code offloading schemes (e.g.,MAUI [14], ThinkAir [15],
Phone2Cloud [16], etc) were proposed in the single-user sce-
nario. In [17], a potential game based decentralized scheme
was proposed to solve the multi-user offloading problemwith
multiple objectives, i.e., the energy consumption minimiza-
tion and application latency minimization. The decentral-
ized scheme can achieve a Nash equilibrium and reduce the
controlling and signaling overhead. In [18], to improve the
offloading performance of mobile tasks, Cao et al. [18] posed
the optimal radio resource allocation problem for the mobile
task offloading in cellular network. An adjustment method,
which can adjust a feasible resource block (RB) allocation
plan to a candidate optimal plan, was designed to find the
optimal solution. However, due to the cloud servers are typi-
cally located in the core network, computation offloading in
MCC leads to high energy consumption and fluctuant latency.

To reduce the energy consumption and latency in compu-
tation offloading, ETSI proposed MEC which can provide
Information Technology (IT) and cloud-computing capabil-
ities within the RAN in close proximity to mobile sub-
scribers [19]. Recently, there are some works [20]–[22] on
computation offloading in MEC with various objectives.
Lin et al. [20] developed an offloading framework, named
Ternary Decision Maker (TDM), which aimed to shorten
response time and reduce energy consumption at the same
time. A more flexible execution environment for mobile
applications was adopted. On account of the comprehen-
sive modeling and the practical simulation environment,
Lin et al. [20] gave good contributions on computation
offloading. However, [20] considered the single user sce-
nario, and would be better to extend to the multiuser scenario.
Wang et al. [21] incorporated dynamic voltage scaling (DVS)
into computation offloading in a single-user scenario. They
investigated partial computation offloading by jointly opti-
mizing the computational speed of SMD, transmit power of
SMD, and offloading ratio. An energy-optimal partial compu-
tation offloading (EPCO) algorithmwas proposed to solve the
nonconvex energy consumption minimization problem. Fur-
thermore, a local optimal algorithm was proposed to handle
the nonconvex and nonsmooth latency minimization prob-
lem. You et al. [22] studied resource allocation for a multiuser
mobile-edge computation offloading (MECO) system based
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on time-division multiple access (TDMA) and orthogonal
frequency-division multiple access (OFDMA) to minimize
the mobile energy consumption. [22] gave comprehensive
modeling analyses. Moreover, for the TDMAMECO system
with infinite computation capacity, an optimal policy was
designed. For the TDMA MECO system with finite compu-
tation capacity and the OFDMAMECO system, respectively,
two sub-optimal algorithms were designed. But [21], [22]
concentrated on the offloading proportion of users mainly,
and ignored the joint optimization of radio and computational
resources.

There are some literatures [13], [23]–[25] concentrated on
the joint optimization of radio and computational resources
in multiuser MEC system. Labidi et al. [23] jointly optimized
the radio resource scheduling and computation offloading to
minimize the average energy consumption on SMDs under
the average delay constraints. Zhang et al. [24] studied
the MEC in 5G heterogeneous networks and jointly opti-
mized the offloading and radio resource allocation to min-
imize the system energy consumption. In [25], the radio
resource1 and computational resource allocation were jointly
optimized to minimize the weighted sum energy consump-
tion in a MIMO system. A successive convex approximation
based iterative algorithmwas developed. However, study [25]
assumed that all SMDs must migrate computation to the
MEC server simultaneously. Yu et al. [13] jointly selected the
offloading SMDs and allocated subcharriers in an Orthogonal
Frequency-Division Multiplexing Access (OFDMA) system
and CPU time in the MEC server, to minimize the energy
consumption on SMDs. A heuristic was designed to obtain a
suboptimal result. However, this work allocated the CPU time
slots non-preemptively and sorted the execution sequence on
MEC server based on the energy saving. This queuing mech-
anism may cause an improper execution sequence and waste
resources. Furthermore, there are some studies investigating
to save energy by optimizing content storage and distribution
in highly distributed servers. For example, Jalali et al. [26]
studied energy consumption of nano data center (nDCs).
Jalali et al. [26] showed that nano servers in Fog computing
can complement centralized data centers (DCs) to server
applications, and lead to energy saving if the applications
(or part of them) are off-loadable from centralized DCs and
run on nDCs.

Different from the previous works, our paper concentrates
on the computation offloading for MEC by jointly opti-
mizing the offloading, subchannel allocation and CPU-cycle
frequency assignment.

III. SYSTEM MODEL AND PROBLEM FORMULATION
A. SYSTEM MODEL
Fig. 1 shows the systemmodel, where SMDs can offload their
computation tasks to the MEC server through a cellular net-
work. The set of SMDs can be denoted asN = {1, 2, . . . ,N }.

1In [25], the radio resources are the transmit precoding matrices, and the
computational resources are the CPU-cycle frequencies.

FIGURE 1. The system model.

SMD i has a computation task Ai , (Di,Ci,T thi ), where Di
denotes the size of computation input data (e.g., the program
codes and input parameters) involving in the computation
task Ai. Ci denotes the total number of CPU cycles required
to accomplish the computation task Ai, and T thi denotes the
corresponding delay constraint. Each SMD can execute its
task by local execution, or by edge execution. We define the
offloading vector as α = [α1, α2, . . . , αN ]. If SMD i executes
its task by local execution, αi = 0, otherwise, αi = 1.

1) LOCAL EXECUTION MODEL
We define F li as the maximal CPU-cycle frequency (i.e., CPU
cycles per second) of SMD i, and define f li as the CPU-cycle
frequency to compute task Ai. When task Ai is executed by
local execution (i.e., αi = 0), the required time is

t li =
Ci
f li

(1)

and corresponding energy consumption of SMD i is

eli = κ
(
f li
)2
Ci (2)

where κ is the effective switched capacitance depending on
the chip architecture [27]. We set κ = 10−26 according to the
practical measurement in [28]. Considering that the energy
consumption grows with the allocated CPU-cycle frequency,
we can minimize the energy consumption by controlling the
CPU-cycle frequency with DVS technique [21]. The allo-
cated CPU-cycle frequency is controlled as

f li = min

{
Ci
T thi

,F li

}
(3)

2) EDGE EXECUTION MODEL
Thewireless channel is constituted of L orthogonal frequency
subchannels. The achievable uplink rate for SMD i in sub-
channel n can be obtain as

rni = W log
(
1+

pni h
n
i

WN0

)
. (4)

WhereW is the bandwidth of a subchannel, pni is the transmit
power of SMD i in subchannel n, hni is the channel gain of
SMD i in subchannel n, and N0 is the noise power spectral
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density. We consider an average scenario of long term.2

In order to concentrate more on the algorithm design, we
simplify the communication model and make an assumption.
Assumption 1: We assume the subchannels to be homo-

geneous for each SMD (i.e., the channel gains of different
subchannels are the same for a SMD, while they can be
different for different SMDs). Accordingly, equal power is
allocated to each assigned subchannel.

Assumption 1 is adopted in literatures [29] and [30], and is
reasonable since the small-scale fading are average out and
only the large-scale fading (e.g., path-loss and shadowing)
affects. Accordingly, the SNR is constant with respect to
frequency sine the slow fading coefficients are independent
of frequency [31]. Based on Assumption 1, the achievable
uplink rate for SMD i in each subchannel can be obtain as

ri = W log
(
1+

phi
WN0

)
. (5)

Where p is the transmit power of each SMD in each assigned
subchannel, hi is the channel gain of SMD i in each subchan-
nel. We denote the number of subchannels assigned to SMD i
as θi . When αi = 0, θi = 0. Otherwise, θi > 0.3 Accordingly,
the achievable uplink rate for SMD i can be given as

Ri = riθi. (6)

We define F as the maximal CPU-cycle frequency of
the MEC server, and define fi as the assigned CPU-cycle
frequency to compute task Ai on the MEC server [6], [25].
When task Ai is executed by edge execution (i.e., αi = 1),
the required time of Ai is

tci =
Di
Ri
+
Ci
fi

(7)

and corresponding energy consumption of SMD i is

eci = PTi
Di
Ri
+ PIi

Ci
fi

(8)

where PTi is the transmit power of SMD i, PIi is the
power consumption in idle state. We ignore the time and
energy consumption of receiving the result, because the
data size of result is much smaller than the input data
size [6], [13], [24].

B. PROBLEM FORMULATION
The objective of the paper is to minimize the total
energy consumption on SMDs under specified latency con-
straints. To this end, the problem can be formulated as

2We consider that there is a long period comprised of many time slots. The
channel state and resource allocation in each time slot may be different. We
use the mean value of all time slots to express the average state of the long
period.

3We assume the subchannel number is a continuous variable in the
average scenario of a long term. Although there is a specific allocated
subchannel number (discrete variable) in each time slot, the average allocated
subchannel number in a long period can be conducted as a continuous
variable.

follows:

min
α,θ ,f

N∑
i=1

αi

(
PTi

Di
Ri
+ PIi

Ci
fi

)
+ (1− αi)κ

(
f li
)2
Ci

s.t. C1 : 0 ≤ fi ≤ αiF

C2 :
N∑
i=1

fi ≤ F

C3 : 0 ≤ θi ≤ αiL

C4 :
N∑
i=1

θi ≤ L

C5 : αi

(
Di
Ri
+
Ci
fi

)
+ (1− αi)

Ci
f li
≤ T thi

C6 : αi ∈ {0, 1} ∀i ∈ N (9)

where α is the execution indicator vector, θ = [θ1, θ2, . . . ,
θN ] is the radio resource allocation and f = [f1, f2, . . . , fN ]
is the computational resource allocation. In addition, we set
αi(PTi

Di
Ri
+PIi

Ci
fi
) = 0 and αi(

Di
Ri
+

Ci
fi
) = 0 when αi = 0 [32].

C1 is the constraint of the available computational resource
to be allocated for user i.
C2 indicates that the total allocated computational resource
cannot exceed F at the MEC server.
C3 represents the constraints of available radio resource to be
allocated for user i.
C4 is the constraint of total radio resource in RAN.
C5 indicates that each taskAimust meet the specified latency
constraint T thi .
C6 specifies that each SMD completes its task either by local
execution or by edge execution.
Lemma 1: When T thi ≥

Ci
F li
,∀i ∈ N , problem (9) has an

optimal solution.
To guarantee that problem (9) has an optimal solution,

we restrict T thi ≥
Ci
F li
,∀i ∈ N . Due to the Knapsack problem

is a NP complete problem and Problem (9)is extended from
the Knapsack problem, problem (9) is NP-hard [29].

IV. PROBLEM SOLUTION
In this section, we introduce an accuracy-adjustable
algorithm, RLTBB, and a suboptimal algorithm, GCGH.

A. REFORMULATION-LINEARIZATION-TECHNIQUE BASED
BRANCH-AND-BOUND METHOD
1) PROBLEM REFORMULATION
To avoid the divide-by-zero error, we introduce two
microscales, ε1 and ε2, to convert (9) as given by

min
α,θ ,f

N∑
i=1

{
αi

[
PTi Di

ri(ε1+θi)
+
PIiCi
ε2+fi

]
+(1−αi)κ

(
f li
)2
Ci

}
s.t. C1− C4,C6

C7 : αi

[
Di

ri(ε1+θi)
+

Ci
ε2+fi

]
+(1−αi)

Ci
f li
≤ T thi ,

∀i ∈ N (10)
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Lemma 2: Problem (10) is sensible to ε1 and ε1 for obtain-
ing a lower bound of problem (9).

Problem (10) is sensible to ε1 and ε1 for obtaining a lower
bound of problem (9). We define two auxiliary variables,
βi = (ε1 + θi)−1 and γi = (ε2 + fi)−1, and reformulate (10)
as follows:

min
α,β,γ

N∑
i=1

[
αi

(
PTi Di
ri

βi + PIiCiγi

)
+ (1− αi)κ

(
f li
)2
Ci

]

s.t. C7 : αi

(
Di
ri
βi + Ciγi

)
+ (1− αi)

Ci
f li
≤ T thi

C8 :
1

αiL + ε1
≤ βi ≤

1
ε1

C9 :
1

αiF + ε2
≤ γi ≤

1
ε2

C10 :
N∑
i=1

1
βi
≤ L + Nε1

C11 :
N∑
i=1

1
γi
≤ F + Nε2

C6 ∀i ∈ N (11)

(11) is a nonconvex problem because of the discrete variables
and the second order terms in the form of x · y. RLT can
linearize the second order terms in the form of x ·y [33], [34].
Therefore, we can get a convex relaxation problem of (9)
based on RLT and the relaxation 0 ≤ αi ≤ 1. Particularly,
we adopt the RLT to linearize the objective function and
constraint C7 in Problem (11). For the second order term
αi · βi, we define µi = αi · βi. αi is bounded as 0 ≤ αi ≤ 1
and βi is bounded as 1

L+ε1
≤ βi ≤

1
ε1
. We can obtain the RLT

bound-factor product constraints for µi as

{
[αi − 0] ·

[
βi −

1
L + ε1

]}
LS
≥ 0{

[1− αi] ·
[
βi −

1
L + ε1

]}
LS
≥ 0{

[αi − 0] ·
[
1
ε1
− βi

]}
LS
≥ 0{

[1− αi] ·
[
1
ε1
− βi

]}
LS
≥ 0

∀i ∈ N (12)

{·}LS represents a linearization step under µi = αi · βi.
By substituting µi = αi · βi, we obtain

µi −
1

L + ε1
αi ≥ 0

βi −
1

L + ε1
− µi +

1
L + ε1

αi ≥ 0

1
ε1
αi − µi ≥ 0

1
ε1
− βi −

1
ε1
αi + µi ≥ 0

∀i ∈ N (13)

For the second order term αi ·γi, we define ωi = αi ·γi. Since
0 ≤ αi ≤ 1 and 1

F+ε2
≤ γi ≤

1
ε2
, the RLT bound-factor

product constraints for ωi are

ωi −
1

F + ε2
αi ≥ 0

γi −
1

F + ε2
− ωi +

1
F + ε2

αi ≥ 0

1
ε2
αi − ωi ≥ 0

1
ε2
− γi −

1
ε2
αi + ωi ≥ 0

∀i ∈ N (14)

After substituting µi and ωi into the objective and C7 in (11),
we obtain a convex optimization problem relaxation (15) as

min
α,β,γ ,µ,ω

N∑
i=1

[
PTi Di
ri

µi + PIiCiωi + (1− αi)κ
(
f li
)2
Ci

]
s.t. C8− C11

C12 : 0 ≤ αi ≤ 1

C13 :
(
Di
ri
µi + Ciωi

)
+ (1− αi)

Ci
f li
≤ T thi

C14 : (13)

C15 : (14) ∀i ∈ N (15)

The optimal value of (15), E (E = +∞, if problem (15) is
infeasible), is a lower bound of problem (9).

We define N1 , {i | i ∈ N , αi = 1} and N0 , {i |
i ∈ N , αi = 0}. Obviously, when α is determined, (9) can be
converted to problem (16) as

min
θ ,f

∑
j∈N0

κ
(
f lj
)2
Cj +

∑
i∈N1

(
PTi Di
riθi
+
PIiCi
fi

)
s.t. C1− C4, ∀i ∈ N

C16 :
Di
riθi
+
Ci
fi
≤ T thi , ∀i ∈ N1 (16)

The optimal value of (16), E (E = +∞, if (16) is infeasible),
is a upper bound of (9).
Lemma 3: Problem (15)(16) are convex optimization

problems.
Therefore, we adopt the BB4 method based on (15), (16),

which can be solved by the state-of-the-art convex optimiza-
tion algorithms, to solve the (9).

2) PROCESS OF THE RLTBB
In order to implement the BB method, we build a search tree,
which is generated based on the depth-first strategy. The root
node of the tree represents problem (9). A lower bound of E∗,
the optimal result of (9), is L1 = E . We define {α,β, γ ,µ,ω}
as the optimal solution of (15). Then we obtain an α by the
method

α = [αi | αi =

{
1, αi > 0.5
0, αi ≤ 0.5

∀αi ∈ α] (17)

4BB method is an algorithm design paradigm for discrete and combina-
torial optimization problems [35]. The method was first proposed by A. H.
Land and A. G. Doig in 1960 for discrete programming [36].
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We determine N0 and N1 based on α and calculate the opti-
mal value, E , of (16). A upper bound of E∗ is U1 = E . The
allocation strategy corresponding to U1 is SU1 = {α, θ , f }
(SU1 = ∅, if U1 = +∞). We define {α∗, θ∗, f ∗} as the
optimal solution of (9). IfU1−L1 ≤ ε, where ε is the required
tolerance5 (i.e., the solving accuracy), we can terminate the
search and {α∗, θ∗, f ∗} = SU1. Otherwise, we select an
unpruned leaf node with the maximal depth and the lowest
lower bound for further branching.

Now we are going to branch. At this time, we assume that
the branching process is the bth branching. Pick the node k ,
with the maximal depth and the lowest lower bound, and form
two problems: The first problem is

min
α,θ ,f

N∑
i=1

αi

(
PTi

Di
Ri
+ PIi

Ci
fi

)
+ (1− αi)κ

(
f li
)2
Ci

s.t. C1− C6, ∀i ∈ N
C17 : {α1, α2, . . . , α|d(k)|, α|d(k)|+1} = {d(k), 0} (18)

and the second problem is

min
α,θ ,f

N∑
i=1

αi

(
PTi

Di
Ri
+ PIi

Ci
fi

)
+ (1− αi)κ

(
f li
)2
Ci

s.t. C1− C6, ∀i ∈ N
C18 : {α1, α2, . . . , α|d(k)|, α|d(k)|+1} = {d(k), 1} (19)

Where d(k) is a parameter of node k , and denotes the deter-
mined execution strategy. |d(k)| indicates the element num-
ber of d(k). For the root node, k = 1, d(k) = ∅ and
|d(k)| = 0. Problem (18) and (19) represent the left and
right child node of node k , respectively. We defineNd as the
determined execution strategy set (i.e., each element in Nd
equals either 0 or 1), Nd0 , {i | i ∈ Nd , αi = 0} and Nd1 ,
{i | i ∈ Nd , αi = 1}. The corresponding convex relaxation
based on the RLT technique of problem (18) and (19) are

min
α,θ̇ , ˙f c,β̈,γ̈ ,µ̈,ω̈

∑
j∈Nd0

κ
(
f lj
)2
Cj +

∑
i∈Nd1

(
PTi Di
riθ̇i
+
PIiCi
ḟ ci

)

+

∑
g∈N \Nd

[
PTgDg
rg

µ̈g + PIgCgω̈g

+ (1− αg)κ
(
f lg
)2
Cg

]
s.t. C1,C3, ∀i ∈ Nd

C8,C9,C12− C15, ∀i ∈ N \Nd

C16, ∀i ∈ Nd1

C19 :
∑
i∈Nd1

θ̇i +
∑

g∈N \Nd

(
1

β̈g
− ε1

)
≤ L

C20 :
∑
i∈Nd1

ḟ ci +
∑

g∈N \Nd

(
1
γ̈g
− ε2

)
≤ F

C21 : Nd = {d(k), 0} (20)

5If ε = 0, RLTBB is an optimal algorithm; if ε > 0, RLTBB is a
suboptimal algorithm.

and

min
α,θ̇ , ˙f c,β̈,γ̈ ,µ̈,ω̈

∑
j∈Nd0

κ
(
f lj
)2
Cj +

∑
i∈Nd1

(
PTi Di
riθ̇i
+
PIiCi
ḟ ci

)

+

∑
g∈N \Nd

[
PTgDg
rg

µ̈g + PIgCgω̈g

+ (1− αg)κ
(
f lg
)2
Cg

]
s.t. C1,C3, ∀i ∈ Nd

C8,C9,C12− C15, ∀i ∈ N \Nd

C16, ∀i ∈ Nd1

C19,C20
C22 : Nd = {d(k), 1} (21)

problem (20) and (21) are convex problems. In order to obtain
the lower bound of the left and right child node, we calculate
the optimal values, E2b and E2b+1, corresponding to con-
vex problems (20) and (21), respectively. The corresponding
execution indicators of problem (20) and (21) are α2b and
α2b+1, respectively. Then we calculate the corresponding
α2b and α2b+1 based on (17). We calculate the upper bound
E2b of problem (18) based on problem (16) and α2b, and
define the corresponding solution as SU2b = {α2b, θ2b, f 2b}.
In the same way, we calculate the upper bound E2b+1 of
problem (19) based on problem (16) andα2b+1, and define the
corresponding solution as SU2b+1 = {α2b+1, θ2b+1, f 2b+1}.
Then we calculate the lower and upper bound, Lb+1 and

Ub+1, of E∗. Lb+1 equals the minimal lower bound of all
the unpruned leaf nodes. In the same way, Ub+1 equals
the minimal upper bound of all the unpruned leaf nodes,
and SUb+1 equals the solution SU corresponding to Ub+1.
We prune unnecessary leaf nodes whose lower bounds are
greater than Ub+1. After that, we update b = b + 1 and
continue the above process until Ub − Lb ≤ ε. The results
are E∗ = Ub, {α∗, θ∗, f ∗} = SUb. Algorithm 1 shows the
process of RLTBB algorithm.
Theorem 1: RLTBB can converge and its computation

complexity is exponential.
Proof: See Appendix D.

B. GINI COEFFICIENT BASED GREEDY HEURISTIC
Although RLTBB can solve problem (9) with adjustable solv-
ing accuracy (i.e., optimally or approximately), RLTBB can
not guarantee the time complexity [37]. In order to reduce
the solving complexity, we design the GCGH to obtain a
suboptimal result of (9) in polynomial complexity. The major
concept is the Gini Coefficient which is an efficient index,
between 0 and 1, for assessment on regional income inequal-
ity. The smaller is the Gini Coefficient, the more equal is
the income distribution (i.e., there are more SMDs’ incomes
consisting the majority of total income), and vice versa.
Motivated by the indicative function of Gini Coefficient,
we design a index function based on the Gini Coefficient to
obtain the SMD set Ss1o where its SMDs can contribute to
the majority of energy saving. Then we allocate resources
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Algorithm 1 RLTBB Algorithm
1: Initialization:
2: Set required tolerance ε
3: Initialize L1 = E , U1 = E , SU1 = {α, θ , f }, b = 1 and

Lup1 = Ls1 = {1}
4: Calculate the total energy consumption, E localall , when all

the SMDs execute their application locally.
5: while ((Ub − Lb) > ε · (E localall − Lb)) do
6: Select k = argmini∈Ls

b
{E i}, and split the leaf node k

into two subproblems
7: Solve the problem (20)(21) to obtain E2b, E2b+1, α2b

and α2b+1
6

8: Calculate α2b and α2b+1 based on method (17) to
obtain E2b, E2b+1, SU2b and SU2b+1

7

9: form Lupb+1 from Lupb by removing k and adding 2b and
2b+ 1

10: Lpb+1 := {i | i ∈ Lupb+1,E i > Ub}
11: Lupb+1 := Lupb+1\L

p
b+1

12: Lsb+1 := {i | i = argmaxj∈{k|k∈Lup
b+1,|d(k)|6=N }

|d(j)|}
13: Lb+1 := mini∈Lup

b+1
E i

14: Ub+1 := mini∈Lup
b+1

E i, SUb+1 := SU argmini∈Lupb+1
E i

15: b := b+ 1
16: end while
17: Output:
18: E∗ = Ub
19: {α∗, θ∗, f ∗} = SUb

to SMDs belonging to Ss1o greedily. Generally, the GCGH
scheme is divided into three stages, which are stated as fol-
lows.
• Stage 1: SMD classification. The SMDs are classified
into two types according to the Basic Offloading Condi-
tion.

• Stage 2: Gini Coefficient calculation. Sort the SMDs,
which satisfy the Basic Offloading Condition, according
to the Income function. Calculate the Gini Coefficient
and divide the set.

• Stage 3: Resource allocation. Allocate the radio
resource and computational resource to the SMDs
belonging to the searching set, which is obtained in stage
2, by a greedy algorithm.

1) SMD CLASSIFICATION
The less |N | in (9) is, the easier solving (9) is. Motivated
by this relation, we reduce the problem scale of (9) by a
Basic Offloading Condition. We define the Basic Offloading
Condition as
Definition 1 (Basic Offloading Condition): If the task of

SMD i is executed by the edge execution, SMD i should
satisfy the following two conditions, Di

riL
+

Ci
F ≤ T thi and

PTi Di
riL
+

PIiCi
F < κ(f li )

2Ci.
Theorem 2: The SMDs, which do not satisfy the Basic

Offloading Condition, must execute their tasks by local
execution.

Proof: See Appendix E.
So we classify SMDs into two types, the locally execut-

ing set Sl and optionally executing set So, according to the
Basic Offloading Condition. SMDs not satisfying the Basic
Offloading Condition are classified into Sl , the others are
classified into So. Considering that SMDs in Sl must execute
their application locally, we consider So as N in (9) and do
not deal with Sl , thereby reducing the problem scale of (9).

2) Gini COEFFICIENT CALCULATION
We define the Income Function as
Definition 2 (Income Function):

8(i)=ηi

[
κ
(
f li
)2
Ci−

(
PTi Di
riL
+
PIiCi
F

)]+
, i ∈ So (22)

where [x]+ = max{x, 0}. ηi is the weight factor of SMD i’s
energy saving and is calculated as

ηi=

(
T thi

Di
riL
+

Ci
F

)(∑
j∈So θ

n
j

|So|θni
+

∑
j∈So f

n
j

|So|f ni

)
, i ∈ So (23)

where θni =
Di

T thi −
Ci
F

, i ∈ So and f ni =
Ci

T thi −
Di
riL

,

i ∈ So.
[
κ
(
f li
)2
Ci −

(
PTi Di
riL
+

PIiCi
F

)]+
denote the offload-

ing energy saving when all the radio resource and compu-
tational resource are allocated to SMD i. In order to take
the required radio resource, required computational resource
and latency of a application into consideration, we introduce
the weight factor. In the weight factor, we use the dimen-

sionless
∑

j∈So θ
n
j

|So|θni
express the radio resource efficiency in

energy saving of SMD i. Similarly, we use the dimensionless∑
j∈So f

n
j

|So|f ni
express the computational resource efficiency in

energy saving of SMD i. Considering the latency related to
the radio resource and computational resource, we introduce

the latency ratio
T thi

Di
riL
+
Ci
F

as a multiplier in the weight factor.

The higher ηi is, the higher offloading income SMD i has.
And vice versa. Therefore, we design the weight factor of
energy saving as (23).

We calculate all the income of SMDs in So according to the
Income Function. We sort all the SMDs belonging to So in
ascending order of the income 8s: 81 ≤ 82 ≤ · · · ≤ 8|So|.

The sorted So is defined as Sso. We defineW =
|So|∑
i=1

8i as the

sum income, and define wi = 1
W

i∑
j=1
8j, i = 1, 2, · · · , |Sso| as

the cumulative income ratio. Therefore, we calculate the Gini
Coefficient G as

G = 1−
1
|Sso|

1+ 2
|Ss
o|−1∑
i=1

wi

 (24)

and define the partition index I as

I = min
{⌈

1
G

⌉
+

⌈
K
|Sso|

(|Sso| −
⌈
1
G

⌉
)
⌉
, |Sso|

}
(25)

VOLUME 5, 2017 11261



P. Zhao et al.: Energy-Saving Offloading by Jointly Allocating Radio and Computational Resources for MEC

where

K = min {
⌊

L
θnmax

⌋
,

⌊
F
f nmax

⌋
, |Sso|}

θnmax = max {θni ,∀i ∈ Sso}
f nmax = max {f ni ,∀i ∈ Sso} (26)⌈

1
G

⌉
can denote the number of SMDs contributing to the

majority of total income.
⌈

K
|Ss
o|

(
|Sso| −

⌈
1
G

⌉)⌉
is a correction

term of
⌈

1
G

⌉
. K denotes the load capacity of resources. K

|Ss
o|
is

the weight factor of the gap
(
|Sso| −

⌈
1
G

⌉)
. Then we further

reduce the problem scale of (9) and obtain the searching
space Ss1o , whose SMDs are sorted by offloading income,
from Sso as

Ss1o ← {Sso|Ss
o|
, Sso(|Ss

o|−1)
, · · · , Sso(|Ss

o|+1−I )
} (27)

3) RESOURCE ALLOCATION
In this stage, we adopt a greedy algorithm into Ss1o to obtain
a suboptimal solution. Firstly, we initialize

Es =
N∑
i=1

κ
(
f li
)2
Ci,N s

1 = ∅,N
s
0 = N , θ s

= [0, 0, · · · , 0]︸ ︷︷ ︸
N

and f s = [0, 0, · · · , 0]︸ ︷︷ ︸
N

.

Secondly, we check each SMD in Ss1o whether to be offloaded
based on problem (16). For the first SMD of Ss1o , if adding
it into N s

1 (N s
0 = N \N s

1 ) has energy saving (i.e., the cor-
responding optimal value E of problem (16) is smaller than
Es), we add the SMD into N s

1 , E
s
= E , θ s = θ and f s = f

({θ , f } and E are the optimal solution and optimal value of
(16) based on the N s

1 and N s
0 ,respectively); otherwise, N

s
1 ,

Es, θ s and f s keep unaltered. The remained SMDs of of Ss1o
are checked in the same way as the first SMD. When all
the SMDs are checked, the checking procedure is terminated.
Finally, we obtain a suboptimal value of problem (9), Es, and
the corresponding suboptimal solution, θ s, f s and

αs = [αsi | α
s
i =

{
1, i ∈ N s

1

0, i ∈ N s
0
∀i ∈ N ] (28)

The detail of the proposed GCGH scheme is illustrated in
Algorithm 2
Theorem 3: The computation of GCGH scheme has poly-

nomial complexity.
Proof: See Appendix F.

V. SIMULATION RESULTS
There is an orthohexagonal region, which is covered by
an eNB located at the center, with 500m in diameter.
SMDs are randomly scattered over the region. There is
an MEC server located in the eNB, whose computation
capability is F = 5GHz/sec. The SMD’s idle power and
transmission power are set to be PIi = 10mWatts and
PTi = 100mWatts [17], respectively. And the computational

Algorithm 2 GCGH Algorithm
1: Stage 1: SMD classification
2: Initialize Sl = So = ∅
3: for i = 1 : N do
4: if Di

riL
+

Ci
F ≤ T

th
i &

PTi Di
riL
+

PIiCi
F < κ(f li )

2Ci then
5: So = {So, i}
6: else
7: Sl = {Sl, i}
8: end if
9: end for
10: Stage 2: Gini Coefficient calculation
11: Calculate 8(i)|i∈So by the Income Function
12: Sort 8s in ascending order: 81 ≤ 82 ≤ · · · ≤ 8|So|,

Sso← the sorted So
13: Calculate the cumulative income rate

W =
|Ss
o|∑

i=1

8i, wi|i=1,2,··· ,|Ss
o|
=

1
W

i∑
j=1

8j

14: Calculate the Gini Coefficient G and the partition index
I by formulation (24)-(26)

15: Obtain Ss1o from Sso based on I and formulation (27):
16: Stage 3: Resource allocation

17: Initialize Es =
N∑
i=1

ViCi, N s
1 = ∅, N

s
0 = N , θ s =

[0, 0, · · · , 0]︸ ︷︷ ︸
N

and f s = [0, 0, · · · , 0]︸ ︷︷ ︸
N

18: for i = 1 : |Ss1o | do
19: N1← {N s

1 ,S
s
oi}, N0← N \N1

20: Solve problem (16) based on N1 and N0 to obtain the
optimal result E, θ , f

21: if E < Es then
22: N s

1 = N1,N s
0 = N \N s

1 ,E
s
= E, θ s = θ , f s = f

23: end if
24: end for
25: Calculate the execution indicator by formulation (28)
26: Output:
27: The suboptimal result Es,αs, θ s, f s

capability of each SMD is F li = 0.5GHz. We simu-
late the face recognition application [38]. The data size8

of the computation offloading and total number of CPU
cycles9 are Gaussian distributions, Di ∼ N (400, 100) and
Ci ∼ N (1000, 100).
The proposed algorithms are compared with three meth-

ods. The optimal results are obtained by brute-force search.
In this case, when the offloading selection is given, we use
the convex optimal method to calculate the radio and compu-
tational resource allocations. ‘‘All-Local’’ stands for that all
SMDs execute their applications locally. ‘‘Greedy Heuristic’’
is a greedy heuristic which loses sight of Gini Coefficient Cal-
culation (i.e., Stage 2) compared with GCGH. ‘‘RLTBB-ε =
0.6’’ stands for the RLTBB with solving accuracy ε = 0.6.

8The data size is measured by KB
9The number of CPU cycles is measured by Megacycles
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FIGURE 2. CDF of energy consumption, |N | = 10, L = 500, F = 5GHz, T th
i =

Ci
F l
i
,∀i ∈ N .

Similarly, ‘‘RLTBB-ε = 0.2’’ and ‘‘RLTBB-ε = 0’’ stand
for the RLTBBs with solving accuracies ε = 0.2 and ε = 0,
respectively.

A. CDF OF THE ENERGY CONSUMPTION
CDFs of energy consumption under different algorithms are
shown in Fig. 2. From the curves, RLTBB-ε = 0 can obtain
the optimal result. RLTBB-ε = 0.2, RLTBB-ε = 0.6 and
GCGH can not achieve the optimal result, but their results
save much energy compared with All-Local. The energy
savings of GCGH, RLTBB-ε = 0.2, RLTBB-ε = 0.6
and Greedy Heuristic achieve 97.97%, 94.69%, 93.54% and
90.08% of the optimal energy saving, respectively. The result
of GCGH is smaller than that of Greedy Heuristic. Greedy
Heuristic does not have the Stage 2 compared with GCGH.
Thus, Greedy Heuristic is short of the selecting pertinence of
offloading SMDs. SMDs with processed priority are supe-
rior to SMDs with unprocessed priority on energy saving.
The result of RLTBB-ε = 0.2 is superior to the result
of RLTBB-ε = 0.6 on account of that the solving accuracy
of RLTBB-ε = 0.2 is smaller. In addition, we see that
RLTBB-ε = 0.2 and RLTBB-ε = 0.6 achieve the same
result usually. The reason is that the gap between the upper
bound and lower bound in RLTBB decreases leapingly
(i.e., the gap may decrease from ‘‘> 0.6 · (E localall − Lb)’’
to ‘‘≤ 0.2 · (E localall − Lb)’’ once).

B. SUBCHANNEL NUMBER
We investigate the impact of subchannel number in Fig. 3.
From Fig. 3, we observe that RLTBB-ε = 0 can achieve
the optimal result. GCGH and RLTBB-ε = 0.2 can
achieve near-optimal results. The energy savings of GCGH,
RLTBB-ε = 0.2, RLTBB-ε = 0.6 and Greedy Heuristic
achieve 98.09%, 97.14%, 92.90% and 91.96% of the optimal
energy saving, respectively. In Fig. 3, the All-Local curve is
almost invariant, because the local execution needs not to be
transmitted wirelessly and the energy consumption of local
execution does not change with the subchannel number. The
other curves decrease with the subchannel number increas-
ing. The reason is that the more subchannels there are, the
shorter the transmitting time is Thus, there will be more edge
execution SMDs and edge execution SMDs can economize

FIGURE 3. Energy consumption w.r.t. subchannel number,
|N | = 10, F = 5GHz, T th

i =
Ci
F l
i
,∀i ∈ N .

the transmitting energy. And the total energy consumption
on SMDs decrease. Furthermore, we see that GCGH curve is
usually under RLTBB-ε = 0.2 curve, however, GCGH curve
is above RLTBB-ε = 0.2 curve occasionally. The reason is
that GCGH can not grantee the solving accuracy. But, with
luck, the overall performance of GCGH is always very well.
In Fig. 3, the optimal energy saving increases slowly with
subchannel increasingwhen L ≥ 500, because the number of
offloaded SMDs is mainly restrained by the computational
resource at this time.

C. CPU-CYCLE FREQUENCY OF MEC SERVER
Fig. 4 shows the impact of the MEC server’s CPU-cycle
frequency. From Fig. 4, we see that GCGH can achieve
the optimal result. GCGH and RLTBB-ε = 0.2 can
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FIGURE 4. Energy consumption w.r.t. CPU-cycle frequency of MEC server,
|N | = 10, L = 500, T th

i =
Ci
F l
i
,∀i ∈ N .

achieve near-optimal results. The energy savings of GCGH,
RLTBB-ε = 0.2, RLTBB-ε = 0.6 and Greedy Heuristic
achieve 96.27%, 90.76%, 90.23% and 90.80% of the optimal
energy saving, respectively. In Fig. 4, the All-Local curve
is almost invariant, because the local execution does not
employ the MEC servers computational resource and the
energy consumption of local execution does not change with
the MEC servers CPU-cycle frequency. The other curves
decrease with theMEC servers CPU-cycle frequency increas-
ing. The reason is that the higher the CPU-cycle frequency of
MEC server is, the shorter the calculating time is. There may
be more edge execution SMDs to decrease the energy con-
sumption, and edge execution SMDs economize the waiting
energy. In Fig. 4, the optimal energy saving increases slowly
with theMEC server’s CPU-cycle frequency increasing when
F ≥ 5GHz, because the number of offloaded SMDs is mainly
restrained by the radio resource at this time.

D. DELAY CONSTRAINT
We investigate the impact of delay constraint in Fig. 5. From
Fig. 5, we see that RLTBB-ε = 0 can achieve the optimal
result. GCGH, RLTBB-ε = 0.2 and RLTBB-ε = 0.6 can
achieve near-optimal results. The energy savings of GCGH,
RLTBB-ε = 0.2, RLTBB-ε = 0.6 and Greedy Heuristic
achieve 99.04%, 98.96%, 98.83% and 97.05% of the optimal
energy saving, respectively. Furthermore,We observe that the
looser the delay constraint is (i.e., T thi ,∀i ∈ N is bigger), the
less energy consumption is. The reason is that local execution
SMDs consume less energy comparedwith the scenario under

FIGURE 5. Energy consumption w.r.t. delay constraint,
|N | = 10, L = 500, F = 5GHz .

stricter delay constraint. And there may bemore SMDswhich
can execute their applications by edge execution to save
energy. We also observe that the looser delay constraints are,
the less energy savings are. The reason is that the looser delay
constraints are, the less the energy consumption of All-Local
is, that is to say there is less energy to be saved. When
‘‘T thi ≥ 1.5 Ci

F li
,∀i ∈ N ’’, curves of Optimal, RLTBB-ε = 0,

RLTBB-ε = 0.2 and RLTBB-ε = 0.6 are almost invariant,
because all the SMDs are offloaded in the results of Optimal,
RLTBB-ε = 0, RLTBB-ε = 0.2 and RLTBB-ε = 0.6.
With delay constraints becoming looser, GCGH and Greedy
Heuristic achieve the optimal result. The reason is that when
the looser are the delay constraints, the more offloaded SMDs
of GCGH and Greedy Heuristic are. With offloaded SMDs
increasing to |N |, the difference between GCGH and Greedy
Heuristic decreases to 0.

E. SMD NUMBER
We investigate the impact of the SMD number in Fig. 6.
On account of the brute-force search taking exponential
complexity, we do not simulate the the brute-force search
(i.e., Optimal) when there are more than 11 SMDs. We do
not simulate RLTBB-ε = 0, RLTBB-ε = 0.2 and
RLTBB-ε = 0.6 when there are more than 13 SMDs, because
RLTBB can not guarantee the complexity. From Fig. 6,
we see that RLTBB-ε = 0 can achieve the optimal result.
GCGH and RLTBB-ε = 0.2 can achieve near-optimal
results. The energy savings (i.e., gaps between the All-Local
curve and the other curves) of GCGH, RLTBB-ε = 0.2,
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FIGURE 6. Energy consumption w.r.t. SMD number,
L = 500, F = 5GHz, T th

i =
Ci
F l
i
,∀i ∈ N .

RLTBB-ε = 0.6 and Greedy Heuristic achieve 99.02%,
97.52%, 96.82% and 96.93% of the optimal energy saving,
respectively. In addition, when the SMD number is smaller
(i.e., |N | ≤ 5), GCGH, RLTBB-ε = 0.2, RLTBB-ε = 0.6
and Greedy Heuristic can achieve the optimal result. Energy
savings of GCGH, RLTBB-ε = 0.2, RLTBB-ε = 0.6 and
Greedy Heuristic increase with the SMD number increas-
ing when |N | ≤ 9, because the radio and computational
resources are enough to bear all the computation offloading
at this time. With offloaded SMDs increasing, the energy
saving increases. However, when |N | > 9, energy savings
of GCGH, RLTBB-ε = 0.2, RLTBB-ε = 0.6 and Greedy
Heuristic are almost invariant. The reason is that the radio
and computation resources are limited when |N | > 9.
With SMDs increasing, the number of edge execution SMDs
is almost invariant. Thus, the energy savings are almost
invariant.

F. EXECUTION TIME
We investigate the impact of the SMD number in Fig. 7.
From Fig. 7, we observe that the execution time of each
algorithm increases with the SMD number increasing. For the
growth rate, the brute-force search is the fastest, followed by
RLTBB-ε = 0 followed by RLTBB-ε = 0.2 followed by
RLTBB-ε = 0.6 followed by Greedy Heuristic and finally
GCGH. The brute-force search, RLTBB-ε = 0, RLTBB-
ε = 0.2 and RLTBB-ε = 0.6 increase exponentially, while,
Greedy Heuristic increases linearly, GCGH firstly increases

FIGURE 7. Execution time w.r.t. SMD number,
L = 500, F = 5GHz, T th

i =
Ci
F l
i
,∀i ∈ N .

linearly and then converges. The reason is that RLTBB can
not guarantee the computation complexity, and the bigger
the required tolerance is, the quicker RLTBB terminates.
With the increasement of SMD number, the search space of
Greedy Heuristic increases accordingly, so its execution time
increases linearly. While, due to the indicative function of
Gini Coefficient, GCGH can determine a suitable searching
space. When the SMD scale is small, this searching space
increases with the SMD scale. When the SMD scale is large,
this searching space is nearly constant. So the execution time
of GCGH firstly increases linearly and then converges, and is
acceptable for practical scenario. We also observe that when
there are less than or equal to 7 SMDs, RLTBB is faster
than GCGH. The reason is that the less SMDs there are, the
more efficient the pruning of RLTBB is. Above all, RLTBB is
more suitable for the small scale scenario and GCGH is more
suitable for the large scale scenario.

VI. CONCLUSION
In this paper, we investigated the MEC computation offload-
ing in a multi-users system. In order to minimize the energy
consumption on SMDs, we jointly optimized the offloading
selection, radio resource and computational resource alloca-
tions. We formulated an energy consumption minimization
problem under specific application latencies. To solve the
MINLP problem, we proposed the RLTBB method which
can not only obtain the optimal result but also calculate a
specific suboptimal result with the adjustable solving accu-
racy. Furthermore, we designed the GCGH scheme to solve
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the MINLP problem in polynomial complexity. We also
conducted numerous simulations, which validate the energy
saving enhancement in our proposed RLTBB and GCGH.

APPENDIX
A. PROOF OF LEMMA 1
When T thi ≥

Ci
F li
,∀i ∈ N , the strategy where all mobile appli-

cations are executed locally satisfies all constraints C1−C6.
Therefore, the feasible domainX of problem (9) is nonempty,
i.e., there are feasible solutions for problem (9). Because the
variables are all bounded, X is a closed set. So there exists
an optimal solution for problem (9). Specifically, α has M
feasible values (M is a finite number because αi,∀i ∈ N is
a Boolean variable). For a feasible value of α, problem (9)
can be degraded into a specific problem (16). So problem (9)
can be degraded into M specific problem (16) with respect
to M feasible values of α. In addition, problem (16) is a
convex optimization problem and has an optimal solution.
Accordingly, there are M optimal solutions for M degraded
problem (16). In these M optimal solution, there must be
a solution {α∗, θ∗, f ∗} with the minimal objective value
for problem (9). And {α∗, θ∗, f ∗} is an optimal solution of
problem (9).

B. PROOF OF LEMMA 2
We define the feasible of problem (9) and (10) as X and X1,
respectively. For any feasible solution S∀ = {α∀, θ∀, f ∀}
belonging to X , it also belongs to X1. The reason is that
problem (9) and (10) have the same constraints except C5
and C7. And C5 is stricter than C5.

αi

(
Di
Ri
+
Ci
fi

)
+ (1− αi)

Ci
f li

= αi

(
Di
riθi
+
Ci
fi

)
+ (1− αi)

Ci
f li

≥ αi

[
Di

ri(ε1 + θi)
+

Ci
ε2 + fi

]
+ (1− αi)

Ci
f li

(29)

Therefore, X ⊂ X1. In addition, the objective function value
of problem (9) is larger than or equal to the objective function
value of problem (10)

N∑
i=1

[
αi

(
PTi Di
ri

βi+PIiCiγi

)
+(1−αi)κ(f li )

2Ci

]
|S∀

≥

N∑
i=1

{
αi

[
PTi Di

ri(ε1+θi)
+
PIiCi
ε2+fi

]
+(1−αi)κ(f li )

2Ci

}
|S∀

(30)

Thus, the optimal result of problem (10) is small than or equal
to the optimal result of problem (9), i.e., Problem (10) is sen-
sible to ε1 and ε1 for obtaining a lower bound of problem (9).

C. PROOF OF LEMMA 3
An inverse function with the form f (x) = 1

x is a convex func-
tion. Since nonnegative weighted sums and composition with

an affine mapping are the operations that preserve convexity
of functions, all the constraints of problem (15) and (16) can
be equally translated the form where some convex functions
is less than or equal to a constant. Obviously, the feasible
domains of problem (15) and (16) are convex sets, the objec-
tive functions of problem (15) and (16) are convex functions.
Therefore, problem (15) and (16) are convex optimization
problems.

D. PROOF OF THEOREM 1
Firstly, we prove that RLTBB can converge. For the upper
boundUb of problem (9),Ub is nonincreasing with b, because
the obtained feasible solution will not be less with b increas-
ing and Ub is the smallest of these optimal values. For the
lower bound Lb of problem (9), Lb is nondecreasing with b,
because the feasible is smaller. So Ub − Lb is nonincreasing
with b. When Nd has N elements, problem (20) and (21)
will degraded into problem (16). At this time, α2b = E2b,
α2b+1 = E2b+1, E2b = E2b and E2b+1 = E2b+1. So there
must exist the case where Ub = Lb with b increasing (The
most obvious case is that the depthes of all feasible nodes
are N ).
Secondly, we prove that the computation complexity of

RLTBB is exponential. In the worst case, BB requires effort
that grows exponentially with problem size, but in some
cases BB converges with much less effort [37]. Because
problem (15)(16)(20) and (21) are convex optimization prob-
lems,respectively, we define the computation complexities
areO(C1),O(C2),O(C3) andO(C4) which are all polynomial.
For line 3-4, the complexity isO(C1+C2). The cycle number
of ‘‘while loop’’ can not be guaranteed. But, in the worst case,
the ‘‘while loop’’ has 2N iterations. For line 6-9, the complex-
ity is O(C3 + C4 + 2C2). For line 10-15, the complexity is
O(4|Lupb+1|), where |L

up
b+1| = b+ 1 in the worst case. Above

all, the computation complexity of RLTBB can be given

O(C1+ C2+ 2N (O(C3+ C4+ 2C2)+ O(1+ 2N )))

= O(C1+ 2N max {C2, C3, C4} + 22N )

= O(22N ) (31)

This is the worst case, but with luck, this case hardly happens.

E. PROOF OF THEOREM 2
If Di

riL
+

Ci
F > T thi , SMD i can not satisfy its specific delay

anyway, and must execute its task locally. If
PTi Di
riL
+

PIiCi
F ≥

κ(f li )
2Ci, edge execution has no energy saving compared with

local execution for SMD i, and SMD i has no motivations to
offload its task. Above all, SMDs, which do not satisfy the
Basic Offloading Condition, must execute their tasks locally.

F. PROOF OF THEOREM 3
Firstly, the Stage 1 of Algorithm 2 has N iterations to classify
each SMD in SMDs setN . Secondly, for the Stage 2, line 11
has |So| iterations to calculate 8(i). The sorting of line 12
has O(|So|2) complexity. The calculation of lines 13-15 has
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|Sso| iterations. Thirdly, the ‘‘for loop’’ in Stage 3 has |Ss1o |
iterations. Problem (16) can be solved in polynomial com-
plexity because problem (16) is a convex optimization prob-
lem. We define the polynomial complexity of problem (16)
as O(C). Above all, the computational complexity of GCGH
can be given

O(N + |So| + O(|So|2)+ |Sso| + |Ss1o |O(C))
= O(N + |So|2 + |Sso| + |Ss1o |C) (32)

Due to |Ss1o | ≤ |Sso| ≤ |So| ≤ N , the computational complex-
ity of GCGH can be further expressed as O(max {N 2,NC}).
Since O(C) is polynomial, O(max {N 2,NC}) is polynomial.
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