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ABSTRACT The two-level nested array geometry, which systematically nests two uniform linear subarrays,
is proved to offer O(N 2) degrees of freedom (DOFs) with only N sensors. In this paper, a novel sparse
extension array geometry for nested multiple-input multiple-output radar is proposed to provide O(N 4)
DOFs with N sensors. In the proposed geometry, both the transmitter and receiver are equipped with the
two-level nested arrays, where we particularly extend the inter-element spacing of the transmitter with
a sparse extension factor, leading to a great increase of DOF. Furthermore, we derive the closed-form
expressions for the sensor locations and the available DOFs. Spatial smoothing-based MUSIC algorithm
is employed to validate the effectiveness and superiority of the proposed sparse extension array for direction
of arrival estimation.

INDEX TERMS Sparse extension, nested array, monostatic multiple-input multiple-output (MIMO) radar,
degree of freedom (DOF).

I. INTRODUCTION
As multiple-input multiple-output (MIMO) radars employ
multiple physical sensors to simultaneously transmit inde-
pendent waveforms and exploit multiple physical sensors
to receive the reflected signals [1], [2], they possess plenty
of advantages over traditional phased-array radars [3], e.g.,
parameter identifiability improvement [4], higher degrees of
freedom (DOFs) [5] and better estimation accuracy [6]. As a
typical issue for MIMO radar systems, direction of arrival
(DOA) estimation has been extensively studied in the past
decades. In [7], estimation of signal parameters via rota-
tional invariance technique (ESPRIT) algorithm was applied
to MIMO radar systems by utilizing the rotational invariance
property between the transmitter and receiver for DOA esti-
mation. An ESPRIT- based algorithm for MIMO radar [8]
was proposed to alleviate the complexity but with negligible
performance degeneration. A novel method, called conjugate
ESPRIT [9], was proposed to detect more signals than the
methods in [7] and [8] by using the reduced-dimension trans-
formation and property of noncircular signals. However, all
the aforementionedMIMO radar configurations are equipped
with the uniform linear arrays (ULAs) in the transmitter and

receiver, where the inter-element spacing is limited to half-
wavelength to avoid phase ambiguity problem [10].

In general, the maximum number of targets that can be
detected exploiting an N sensors ULA with popular subspace
algorithms, e.g., multiple signal classification (MUSIC) and
ESPRIT [11], [12], is N−1. Nowadays, several sparse arrays
have been proposed to increase the DOFs and resolve more
sources than the number of sensors, e.g., the minimum redun-
dancy arrays (MRAs) [13], coprime arrays [14] and nested
arrays [15]. The minimum redundancy (MR) was extended to
monostatic MIMO radar for an increasing DOF [16], whereas
an exhaustive search is involved to solve the optimization
problem of the designing for MR MIMO radar. Unlike the
monostatic MIMO radar in [16] with the transmitter and
receiver separated in parallel, a different type of monostatic
MIMO radar [17] was employed to increase the DOFs and
decrease the computational search. A nested MIMO system
was exploited [18] to estimate the DOAs of uncorrelated and
coherent targets. Nevertheless, the aforementioned geome-
tries simply place the sparse arrays in both the transmitter and
receiver, where the resultant co-arrays can generally provide
O(N 2) DOFs [16], [18] or O(N 3) DOFs [17] with N sensors.
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In this paper, by utilizing the generalized nested array, a
sparse extension array geometry with nested MIMO radar is
proposed to enhance the DOFs. Essentially, in the proposed
geometry, both the transmitter and receiver are equipped with
the two-level nested arrays, and the inter-element spacing of
the transmitter is extended with a sparse extension factor.
Based on the difference and sum co-arrays, it is proved that
the proposed geometry can achieve O(N 4) DOFs with N
sensors. Moreover, we provide the closed-form expressions
for the sensor locations and the achievable DOFs. And spatial
smoothing MUSIC (SS-MUSIC) algorithm [15] is employed
to validate the effectiveness and superiority of the proposed
sparse extension array.

To be more specific, the main contributions of this paper
can be summarized as: 1) We construct a sparse extension
array geometry with nested MIMO radar using the general-
ized nested array and specifically the total number of DOFs
can reach O(N 4) with N sensors, while the existing geome-
tries in [16]–[18] can only provide O(N 2) or O(N 3) DOFs;
2). We derive the closed-form expressions for the maximum
number of DOFs and the sensor locations of the transmitter
and receiver while the MR MIMO radar [16] involves an
exhaustive search for optimal geometries.

The rest of this paper is organized as follows. The data
model of the nested MIMO radar is presented in Section II.
In Section III, we present the proposed sparse extension array.
Section IV provides the numerical simulations and Section V
concludes the paper.
Notation:We use lower-case (upper-case) bold characters

to denote vectors (matrix). (·)T , (·)∗, (·)H respectively denote
the transpose, the conjugate, the conjugate transpose of a
vector or matrix. ⊗ represents the Kronecker product and ◦
is the Khatri-Rao product. vec(·) stands for the vectorization
process that stacks the columns of amatrix. diag {·} represents
the diagonal operation.

II. DATA MODEL
Consider a nested MIMO radar consisting of a receiver with
M sensors and a transmitter with N sensors, where the
receiver and transmitter are closely located so that the far-
field targets impinge on the two arrays with the same angles.
Assume that there are K far-field uncorrelated narrowband
targets from the directions {θk , k = 1, 2, · · · ,K }, where the
positions of receiver are 8R = {drm|m = 1, 2, · · · ,M} and
positions of transmitter are 8T = {dtn|n = 1, 2, · · · ,N }.
Note that in this paper, we suppose that K is already known.
An example of the nestedMIMO radar [18] is shown in Fig. 1,
where M = 2 and N = 3.

The output of thematched filters for the received signal can
be represented as [5]

x(t) = [at (θ1)⊗ ar (θ1), · · · , at (θK )⊗ ar (θK )] s(t)+ n(t)

= As(t)+ n(t), (1)

where s(t) = [s1(t), s2(t), · · · , sK (t)]T ∈ CK×1, n(t) ∈
CNM×1 is the white Gaussian noise vector with zero

FIGURE 1. The example of nested MIMO and its sum co-array.

mean and variance σ 2
n and A = [at (θ1)⊗ ar (θ1), · · · ,

at (θK )⊗ ar (θK )] · at (θk ) and ar (θk ) are the steering vectors
of the transmitter and receiver for the k-th target, which can
be expressed as

at (θk ) =
[
ej2πdt1 sin θk/λ, · · · , ej2πdtN sin θk/λ

]T
, (2)

ar (θk ) =
[
ej2πdr1 sin θk/λ, · · · , ej2πdrM sin θk/λ

]T
, (3)

where λ stands for the wavelength, dtn ∈ 8T is the sensor
location in the transmitter and drm ∈ 8R is the sensor position
in the receiver. And the covariance matrix can be obtained by

Rx = E[xxH ] = ARsAH
+ σ 2

n I, (4)

where Rs = diag{σ 2
1 , σ

2
2 , · · · , σ

2
K } and σ

2
k is the power of

the k-th target. In practice, the covariance matrix is obtained
with finite number of snapshots, R̂x = (1/L)

∑L
t=1 x(t)x(t)

H ,
where L is the total number of snapshots.

We vectorize the covariancematrix in (4) and the observing
vector can be represented by [15]

z = vec(Rx) = (A∗ ◦ A)p+ σ 2
n e

= Bp+ σ 2
n e, (5)

where e = [eT1 , e
T
2 , · · · , e

T
NM ]T , ei ∈ RNM×1 is a vector

consisting of zeros except a number 1 at the i-th position
(i = 1, 2, · · · ,NM ), p = [σ 2

1 , σ
2
2 , · · · , σ

2
K ]

T and B =
(A∗ ◦ A) = [b(θ1),b(θ2), · · · ,b(θK )].

b(θk ) = [at (θk )⊗ ar (θk )]∗ ⊗ [at (θk )⊗ ar (θk )], (6)

where k = 1, 2, · · · ,K .

III. SPARSE EXTENSION ARRAY GEOMETRY
In this section, we first make a brief review of difference co-
array and sum co-array. Then the proposed sparse extension
array is presented and the closed-form expression for avail-
able DOFs is derived.

A. REVIEW
Definition 1 (Difference Co-Array): The difference

co-array of a linear array has the positions represented by
the unique elements of the set Sdc, which can be defined as
follow [15]:

Sdc = {u− u′, u, u′ ∈ Su}. (7)

where Su denotes the set of physical sensor locations.
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FIGURE 2. An example of NA-TR for nested MIMO radar.

Definition 2 (SumCo-Array): The sum co-array of a pair of
linear arrays has the positions given by the unique elements
of the set Ssc, which can be obtained by [18]

Ssc = {u1 + u2, u1 ∈ S1; u2 ∈ S2} , (8)

where S1 and S2 are the physical sensor positions of the two
linear arrays.

B. SPARSE EXTENSION ARRAY GEOMETRY
According to (6), the resulting co-array of the nested MIMO
radar has the positions given by the unique elements of the
set

Snested =
{
−d ′t − d

′
r + d

′′
t + d

′′
r |d
′
t , d
′′
t ∈ 8T ; d ′r , d

′′
r ∈ 8R

}
=
{
(d ′′t − d

′
t )+ (d ′′r − d

′
r )|d
′
t , d
′′
t ∈8T ; d ′r , d

′′
r ∈8R

}
= {µt + µr |µt ∈ 9T ;µr ∈ 9R} , (9)

where9T is the difference co-array set of the transmitter and
9R is the difference co-array set of the receiver. Specifically,
the resulting co-array of the nested MIMO radar can be
regarded as the sum co-array of two difference co-arrays.

As the algorithms devised for traditional monostatic
MIMO radar with ULAs for both the transmitter and receiver
have been widely investigated and, in particular, the dif-
ference co-array of the two-level nested array is a filled
ULA [15], a reasonable trivial MIMO geometry for nested
MIMO radar consists of typical two-level nested arrays for
both the transmitter and receiver (NA-TR), then the existing
algorithms can be employed. And the array sensors in the
transmitter and receiver are located at

�T = {n1dt1|n1 = 0, 1, · · · ,N1 − 1}

∪ {N1λ/2+ n2dt2|n2 = 0, 1, · · · ,N2 − 1} , (10)

�R = {m1dr1|m1 = 0, 1, · · · ,M1 − 1}

∪ {M1λ/2+ m2dr2|m2 = 0, 1, · · · ,M2 − 1} , (11)

where dt1 = dr1 = λ/2, dt2 = (N1 + 1)dt1 and dr2 = (M1 +

1)dr1, M = M1 + M2, N = N1 + N2. According to [15],
the difference co-arrays of the transmitter and the receiver are
both ULAs with 2N2(N1+1)−1 and 2M2(M1+1)−1 sensors
respectively and the positions are given by

LT_dc = {pλ/2|p=−P, · · · ,P,P=N2(N1 + 1)− 1}, (12)

LR_dc = {qλ/2|q=−Q, · · · ,Q,Q=M2(M1+1)−1}, (13)

where LT_dc is the difference co-array set of the transmit-
ter and LR_dc is the difference co-array set of the receiver.
An example of NA-TR geometry for nested MIMO radar is
shown in Fig. 2, where N1 = N2 = 2, M1 = M2 = 2.

However, this scheme for nested MIMO radar can gener-
ally provideO(N1N2+M1M2) DOFswith (N1+N2+M1+M2)
sensors. In the following part, based on the trivial scheme
above, we present the sparse extension array geometry with a
sparse extension factor, which leads to an impressive increase
of DOF and O(N1N2M1M2) DOFs can be achieved with the
(N1 + N2 +M1 +M2) sensors.
Consider that the transmitter and receiver of nested MIMO

radar consist of two-level nested arrays, where the transmitter
has N = N1+N2 sensors and the receiver hasM = M1+M2
sensors. Different from the trivial NA-TR geometry with typ-
ical two-level nested arrays, we specifically enlarge the inter-
element spacing of the transmitter with a sparse extension
factor α and the sensor positions are provided by

�αT = α�T

= {n1αdt1|n1 = 0, 1, · · · ,N1 − 1}

∪ {N1αλ/2+ n2αdt2|n2 = 0, 1, · · · ,N2 − 1} , (14)

where α is a positive integer within the set [1, 2, · · · , 2M2
(M1+1)−1]. It can be observed that the difference co-array of
the transmitter is still a filled ULA, whereas the inter-element
spacing of the ULA is also enlarged by α and the positions are
given by the following set

LαT_dc = αLT_dc
= {pαλ/2|p=−P, · · · ,P,P=N2(N1+1)−1} . (15)

Proposition: For the proposed sparse extension array
geometry, (i). The maximum number of the filled co-array
is 2α[N2(N1 + 1)− 1]+ 2M2(M1 + 1)− 1.
(ii). The positions of the filled co-array are given by

{vλ/2|v = −V , · · · ,V ,V

= α[N2(N1 + 1)− 1]+M2(M1 + 1)− 1}.

Proof: When the sparse extension factor takes the inte-
ger within the set [1, 2, · · · , 2M2(M1 + 1) − 1], similar
to [15] and [18], a consecutive ULA can be obtained without
holes. As a result, combining (13) and (15), the boundaries of
the resulting co-array can be attained.
For the left boundary,

−[M2(M1 + 1)− 1]+ [−αN2(N1 + 1)+ α]

= −α[N2(N1 + 1)− 1]−M2(M1 + 1)+ 1 = −V . (16)

For the right boundary,

[M2(M1 + 1)− 1]+ [αN2(N1 + 1)− α]

= α[N2(N1 + 1)− 1]+M2(M1 + 1)− 1 = V . (17)

And the maximum number of the consecutive co-array is
2α[N2(N1 + 1)− 1]+ 2M2(M1 + 1)− 1.
Remark: According to (12)-(13), the difference co-arrays

of the transmitter and receiver are both ULAs. On the basis of
the nested MIMO system in [18], for the difference co-array
of the transmitter, the spacing can be [2M2(M1 + 1)− 1] λ/2,
where 2M2(M1+1)−1 is the sensor number of the difference
co-array of the receiver. Also the sparse extension factor can
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FIGURE 3. An example of Case I.

take the values smaller than 2M2(M1+1)−1. However, as the
redundancies increase, the total number of DOFs decreases.
Specifically, Case II can be regarded as the generalization of
the uniform MIMO radar [16], which will be derived in the
next part.

To better illustrate the proposed sparse extension array, we
will provide two special cases as examples below.

1) Case I (α = M2(M1 + 1))
Comparing (13) and (15), as the two difference co-arrays of
the transmitter and receiver in the proposed geometry are
both symmetric about the zero-th position, we only take the
positive parts into consideration for simplicity. In Case I, we
enlarge the inter-element spacing of the transmitter with a
sparse extension factor α = M2(M1+1), which consequently
enlarge the inter- element spacing of the difference co-array
of the transmitter. And specifically, α is equal to the number
of the positive difference co-array of the receiver (including
the sensor at the zero-th position). Fig. 3 captures the two
difference co-arrays of Case I, where we set N1 = N2 = 2
and M1 = M2 = 2.

The resultant positive sum co-array of Case I contains
a filled ULA with N2M2(N1 + 1)(M1 + 1) sensors, where
the positions are L+I = {rλ/2|r = 0, 1, · · · ,R1,R1 =
N2M2(N1 + 1)(M1 + 1) − 1} and the sensor positions of
the corresponding negative sum co-array are given by L−I =
−L+I . In summary, the resultant co-array of Case I consists of
a filled ULAwith 2N2M2(N1+1)(M1+1)−1 sensors, which
means that Case I can provide 2N2M2(N1 + 1)(M1 + 1) − 1
DOFs.

2) Case II (α = 2M2(M1 + 1)− 1)
In the case α > M2(M1 + 1), holes [19] will arise if we
only take the positive part of the difference co-arrays. As an
enhancement of Case I, we consider the positive difference
co-array of the transmitter and the whole difference co-array
of the receiver, where the holes can be filled and a ULA
can be obtained. In Case II, the inter-element spacing of
the transmitter is enlarged with sparse extension factor α =
2M2(M1 + 1)− 1 which is equal to the sensor number in the
whole difference co-array of the receiver. Fig. 4 depicts an
example of Case II, where N1 = N2 = 2 and M1 = M2 = 2.
In summary, the resulting co-array of Case II is a

filled ULA with 2N2M2(N1 + 1)(M1 + 1) − N2(N1 + 1)
sensors and the sensor position set is represented
as L+II = {sλ/2|s = −R3, · · · ,R2}, where R2 =

[N2(N1 + 1)− 1] [2M2(M1 + 1)− 1] + M2(M1 + 1) − 1,

FIGURE 4. An example of Case II.

R3 = M2(M1 + 1) − 1, and the mirrored position set is
given by L−II = −L

+

II . The total achievable DOF of Case II
is [2N2(N1 + 1)− 1] [2M2(M1 + 1)− 1]. Fig. 5 illustrates
the sparse extension array geometry, the difference co-arrays
of the transmitter and receiver and the resulting co-array
of Case II, which shows clearly that the resulting co-array
is a much longer filled ULA, where N1 = N2 = 2 and
M1 = M2 = 2.

According to Proposition (i), Case II is capable of attaining
themaximum number of DOF, where α = 2M2(M1 + 1)− 1,
as the maximum number of DOF is linear versus sparse
extension factor α. When given the total number of sensors
T , to achieve the maximum number of DOF, we can construct
the following optimization problem

max [2N2(N1 + 1)− 1] [2M2(M1 + 1)− 1]

s.t. T = N1 + N2 +M1 +M2. (18)

The Lagrange function of (18) can be represented as

f = [2N2(N1 + 1)− 1] [2M2(M1 + 1)− 1]

+ β(N1 + N2 +M1 +M2 − T ), (19)

where β denotes the Lagrange multiplier. By performing
differential calculation on (19), we can obtain

N1 + N2 +M1 +M2 − T = 0, (20.a)

2N2[2M2(M1 + 1)− 1]+ β = 0, (20.b)

2(N1 + 1)[2M2(M1 + 1)− 1]+ β = 0, (20.c)

2M2[2N2(N1 + 1)− 1]+ β = 0, (20.d)

2(M1 + 1)[2N2(N1 + 1)− 1]+ β = 0. (20.e)

By solving (20), we can get N2 = N1 + 1 = (T + 2)/4,
M2 = M1 + 1 and N2 = M2, the maximum DOF is

DOFmax =

[
(T + 2)2

8
− 1

]2
, (21)

where T = 4k + 2, k ∈ Z+. Since T is an arbitrary integer,
the other cases are given by the following corollary.
Corollary: Assuming the total number of sensors is T ,
(i) if T = 4k , k ∈ Z+, N1 = N2 = M1 = M2 = T/4;
(ii) if T = 4k + 1, k ∈ Z+, N1 = N2 = M1 = M2 − 1 =

(T − 1)/4 or N1 = N2 − 1 = M1 = M2 = (T − 1)/4;
(iii) if T = 4k + 3, k ∈ Z+, N1 + 1 = N2 = M1 = M2 =

(T + 1)/4 or N1 = N2 = M1 + 1 = M2 = (T + 1)/4.
In Table I, the DOFs of the nested MIMO system [18],

NA-TR, Case I and Case II are listed with a given number
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FIGURE 5. An example of the sparse extension array geometry (Case II).

TABLE 1. The DOFs of different geometries.

of sensors, where NA-TR and the nested MIMO in [18] both
select the case of the maximum number for DOF. It shows
clearly that the proposed two cases can achieve a significant
increase of DOF.

Note that the final resultant co-arrays of the two cases are
both filled ULAs whose spacing is half-wavelength, which
means no ambiguity problem presents and the subspace-
based algorithms [15] or sparse representation method [20]
can be utilized for DOA estimation directly.

IV. SIMULATION RESULTS
In this section, numerical simulations are provided to validate
the effectiveness and superiority of the proposed sparse exten-
sion array geometry. We consider that the receiver consists
of a typical two-level nested array with M = 4 sensors
(M1 = M2 = 2). For Case I, the transmitter is composed
of a two-level nested array exploiting sparse extension with
N = 4 sensors (N1 = N2 = 2), where d ′t1 = 6λ/2,
d ′t2 = 18λ/2. And for Case II, the transmitter is made up of
N = 4 sensors (N1 = N2 = 2), where d ′′t1 = 11λ/2 and
d ′′t2 = 33λ/2. The total number of sensors is 8. As the
performance metric, root mean square error (RMSE) is
employed, i.e.,

RMSE =

√√√√ 1
K0

(
0∑
τ=1

K∑
k=1

(θk − θ̂k,τ )2
)
, (22)

where 0 is the number of Monte-Carlo simulations and θ̂k,τ
stands for the τ -th trial of the k-th angle θk . Specifically, we
set 0 = 500.

A. MUSIC SPECTRUM
In Fig. 6, the numerical examples are presented to verify
the number of available DOFs based on SS technique [15].
As the nested MIMO system [18] can attain at most 16 DOFs

FIGURE 6. Spatial spectrum with SS-MUSIC.

with 4 sensors ULA for both the transmitter and receiver, the
two cases of the proposed sparse extension array can respec-
tively obtain 71 DOFs for Case I and 121 DOFs for Case II.
For better illustration, we assume there are K = 25 far-filed
uncorrelated narrowband targets uniformly distributed within
[−60◦, 60◦] impinging on the antennas, where L = 1000 and
SNR = 5dB. It is shown clearly in Figs. 6 that by exploiting
SS-MUSIC, the proposed two sparse extension arrays can
detect all the targets, whereas the nested MIMO system can
resolve no more than 15 targets. It depicts clearly in Fig.6
that the spectrum peaks of Case II are sharper than those of
Case I as Case II can provide more DOFs and simultaneously
the array aperture of Case II is extended more than Case I.

B. RMSE PERFORMANCE VERSUS SNR AND SNAPSHOTS
We employ SS-MUSIC to study the RMSE performance of
DOA estimation with the proposed two array geometries
versus SNR and snapshots. In addition, theNA-TR, the nested
MIMO system [18], and a traditional monostaticMIMO radar
with ULAs on both the transmitter and receiver [8] are pro-
vided for comparison. All the geometries in this simulation
are made up of 8 sensors for fair comparison. We assume
there are K = 3 targets impinging on the antennas from the
elevation angles [10◦, 30◦, 50◦]. Fig. 7 captures the RMSE
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FIGURE 7. RMSE of different geometries versus SNR.

FIGURE 8. RMSE of different geometries versus snapshots.

FIGURE 9. SS-MUSIC spectrum with two closely located targets.

performance of SS- MUSIC with different geometries versus
SNR, where L = 1000, while Fig. 8 illustrates the DOA esti-
mation performance of SS-MUSICwith different geometries
by varying the number of snapshots and SNR = 0dB. From
these two figures, it is shown that the performance of all the
examples improves with SNR or the number of snapshots
increasing. Specifically, the two cases of the proposed sparse
extension array outperform the others due to a larger array
aperture.

C. RESOLUTION PERFORMANCE
In this simulation, suppose that there are two targets imping-
ing on the antennas from θ1 and θ2, where the estimates of the

FIGURE 10. Estimation probability versus SNR with L = 200.

FIGURE 11. Estimation probability versus snapshots with SNR = 0dB.

two angles are denoted by θ̂1 and θ̂2. The two targets can be
resolved if |θ1− θ̂1| < |θ1−θ2|/2 and |θ2− θ̂2| < |θ1−θ2|/2.
Fig. 9 depicts the SS-MUSIC spectrum of the 5 geometries,
where the number of sensors is the same as Fig.7, θ1 = 10◦,
θ2 = 11◦ and L = 1000, SNR = 10dB. It shows clearly
that SS-MUSIC algorithm only with the proposed sparse
extension array can distinguish the two targets. To study the
estimation probability of the 5 geometries with SS-MUSIC,
we select another group of targets with θ1 = 10◦ and
θ3 = 12◦. Fig. 10 and Fig. 11 show the estimation probability
of the 5 geometries versus SNR and snapshots respectively.
In conclusion, as the array aperture has been extended greatly,
the proposed sparse extension array has better performance
than the other three geometries.

V. CONCLUSION
In this paper, a sparse extension array geometry with nested
MIMO radar by using the generalized nested array structure
is proposed, which exploits N sensors to provide O(N 4)
DOFs. In the proposed geometry, both the transmitter and
receiver consist of the two-level nested arrays. And the inter-
element spacing of the transmitter is extended with a sparse
extension factor, leading to an impressive increase of DOFs.
Furthermore, we derive the closed-form expressions for the
sensor locations and the achievable DOFs. The effectiveness
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and superiority of the proposed sparse extension array are
validated with SS- MUSIC.
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