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ABSTRACT Interactive live-streaming applications and platforms face particular challenges: the actions of
the viewer’s affect the content of the stream. A minimal capture-render delay is critical. This is the case
of applications, such as remote laboratories, which allow students to view specific hardware through a
webcam, and interact with it remotely in close to real time. It is also the case of other applications, such
as videoconferencing or remote rendering. In the latest years, several commercial live-streaming platforms
have appeared. However, the most of them have two significant limitations. First, because they are oriented
toward standard live-streaming, their capture-render delay tends to be too high for interactive live-streaming.
Second, their architectures and sources are closed. That makes them unsuitable for many research and
practical purposes, especially when customization is required. This paper presents the requirements for
an interactive live-streaming platform, focusing on remote lab needs as a case study. Then, it proposes an
architecture to satisfy those requirements that relies on Redis to achieve high scalability. The architecture
is based on open technologies, and has been implemented and published as open source. From a client-side
perspective, it is web-based and mobile-friendly. It is intended to be useful for both research and practical
purposes. Finally, this paper experimentally evaluates the proposed architecture through its contributed
implementation, analyzing its performance and scalability.

INDEX TERMS Webcam, live streaming, live streaming platform, remote laboratories, online learning tools,
open.

I. INTRODUCTION
Throughout the last few years many live-streaming platforms
have emerged, such as YouTube Live,1 TwitchTV,2 Instagram
Livestream,3 and Facebook Live.4 These platforms tend to be
backed by large social media companies and be proprietary.
They are designed for scalability and are able to provide live-
streaming to a large number of users. However, for some
purposes, they have significant limitations. Although they are
effective for live-streaming non-interactive content, such as
live sports, they tend to be unsuitable for interactive live-
streaming. In interactive live-streaming, users react to the
stream and affect it in close to real-time. Thus, a mini-
mal capture-render delay is critical. Standard live-streaming

1https://www.youtube.com/live
2https://twitch.tv
3https://instagram.com/livestream
4https://live.fb.com

platforms, such as the aforementioned ones, tend to have
a relatively high delay of at least several seconds. This is
by design. It is, among other reasons, because they rely on
transcoding, buffering, and heavy interframe compression
techniques to maximize scalability and minimize networking
issues. The work in [1], for example, outlines the TwitchTV
architecture, providing further detail in these aspects. In that
case, the broadcast delay of the platform is measured to
vary from 12 to 21 seconds. Other limitation is that these
major platforms are proprietary, and their architectures and
sources are closed. This makes it difficult to rely on them for
learning and research purposes. They are also impractical for
applications that would need to customize them, or integrate
them as middleware.

Interactive live-streaming has particular requirements,
limitations, and expectations. Figure 1 characterizes inter-
active live-streaming among other types of streaming: stan-
dard live-streaming and Video on Demand (VoD). There are
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FIGURE 1. Characterization of the different types of streaming and some
of its applications. Reproduced from [4].

several aspects that differ, but the most remarkable one is the
capture-render delay. The videos in a VoD application are
created far in advance. VoDplatforms, such asYoutube orNet-
flix, can use the heaviest compression techniques, and convert
the video in advance for different configurations and network
conditions. Thus, a high-bandwidth client in a desktop will
receive a high-quality and high-bandwidth stream; while
a low-bandwidth client in a mobile device will receive a
lower-quality but lower-bandwidth stream. They can rely
on adaptive streaming to adapt to varying conditions, and
they can use buffering to provide high quality in a relatively
unstable network, avoiding network jitter [2]. Standard live-
streaming platforms have more limitations at this respect.
They no longer have nearly-unlimited time to convert the
input streams to different formats, nor can they use as large
a buffer. Most commercial platforms still allow a significant
capture-render delay. This allows them to partially leverage
the previously mentioned techniques. However, for interac-
tive live-streaming applications, such as remote labs, col-
laborative tools, video conferencing applications or remote
rendering applications, a low capture-render delay is critical.
According to Human Computer Interaction (HCI) research,
a second in delay is high. Beyond 0.1 seconds the user
can notice a system does not react instantaneously. Beyond
a second the user’s flow of thought is interrupted [3].

In this context, this work proposes a novel architecture
for interactive live-streaming. A platform, named WILSP,5

has been designed and implemented according to that archi-
tecture. It is designed to overcome the aforementioned
limitations in existing platforms. Firstly, it is designed for
interactive live-streaming, ensuring a low capture-render
delay. Secondly, it is open source and relies on open tech-
nologies. It can be used for research and practical purposes,
customized freely and integrated as middleware. From a

5The WILSP platform has been released as Open Source and is available
at: https://github.com/zstars/wilsp

technical perspective, it is designed to be a distributed, scal-
able platform by relying on Redis.6 It is extensible and
supports different video formats and techniques, such as
H.264 [5] and image-refreshing, which previous research
shows as effective for this purpose [4]. Also, from a client-
side perspective, it is fully web-based. This is remarkable
because, traditionally, certain features such as multimedia
have had more limited support on the Web [6], [7]. This
trend has changed and applications no longer need to depend
on non-standard plugins [8], such as Adobe Flash7 or Java
Applets.8 Now they can rely on HTML5 [9] and other related
Web standards such as WebGL [10]. Today, major platforms
such as Youtube or Netflix9 rely on HTML5 [11].
The proposed architecture is designed to be generalistic

and integrable as middleware into different applications, but
its initial and main use-case are remote labs. Remote labs
are software and hardware tools that enable remote users to
access real, remote equipment through a website [12]–[14].
They can view and interact with that equipment through a
webcam. To evaluate the proposed architecture, this work
analyzes whether certain requirements are met, focusing par-
ticularly on this use-case. Furthermore, a study to measure
the performance and scalability of the platform is conducted.

The paper is organized as follows: Section II describes in
more detail the purpose and contributions of this research,
and the relevant state of the art on interactive live-streaming
and remote labs. Section III analyzes the requirements for
the proposed platform. Section IV presents an overview of
the proposed architecture. Section V describes each layer
in more detail. Section VI describes the methodology of
the performance and scalability study. Section VII enumer-
ates and explains the conducted experiments. Section VIII
describes the results. Section IX discusses those results and
potential applications. Section X summarizes the conclusions
and proposes future lines of work.

II. MOTIVATION
A. INTERACTIVE LIVE-STREAMING
In an interactive live-streaming system viewers are expected
to interact with the stream: they are not simply passive spec-
tators [1], [4], [15]. This is not necessarily the case in a
standard live-streaming system. In any live-streaming system
there is a capture-render delay: an unavoidable delay between
the moment a frame is captured by the source camera, and
the moment it is rendered on the viewer’s screen. However,
the maximum delay that interactive live-streaming systems
can allow while still providing an acceptable Quality of
Experience for the user is much smaller than for standard
live-streaming systems. Although it is not always notice-
able for users, most popular standard live-streaming systems
nowadays have a significant capture-render delay [16], [17].

6https://redis.io/
7http://www.adobe.com/products/flashplayer.html
8http://java.com
9https://www.netflix.com

VOLUME 5, 2017 9843



L. Rodriguez-Gil et al.: Open and Scalable Web-Based Interactive Live-Streaming architecture

For example, the TwitchTV10 platform tends to have a higher
than 10 seconds delay [1], and the YouTube11 live-streaming
platform seems to commonly have a 20-30 seconds delay in
its low-latency configuration.12

This delay is purposefully built into the design of their
architectures [18]. It allows them to leverage techniques such
as buffering, heavy-compression codecs, and video segmen-
tation to maximize scalability and performance. Through
these, they can withstand higher network jitter and provide
better quality at a lower bandwidth. The high capture-render
delay that results is generally not a problem, due to the
non-interactive nature of their live-streaming applications.
Live sports streaming or live-shows are some common uses
of these platforms. The content is indeed being produced
while it is broadcast, but users interact very little with the
stream, so they can withstand a high capture-render delay.
For example, if users are viewing a football match with
a 30 seconds delay, their user-experience is unlikely to be
affected significantly.

As described above, however, interactive live-streaming
applications allow only for a much smaller delay. Some
applications of this kind are videoconferencing ones (e.g.,
Skype,13 Google Hangouts),14 surveillance systems (those
which require real-time monitoring), remote rendering sys-
tems (e.g., [19], [20]), or remote laboratories. Remote labs are
in fact the main use-case of the platform that is proposed in
this work, and a use-case for this study. Theywill be described
in further detail in later sections.

Currently, the better-known live-streaming platforms are
thus not suitable for interactive live-streaming. Most of them
are purpose-specific, proprietary, and closed-source, which
hinders their use for learning or research purposes. Nonethe-
less, some proprietary engines which are designed to be
used as middleware do exist, such as Wowza.15 Some live-
streaming open source projects can also be found. A remark-
able one is the nginx-rtmp-module,16 a module for the Nginx
web server. It can live-stream through protocols such as
RTMP, HLS or MPEG-DASH.

B. REMOTE LABORATORIES
Remote laboratories allow users to access remote equipment
through the Internet [8], [12], [21], [22]. Nowadays, remote
laboratories are often educational. Students can access, from
anywhere, remote equipment that is located in institutions
across the globe. Research has shown that when they are
properly designed and implemented they can be as educa-
tionally effective as a standard hands-on lab [14], [23], [24].

10http://www.twitch.tv
11http://www.youtube.com
12YouTube provides no official figures or guarantees, but

observations and informal tests can be found, such as those at
http://blog.ptzoptics.com/youtube-live/low-latency-streaming/ or at the
Google product forum (https://productforums.google.com/forum/).

13http://www.skype.com
14https://hangouts.google.com
15https://www.wowza.com
16https://github.com/arut/nginx-rtmp-module

FIGURE 2. Archimedes remote lab. Users experiment with the principle of
Archimedes by raising and lowering objects into different liquids and
obtaining sensor readings. From http://weblab.deusto.es.

They have many advantages. By relying on remote labora-
tory technology, institutions that are geographically separated
can share expensive equipment. This makes more equipment
available for their students, reduces their costs and reduces
underusing of equipment [25], [26].

Remote laboratories are formed by multiple hardware and
software components [8]. Often they are developed by univer-
sities and other institutions as part of research projects. Often
they are built on top of Remote Laboratory Management
Systems, such as WebLab-Deusto [8] or MIT iLabs [21].
Those systems provide common features, such as authenti-
cation, user management, learning analytics, or laboratory
federation.

Most remote laboratories feature one or more live-streams
of the equipment. In a hands-on laboratory, students see the
equipment through their own eyes and interact with it as
needed. In a remote laboratory, the interaction needs to be
different. Students view the equipment through one or more
webcams and interact with it through virtualized con-
trols [27]–[30]. For an interactive remote laboratory an inter-
active live-stream is required. When lab users conduct an
action, such as pressing a button, they expect to see the result
immediately.

Figure 2 shows the GUI of the Archimedes remote lab.
In it, students can raise and lower objects into different
liquids. Sensors provide them with the object weight and
liquid height. They can thus verify how the Principle of
Archimedes works in reality. As the figure shows, this remote
lab includes different simultaneous live-streams. Figure 3
shows a different remote lab. In it, students can create a
program using a visual programming language and run it
on a real, remote, Arduino-based robot. They have access
to several input peripherals (e.g., sensors, buttons) and out-
put ones (LEDs, a serial terminal). In this case, a webcam
provides a live-stream as well, and it is also key to the user
experience. Users monitor the robot through it and check
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FIGURE 3. Arduino robotics remote lab. Users program their own Arduino
robot remotely and are able to interact with it. From http://labsland.com.

whether their program is making the robot behave as they
expect. They can interact with the robot in near real-time
through the buttons and serial terminal, so the capture-render
delay must be low. In this case, because the robot moves
relatively fast, the video, ideally, needs to provide a relatively
high FPS.

C. CHALLENGE AND CONTRIBUTIONS
As described above, an interactive live-stream is a key fea-
ture of most remote laboratories. The stream is the win-
dow through which remote students see and interact with
the equipment, and is thus particularly important for their
user experience. However, traditionally, in remote laboratory
research and practice, little attention has been paid to this
aspect [4]. The purpose of this work is to analyze the require-
ments for an interactive live-streaming architecture that is
general-purpose but particularly suited for remote labora-
tories, to design and implement it, and to evaluate it. The
platform architecture is designed to be general-purpose but
optimal for interactive remote laboratories. It is web-based,
based on open technologies, and open source. This is key
because the goal is for the platform to be useful for remote
laboratory researchers and developers. It is also designed to
be distributed and scalable, so that it can manage a large
number of input cameras, and so that these streams can be
served to a high number of users.

The contributions of this work are the following:
• An analysis of the requirements for an interactive
live-streaming platform that is optimized for remote
laboratories.

• Architecture for an interactive live-streaming platform
that is distributed, based on open technologies, and
highly scalable.

• Implementation for the proposed architecture, which is
made available as Open Source.

• Design and implementation of two supporting tools for
performance evaluation (an IP webcam simulation and a
requester load-testing script).

• Novel use of the Redis in-memory store engine as a
middleware for interactive live-streaming.

• Experimental performance analysis and evaluation of
the proposed architecture.

• Conclusions, based on the conducted experiments,
on the performance and suitability of such an architec-
ture for remote laboratory research and development.

III. PLATFORM GOALS AND REQUIREMENTS
The main target of the interactive live-streaming platform
that is proposed in this work is to satisfy the requirements
of remote laboratories, for both research and production con-
texts. Even though, it is also designed to be general-purpose,
and should thus be suitable for additional applications that
have similar interactive live-streaming needs.

The main general goals of the platform, which are in line
with the needs described in the previous sections, are the
following:
• Universality:The streams, from a technical perspective,
should be available to as many end-user configurations
as possible, independently of their platform or device
type.

• Efficiency and scalability: The architecture should
scale horizontally for a large number of camera sources
and viewers.

• Openness: The architecture should rely on open tech-
nologies and be open itself, so that researchers and
developers can learn from it, build on it, or use it for
research purposes.

The main requirements are the following:
• Interactive live-streaming: The platform should,
as previously described, be capable of interactive live-
streaming. The live-streams it provides should have a
small capture-render delay.

• Supporting multiple input sources: Being able to han-
dle many video sources (IP cameras) with different
stream formats.

• Supporting multiple output schemes: Being able to
provide different types of stream, from a client-side
perspective, depending on the particular needs.

In the following subsections, these goals and requirements
will be described in further detail.

A. UNIVERSALITY
The meaning of universality varies across different con-
texts. In this work, we refer to the goal that, from the
client-side perspective, the streams that the platform provides
should be as broadly compatible as possible. Universality
is particularly important for remote laboratories and similar
applications [12], [31].

To promote universality the platform is intended to be fully
web-based. Researchers and developers will thus be able to
integrate the streams into any web-based application, and
users will be able to view them through any web browser.
Being web-based is the most significant step towards univer-
sality, but there are additional concerns that will be consid-
ered. The first of them is that non-standard browser plug-ins
should be avoided. Traditionally, some web applications have
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relied on technologies such as Java Applets [32] or Adobe
Flash [33] to provide certain advanced features such as graph-
ics or non-HTTP networking. For example, [34] describes a
remote laboratory which relies on the YawCam17 Java Applet
for streaming its webcam. Using them was once necessary,
and the networking access they provide makes protocols such
as RTSP [35] available. However, they hinder universality
because they are rarely supported inmobile phones and nowa-
days some popular browsers are even dropping support and
discouraging their use on desktops. They can also pose a secu-
rity risk [36]. For modern applications, generally, standard
non-intrusive technologies are preferred. Remote laborato-
ries are often deployed behind the institutional networks of
universities. Their IT teams and policies often avoid offering
intrusive technologies to students, because their institution
could, in fact, be liable were them to be exposed to security
issues [8].

Currently, certain technologies that are potentially use-
ful for live streaming (e.g., MPEG-DASH, Media Source
Extensions, WebRTC) are being standardized. To promote
universality, the interactive live-streaming schemes described
in this work rely only on approved standards, and technolo-
gies that are widely supported by all browsers. Nonetheless,
the proposed architecture is designed to be extensible, and
these might be considered in the future.

Finally, it is important to remark that a wide range
of different user devices should be supported. This is
critical for education: nowadays students from institu-
tions across the world often rely on mobile and tablet
devices [37]–[40].

B. EFFICIENCY AND SCALABILITY
In order for the platform to be useful for researchers and
developers, it needs to be reasonably efficient and scalable.
Institutions that host remote laboratories often host several
different ones, each with potentially several live-streams to
manage. For example, Figure 2 shows a single laboratory
that has had up to 7 simultaneous ones. Other laborato-
ries only require a single stream, such as the robot shown
in Figure 3. However, even in that case, the institution often
hosts several instances of the same laboratory. For example,
in the case of the robot, users upload their own program
into it, watch it execute, and interact with it. Only one user
can thus have control over it at a given time. To support
several simultaneous users, several instances of the labo-
ratory exist. It is also noteworthy that the number of sup-
ported viewers per stream should also be scalable, especially
for these cases where the laboratory is publicly view-
able or collaborative. Currently, Remote LaboratoryManage-
ment Systems are used to host a large number of different
remote laboratories and instances. It is therefore convenient
for a single platform to be able to handle all interactive
streams.

17http://www.yawcam.com

C. OPENNESS
Most popular live-streaming middlewares and platforms
are closed-source and proprietary. Nonetheless, they attract
significant research attention. Those researchers deduce
their architectures from practical experiments, reverse-
engineering, and other sources. For example, works can be
found on TwitchTV [1], YouTube Live [41], YouNow [42],
Meerkat [43] or Periscope [43], [44].

Unfortunately, the closed-source nature of these platforms
makes them unsuitable for certain research and practical
purposes. As far as we know, for example, no remote lab-
oratory has tried to use any of the above platforms, in a
research or production context. Most of the proprietary plat-
forms are not intended to be integrated into other systems,
and, as explained in previous sections, do not generally sat-
isfy the low-latency constraints that interactive live-streaming
entails.

The goal of the proposed platform is thus to be open,
customizable and flexible. This is in line with works such
as [45], where it is also stated that the customizability and
flexibility that being open-source ensures is particularly crit-
ical for academia. Researchers and developers are meant to
be able to freely use and modify the platform, adapt it to
their needs, and integrate it into their own systems (of which
remote labs are a good example).

In line with this, the platform will rely on open technolo-
gies, such as Redis, Flask18 and FFmpeg.19

D. INTERACTIVE LIVE-STREAMING
Although it has also been described in earlier sections, it is
important to remark that the main requirement of the platform
is being able to serve interactive live-streams. That is, they
should have a low-enough latency, which guarantees that
even for interactive applications, the user’s Quality of Expe-
rience is satisfactory. The actual value for that satisfactory
threshold will inevitably vary among users and applications.
In cloud-based games, for example, the maximum delay is
very low: for each 100 ms of latency, there is a 25% decrease
in performance [46]. The threshold for videoconferencing
applications is closer to the 300-400ms range [47]. For other
contexts where specific research is not available, such as
remote labs themselves, general guidelines can be consid-
ered. According to Nielsen [3], if a system’s response has
a delay higher than a second, the user’s flow of thought is
interrupted, and a 0.1 seconds delay is enough for users to
notice.

The proposed architecture will take this into account, and
avoid those techniques which tend to increase latency, such
as heavy compression and long buffering times.

E. SUPPORTING MULTIPLE INPUT SOURCES
Multiple input sources should be supported, as mentioned in
Subsection III-B. Themain input sources will be IPwebcams.

18http://flask.pocoo.org
19https://ffmpeg.org
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FIGURE 4. Architectural overview of the proposed platform and its components.

Those webcams support different output formats. Common
ones are snapshots (which can be turned into a video
by simply requesting them periodically fast enough) and
M-JPEG, though some modern cameras also support formats
such asH.264, and somemodels even protocols such as RTSP.
The platform should be extensible, so that several formats can
be supported and new ones added in the future.

F. SUPPORTING MULTIPLE OUTPUT SCHEMES
The output schemes are those that will be used to send
the stream to the end user’s browser, and actually render
it. Traditionally, some applications, including remote lab-
oratories, have dedicated little attention to this aspect [4].
However, it plays a very significant part in promoting univer-
sality (being accessible across platforms and devices), a high
enough reliability, and, in general, a good enough Quality of
Experience.

Previous research suggests that there is currently no sin-
gle best scheme for all purposes [4]. Several components
intervene in a scheme, including the communications proto-
col, the container format, the video codec and the rendering
technology. Many valid combinations may exist. Due to this,
the architecture is designed to support various schemes and
to be easily extensible.

IV. ARCHITECTURE OVERVIEW
As described in Section III, the proposed architecture is
designed to be highly scalable, both in respect to the number
of input sources and to the number of end-users. In order
to achieve close-to-horizontal scalability, the architecture
has several layers. A standard Redis server is at the core
of the architecture. Redis is a popular Open Source in-
memory data store and message broker, which has success-
fully been used in many well-known projects to provide
scalability.

Figure 4 shows an overview of the proposed architecture
and its main components. The architecture is divided into sev-
eral layers which are highly decoupled, in order to promote
scalability and to better separate the concerns of each layer.
Particular deployments may have any number of webcams,
Feeders, CamServers and clients. Only a fixed number are
represented in the picture.

It can be observed that the data flows from left to right.
Firstly, the IP webcams, to the left, capture the initial stream.
The architecture is designed to scale to an arbitrary number
of source webcams and to support different input formats.
M-JPEG and continuous snapshots are the most common
ones, and the ones the contributed implementation provides.
Note that the ones in the figure have been chosen arbi-
trarily: all Feeders support all formats. The one to be used
will depend on the particular IP camera. Secondly, as the
figure shows, the streams are directed to Feeder servers.
In some cases, the streams are transcoded through FFmpeg,
depending on whether the particular input and output format
combinations require transcoding or not. The Feeder servers
are also designed to scale horizontally, and they forward the
streams into the Redis cluster layer.

The Redis layer contains a standard Redis cluster (or a
single Redis instance, depending on the scalability needs),
and acts as a central decoupling element. Redis is a well-
known Open Source middleware designed for in-memory
storage, message-brokering, and scalability. Its goal here is
to receive the streams, store them in-memory very briefly
and efficiently, and distribute them as requested by the
CamServers.

The CamServers, which are also designed to be hor-
izontally scalable, retrieve, from Redis, the streams that
users are currently requesting. They support different output
schemes. When a client requests a stream, they serve it in the
expected one. The contributed implementation and the exper-
iments conducted in this work focus on two: image-refreshing
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and H.264. Previous research suggests that they are effective
and have different advantages [4].

The client-side layer is fully web-based and is formed by
different client-side technologies (mostly JavaScript-based)
that are served by the CamServers themselves. It provides
libraries and widgets that are able to request the streams in
different formats and render them.

V. ARCHITECTURE LAYERS
In this section, each of the layers and components that
form the architecture, and which were briefly introduced
in Section IV, will be described in more detail. See again
Figure 4 for a general overview of these layers.

A. INPUT SOURCES LAYER
The purpose of this layer is to encapsulate access to the input
sources (webcams), forwarding the stream into the Redis
cluster, after having transcoded it into an appropriate format
if required.

This scheme has several advantages. Some applications
and remote laboratories, for simplicity, access the stream
provided by IP cameras directly. Experience shows, however,
that this can lead to different significant issues which are not
necessarily simple to foresee. Some of them are mentioned in
the previous work [4]. From a technical perspective, the soft-
ware and hardware of these cameras are often limited. While
normally they will be able to provide a reasonable Quality of
Experience for a single user (or a few), under higher loads
their performance tends to be unpredictable. Also, they are
heterogeneous. They support different stream formats and
specifications, which are not always documented, and which
may need to be handled in different ways.

Most IP cameras, for instance, provide an M-JPEG stream.
This is a common format because it is simple to imple-
ment, requires little encoding, and adds little delay. How-
ever, the FPS rate tends to be fixed, either specified in the
configuration of the IP webcam, or fixed in their firmware.
When users are unable to process the images fast enough,
due for example to network jittering or bandwidth constraints,
a capture render delay builds up that can add up to many sec-
onds. As a result, applications that rely on directly rendering
the stream often become unusable under certain conditions,
with no trivial way to notice programmatically or even warn
the user. As mentioned, there are also differences between
webcams. For example, some provide different qualities
and video resolutions, others provide different formats such
as an H.264 stream, others use specific non-standardized
HTTP headers to transmit timestamps.

The Feeder servers abstract out these idiosyncrasies, pro-
viding well-known and reliable streams into the Redis cluster.
The contributed implementation, for example, relies mostly
on the different M-JPEG streams that the IP webcams pro-
vide. No matter how many simultaneous users the interactive
live-streaming platform has, a single Feeder accesses a single
IPwebcam at any time. The IPwebcam can thus safely stream
reliably a high-quality stream into the Feeder, at a high FPS

FIGURE 5. Example of FFmpeg configuration for transcoding M-JPEG into
H.264 with minimal latency.

(generally at 30 FPS). Also each webcam is intended to be
located in the same LAN as its Feeder, so there is very little
risk of a delay building up, and the chance of webcam-side
issues is minimized.

When transcoding is necessary, the scheme works sim-
ilarly. A single FFmpeg instance accesses the webcam at
any one time. For example, one of the main output schemes
that the contributed platform provides is based on H.264 [5].
This is a relatively strong, interframe compression codec.
It is not possible to rely on webcams supporting it, and even
those that do often do not support it at an interactive live-
streaming level. To provide a very low latency it is necessary
to configure the H.264 codec appropriately.20 The FFmpeg
instance takes a stream as input from the webcam, in a low-
latency format that the webcam supports, such as M-JPEG.
Then it transcodes it into the target format (e.g., H.264), sends
it to the Feeder, and the Feeder forwards it to the Redis server
through its publish-subscribe scheme. See Figure 5 for an
example of the FFmpeg configuration that can be used to
transcode M-JPEG into H.264 with minimal latency.

The Feeder server, in the contributed implementation, has
been created in Python and relies on the Gevent21 coroutine-
based networking engine. It is designed to scale horizontally,
supporting any number of instances. Each instance can handle
many cameras. The source code is available in the repository.

B. REDIS CLUSTER LAYER
The Redis22 [48] cluster is a central element of the architec-
ture. It decouples the Feeders (which abstract out access to the
input sources and transcoding) from the CamServers (which
serve the appropriate stream to the end-users, in whatever
format and framerate is required).

Redis is an Open Source in-memory data store. It is used
as an in-memory cache and message broker. The proposed
architecture makes use of a standard, unmodified Redis clus-
ter (which can, in fact, be a single Redis instance up until
a significantly high number of users and cameras, as the
experiments in SectionVIIwill show). Redis databases can be
replicated through a master-slave model and current versions
support a form of sharding [49].

Redis is not specifically targeted towards video streaming.
However, it has certain characteristics that make it appropri-
ate for this purpose. Redis is well-known to provide high

20Depending on the codec, the processing power, the buffering size,
the H.264 mode, and many other configuration details, the capture-render
delay, quality and bandwidth usage will vary widely.

21http://www.gevent.org/
22https://redis.io/
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performance and to have been used to provide scalabil-
ity for many applications. It is well-tested, well-maintained
and there is a strong community of developers behind it.23

Research works suggest that its performance is excellent. For
example, [50] compares several NoSQL systems including
MongoDB, ElasticSearch andOrientDB, andRedis shows the
best performance.

The architecture relies on two different Redis subsystems.
In case no transcoding is necessary, which is typically the
case when the output format is based on image-refreshing
or M-JPEG, it relies on Redis’ standard key-value storage
features to store individual image frames. The Feeder servers
place frames into Redis in a particular Redis key for each
active stream. Meanwhile, the CamServers read them as
needed. Through this, the Feeders and the CamServers are
fully decoupled, and can work at different framerates with-
out issues. Normally the Feeder will work at the maximum
framerate for the camera (e.g., 30 FPS). The CamServer
can retrieve snapshots from Redis at a slower FPS (e.g.,
25 FPS), or even at an adaptive FPS. Some frames will
be skipped but no delay is built up. Simplistic as it might
seem, it is a very suitable choice for many applications [4],
especially since many remote laboratories today rely on those
rendering schemes.

When transcoding is necessary, such as when a
CamServer requests an H.264 stream, the architecture relies
on Redis’ message brokering features (Redis channels).
FFmpeg transcodes into the Feeder servers, and the Feeder
servers publish the output directly into a specific Redis
channel for the stream configuration.

As previously described, Redis is not generally geared
towards multimedia. However, it fits the proposed platform
needs particularly well. In the case of the key-value stor-
age system (for the image-refreshing scheme), the proposed
architecture relies on short-lived, non-permanent, readily-
replaced frames. These are key features of the Redis store
system. Similarly, in the case of the channel-based system (for
the H.264 scheme), Redis providesmemory-only, short-lived,
efficient messages. This is also what the platform requires.
Therefore, an interesting contribution of this work is also this
novel use of the Redis engine.

C. CamServers LAYER
CamServers obtain the stream data fromRedis and serve them
to each individual user. They are based on Python’s Flask
microframework and the Gevent coroutine engine. In order
to provide horizontal scalability, an arbitrary number of Cam-
Server instances can be deployed, relying on the WSGI and
Gunicorn24 technologies. Each CamServer instance can serve
a number of clients. The architecture supports several types
of schemes for this last streaming layer. The main ones are
a simple image-refreshing scheme and an H.264 streaming

23The official repository can be found at: https://github.com/antirez/redis.
At the moment of writing this, over 8,725 developers have forked the code,
and over 23,145 have starred (are following) it.

24http://gunicorn.org/

scheme. Previous research suggests that those schemes are
effective [4].

When a client is requesting image-refreshing the Cam-
Servers simply need to serve discrete frames. This scheme
adapts automatically to the client’s FPS and bandwidth
requirements. The CamServer retrieves each frame directly
from Redis, from the appropriate Redis key for the stream.
That key’s value, at any givenmoment, will be the latest frame
pushed into Redis by the Feeder.When a client is requesting
H.264 streaming the CamServer registers itself to listen to the
appropriate Redis channel. Then, it forwards that channel’s
stream data to the client through SocketIO.25 The architecture
can be extended easily to support additional formats based on
these schemes, and some additional ones are in fact supported
by the contributed platform implementation.

The CamServer component, in the contributed implemen-
tation, has also been implemented in Python using Gevent.
Each individual CamServer component instance can thus
handle several clients, but, additionally, it relies on Gunicorn
and WSGI to provide horizontal scalability. Through them,
an arbitrary number of CamServer processes on an arbitrary
number of hardware servers can be started. The source code
is available in the repository.

D. CLIENT-SIDE LAYER
Evaluating potential interactive live-streaming schemes from
a client-side perspective, and determining the ones with the
most potential for remote laboratories, was the main focus of
previous research [4]. As a result, the schemes that are mainly
considered in this work are a simple image-refreshing scheme
and a more complex H.264 based scheme.

Both the image-refreshing and theH.264 schemes rely only
on standard HTML5 and JavaScript. Dependence on non-
standard technologies such as Adobe Flash and Java Applets
is purposefully avoided. The implementation includes all
schemes as widgets, so that they can be easily integrated
into other systems. The image-refreshing scheme is the
simplest. The widget simply retrieves frames at a high-
rate from the CamServer using standard HTTP requests.
Though this is not particularly efficient, in relatively modern
devices 30 FPS or even higher framerates can be achieved
without issues.

The H.264 scheme relies on a customized version of the
Broadway26 H.264 decoder. The core of the decoder is pro-
grammed in C but compiled into highly-optimized JavaScript
through the EmScripten27 technology, and can render even
more efficiently in WebGL-compatible devices. More details
about this scheme and its client-side performance can be
found in [4]. The CamServer forwards the stream data to
the browser and the decoder through the SocketIO library.
SocketIO relies on WebSockets in compatible environments,
and falls back to less efficient transports if needed.

25https://socket.io/
26https://github.com/mbebenita/Broadway
27https://github.com/kripken/emscripten
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It is noteworthy that the source code of these widgets is
also provided in the repository, in both the JavaScript and the
TypeScript languages.

VI. METHODOLOGY
The architecture has been implemented as an Open Source
platform. In order to evaluate the architecture, various exper-
iments are conducted on the contributed implementation.
The performance is experimentally analyzed through several
benchmarks, and the results compared against the previously
proposed goals and requirements.

The architecture is formed by several components, which
are designed to scale horizontally. A Redis cluster is at the
center. The number of Feeders can be increased as the number
of camera sources increases, the number of CamServers can
be increased as the number of end-users increases. In order
to experimentally analyze the performance of the system,
the CamServer and the Feeder components are analyzed
through separate experiments. That way it is possible to
gain insight on what kind of performance we can expect as
the number of cameras increases, and what kind of perfor-
mance we can expect as the number of end-users increases.
Feeders and CamServers are decoupled through the Redis
cluster. Thus, their performance can mostly be expected to be
independent.

It is noteworthy that analyzing the behavior of the plat-
form when a resource limit (e.g., CPU, memory, bandwidth)
is reached is out of the scope of this study. Therefore,
the ranges (from 1 to 50 cameras, and from 1 to 50 users)
have been chosen to avoid this eventuality. It is expected
that whenever such a limit is reached the performance of the
streams can no longer be guaranteed to satisfy the require-
ments appropriately. In that case, deployers would be advised
to add a new computer to the cluster hosting additional
instances of the constrained component. The actual effect of
an unsolved constraint would depend on the resource whose
limit was reached, on the component that suffers it, and on
the stream format. Additional detail on this, especially from
a client-side perspective, is described in [4]. The most likely
results would be an always-increasing delay, or, in the best-
case, a reduced FPS.

The architecture supports several different video schemes.
The ones which are most convenient according to previous
research, and the ones which are the focus of this work, are
image-refreshing and H.264. Because significantly different
performance for each of those can be expected, all the exper-
iments are also conducted for those two schemes. Therefore,
four different experiments are conducted:
• Experiment 1: Feeder component performance in snap-
shots mode (image-refreshing).

• Experiment 2: Feeder component performance in
stream mode (H.264).

• Experiment 3: CamServer component performance in
snapshots mode (image-refreshing).

• Experiment 4: CamServer component performance in
stream mode (H.264).

A. MATERIALS
All the experiments are conducted on a Gigabit LAN. Thus,
the latency of this network is minimal and the bandwidth
is much higher than the maximum amount required for the
highest load in the experiments. This is critical so that the
network does not add a significant amount of latency and so
that the bandwidth does not become a bottleneck, affecting
the measurements. Three different physical servers are used:
• Experiment Server: Intel i7-6700 CPU (3.40GHz,
4 cores, 8 threads), 16 GB RAM.

• Support Server: Intel Xeon E5-2630 v3 CPU
(2.40GHz, 8 cores, 16 threads), 48 GB RAM.

• GUI Server: Intel Core 2 Duo CPU E8400 (3.00GHz,
2 cores), 4 GB RAM.

The Experiment Server, for each experiment, holds only
the component being tested. Measurements are taken on it.
The Support Server holds the components that are not being
tested and also hosts the load simulation components. It is
significantly more powerful than the Experiment Server so
that, again, it does not act as a bottleneck or affect the results.
The GUI server is specifically to support a real graphical
browser and measure the capture-render delay.

B. SUPPORTING COMPONENTS
Supporting components have been developed to help bench-
mark. Firstly, A FakeWebcam component simulates an
IP camera and provides a looping M-JPEG stream. This way
it is possible to reliably simulate an arbitrary number of equal
high-performing input sources. It also can embed a QR code
with a timestamp into the image, so that the receiver can
calculate the capture-render delay. This component has been
implemented in Python and supports WSGI through Flask
and WSGI. Therefore, an arbitrary number of worker pro-
cesses can be started, and it can simulate an arbitrary number
of cameras. Secondly, a Requester component can simulate
client loads by requesting and reading a stream through Sock-
etIO, as a real client’s browser would do. In this case, it has
been implemented inNodeJS. Similarly, several instances can
be started, and each instance can simulate several clients.

The clip that the FakeWebcam loops, and that is used
for the experiments, shows a remote laboratory. It has a
480x640 resolution and there is a total of 928 frames
which loop continuously. Each frame is originally JPEG-
compressed and is roughly 13 KB in size.

The source code for the supporting components and for
the benchmarking scripts, and the video clip itself, are also
available as Open Source.

C. MEASUREMENTS
For the Feeder component experiments the measured vari-
ables are CPU usage, the RAM usage, outgoing bandwidth
usage and FPS. For the CamServer component experiments
the measured variables are CPU usage, RAM usage, incom-
ing bandwidth usage, FPS, and latency.

Measurements are taken on the Experiment Server,
which holds the component that is under testing for each
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FIGURE 6. Interactive live-stream with an embedded QR timestamp to
measure the true capture-render delay.

experiment. Exceptions are the FPS and latency measure-
ments for the CamServer experiments, which are taken in the
GUI Server. Every measurement in the Experiment Server is
taken 50 times and the average is computed. Every measure-
ment in the GUI Server is taken 30 times and the average is
computed.

Due to the nature of an interactive live-streaming system,
measuring the capture-render delay is important. This is a
challenge because not all streaming formats allow inserting
a text-based timestamp into the frames. To work around this
limitation, the servers used during the experiments are syn-
chronized through the NTP protocol. A timestamp is calcu-
lated, and a QR code containing it is generated and embedded
into each frame.28 Figure 6 shows the live-stream with the
embedded QR timestamp. When the frame is rendered, as in
the image, the QR code can be read on the target computer.
It can be compared to the current time to obtain an accurate
capture-render delay. These measurements are taken on the
GUI server, because a server with a window system (X Server
in this case) is required to open a browser, use the platform’s

28QRgeneration and embedding has beenmeasured to take around 23mil-
liseconds in the Support Server. A small part of the latency measurement will
thus be due to this.

FIGURE 7. Setup and components for Experiment 1: Feeder components
and image-refreshing.

JavaScript-based widgets to render the stream, and saving the
image with the QR code timestamp.

VII. EXPERIMENTS
A. EXPERIMENT 1
Experiment 1 measures the performance of the Feeder com-
ponent with the simple image-refreshing scheme. Figure 7
shows this setup. The Support Server hosts a Redis instance
and FakeWebcam instances. The Experiment Server hosts the
Feeder component. The experiment is run 50 times, with an
increasing number of cameras, from 1 to 50. The Feeders
read the stream from them and forward the frames into the
Redis servers in the image-refreshing format. The number of
Feeder instances is increased proportionally to the number
of cameras (an instance is added for every 10 cameras).
All the measurements are taken in the Experiment Server,
which contains the Feeders. As described in Section VI, each
measurement is taken 50 times, and the average is computed.

B. EXPERIMENT 2
Experiment 2 measures the performance of the Feeder com-
ponent with the H.264 format scheme. Figure 8 shows this
setup, which is similar to Experiment 1’s. In this case,
the H.264 format scheme is evaluated instead. The exper-
iment is also run 50 times, with an increasing number of
cameras (from 1 to 50). This time, however, transcoding is
required, so FFmpeg instances to transcode into H.264 are
used. These instances forward the stream into the Feeders and
the Feeders into Redis, using the channel-based scheme. All
the measurements are taken in the Experiment Server, which
contains the Feeders and the FFmpeg instances. As described
in Section VI, each measurement is taken 50 times, and the
average is computed.
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FIGURE 8. Setup and components for Experiment 2: Feeder components
and H.264.

FIGURE 9. Setup and components for Experiment 3: CamServer
components and image-refreshing.

C. EXPERIMENT 3
Experiment 3 measures the performance of the Cam-
Server component with the simple image-refreshing scheme.
Figure 9 shows this setup. It is significantly more complex
than the setup for the previous experiments. The Support
Server hosts the Redis instance, a single Feeder component,
and a varying number of Requester components to simulate
end-user load. The Experiment Server hosts several Cam-
Server components (6 Gunicorn-initiated worker processes of
Gevent type). The GUI Server hosts a Selenium script29 that
also simulates load for a single client. A script in the GUI
servers opens a real browser, renders the stream, and auto-
matically extracts the timestamp from the frame’s QR code,

29http://www.seleniumhq.org/

FIGURE 10. Setup and components for Experiment 4: CamServer
components and H.264.

measuring the FPS and capture-render delay. The other mea-
surements are taken from the Experiment Server. Note that
in this case FPS and latency measurements are particularly
realistic, because they are measured in a real browser while
rendering the frames. As described in Section VI, each mea-
surement in the Experiment Server is taken 50 times, and the
average is computed. Measurements in the GUI Server (FPS
and latency) are taken 30 times, and the average is computed
as well.

D. EXPERIMENT 4
Experiment 4 measures the performance of the CamServer
component with the H.264 format scheme. Figure 10 shows
this setup. It is very similar to Experiment 3’s, except that
in this case the H.264 format scheme is evaluated instead.
Transcoding is needed again, so the single Feeder instance
is aided by an FFmpeg. Redis channels are used this time to
transit the H.264 stream. In this case, the stream is transmitted
using SocketIO. It is noteworthy that properly rendering the
H.264 stream using the provided widgets requires WebGL,
so for this experiment, relying on the GUI Server to open a
real browser and measure the capture-render delay is partic-
ularly important. It can’t easily be calculated without truly
rendering the stream. As described in Section VI, each mea-
surement in the Experiment Server is taken 50 times, and the
average is computed. Measurements in the GUI Server (FPS
and latency) are taken 30 times, and the average is computed
as well.

VIII. RESULTS
The results of the experiments are presented in this section.
Charts are provided for all of them. The charts combine dif-
ferent variables. Units have been chosen so that they are rea-
sonably proportioned on the vertical axis. CPU is presented
in usage percent. RAM is presented in GB. Bandwidth is
presented in megabytes per second. Latency (capture-render
delay) is presented in centiseconds (the unit is thus 10ms),
so that the scales match.
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FIGURE 11. Results of Experiment 1. Feeder component using the
image-refreshing technique.

A. EXPERIMENT 1
The results of Experiment 1 are summarized in Figure 11.
The system’s RAM usage remains nearly constant. This is
expected, because individual frames are small and the archi-
tecture is designed to replace old frames with updated ones:
no frames are stored. The value itself (around 3.6 GB) is not
particularly relevant (most of it is allocated by the system
itself and not the platform). The target 30 FPS is maintained
without issues. Bandwidth and CPU usage increase linearly
with the number of cameras. CPU usage raises up to around
30% at 50 cameras. Bandwidth raises up to 28.8 MB/s at
50 cameras, which is roughly 576 KB/s per camera.

B. EXPERIMENT 2
The results of Experiment 2 are summarized in Figure 12.
RAM usage, again, remains nearly constant. The target
30 FPS is maintained throughout. Bandwidth and CPU usage
increase linearly with the number of cameras, using up to
around 85% CPU at 50 cameras. This is significantly higher
than the CPU usage in the previous experiment, which is
understandable because in this case all the streams are being
transcoded from M-JPEG into H.264. At the same time,
nonetheless, the bandwidth requirements are significantly
lower. This is expected, as the compression of H.264 is sig-
nificantly more effective than that of image-refreshing, which
is similar to M-JPEG. At 50 cameras it consumes around
10.8 MB/s, which is roughly 216 KB/s per camera.

C. EXPERIMENT 3
The results of Experiment 3 are summarized in
Figure 13. RAM usage is mostly constant. The FPS is also
mostly constant at 28 FPS. Bandwidth and CPU increase
linearly with the number of users, with CPU usage at

FIGURE 12. Results of Experiment 2. Feeder component using the
H.264 format technique.

FIGURE 13. Results of Experiment 3. CamServer component using the
image-refreshing technique.

around 12% for 50 users, and bandwidth usage at around
28.8 MB/s (576 KB/s per stream). In this experiment,
the latency (capture-render delay) is measured as well. To do
this, as previously described, the stream is rendered in a real
Firefox browser and the QR timestamping technique is used
to determine the delay. In this case, the delay remains mostly
constant. The average is 213 ms (µ = 95), though there are
some peaks of up to 574ms. It is noteworthy that though there
might seem to be a significant variation in latency in the chart
due to the chosen scale, the absolute value is quite low, always
below 0.6 seconds.

D. EXPERIMENT 4
The results of Experiment 4 are summarized in Figure 14.
RAM usage is again mostly constant. The target 30 FPS is
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FIGURE 14. Results of Experiment 4. CamServer component using the
H.264 format technique.

mostly maintained, sometimes decreasing very slightly to
around 29 FPS. Bandwidth and CPU increase linearly with
the number of users, with CPU usage at around 10% for
50 users, and bandwidth usage at around 19.9 MB/s (around
398 KB/s per stream). The capture-render delay remains
mostly constant as well. The average is 171 ms (µ = 85),
though there are some peaks of up to 383 ms. It might again
be noteworthy that the absolute value is nonetheless quite
low (always below 0.4 seconds in this case).

IX. DISCUSSION
In Section III we described the goals and requirements of the
proposed platform. The evaluation, through the contributed
implementation and the described experiments, suggests that
those goals and requirements are indeed met.

A. GOALS
The goals were the following:
• Universality
• Efficiency and scalability
• Openness
The platform, from a client-side perspective, can indeed be

considered to provide high universality. The twomain stream-
ing approaches (which are image-refreshing and H.264),
described in more detail in [4], are fully web-based. They
rely only on JavaScript and HTML5 and are compatible with
any modern device, including mobile phones and tablets. The
communication protocols that are required are HTTP and
optionally WebSockets.

The efficiency and scalability of the platform are sat-
isfactory as well. The results suggest that both the Feed-
ers and CamServers are efficient for both image-refreshing
and H.264. As expected, there are some performance dif-
ferences between them. The most significant one is that
image-refreshing takes less CPU but takes significantly more
bandwidth. This is understandable, because image-refreshing
is essentially an M-JPEG variation: there is no interframe

compression. No transcoding is needed, but, in exchange,
the compression rate is worse than for H.264.

The capture-render delay that the platform provides, for
both schemes, is similarly low. Some minor peaks are present
but they are within reasonable bounds. It is noteworthy that
this H.264 delay is particularly small, considering that it is an
interframe-compression format. The codec has been config-
ured to very aggressively minimize latency, reducing buffer
sizes to aminimum and sacrificing compression. In exchange,
as observed, the bandwidth usage, while not particularly
large, is higher than that of a typical H.264 stream.

A single server can handle more than 50 cameras
or users (in some cases many more, depending on the for-
mat). Moreover, both the Feeders and CamServers scale
horizontally. This has not been explicitly tested during the
experiments, but they are based on technologies such as
WSGI which rely on multiple independent processes. And,
indeed, multiple independent processes were used during the
experiments.

The openness goal is also satisfied. The libraries and tech-
nologies that the platform relies on are Open Source. The
implementation of the platform itself has also been released
as Open Source.

B. REQUIREMENTS
The requirements that were stated were the following:

• Interactive live-streaming
• Supporting multiple sources
• Supporting multiple output schemes

These particular technical requirements are indeed met by
the platform. The experiments show that the capture-render
delay that the platform can provide is indeed low enough
to be considered interactive-level. It supports an arbitrary
number of input cameras. They also support multiple output
schemes. These include the image-refreshing scheme and the
H.264-based schemes that have been discussed throughout
this work and evaluated through the experiments. They also
include some additional schemes, such as rendering M-JPEG
through JavaScript in the client-side. These have not been
discussed but are present in the contributed source.

With all these goals and requirements met, we expect
that this work will be useful for both research and practical
purposes. It is our intention, particularly, that the remote
laboratory community may benefit from an easy to deploy,
integrable, interactive live-streaming system that improves
the user experience of remote laboratories.

X. CONCLUSIONS AND FUTURE WORK
This work has proposed goals and requirements for an open,
web-based, interactive live-streaming platform. These goals
and requirements are particularly well-suited for the field of
remote laboratories, though the platform is intended to be
useful for any other applications which have similar require-
ments. Then, an architecture to meet those goals has been
designed. An implementation of that architecture has been

9854 VOLUME 5, 2017



L. Rodriguez-Gil et al.: Open and Scalable Web-Based Interactive Live-Streaming architecture

created and released as Open Source.30 That contributed
implementation has been used to experimentally evaluate
the architecture. Results suggest that the goals and require-
ments are indeed met and that the proposed architecture
will indeed be useful for practical and research purposes.
Most live-streaming platforms, and especially interactive
live-streaming ones, are not open. It is expected that the
proposed platform and its implementation, due to its open
nature, can be integrated, used and customized as needed by
other researchers or developers.

These results are promising. Nonetheless, some lines of
work remain open and could be pursued in the future. To our
knowledge, there are no other interactive live-streaming
architectures that are specifically oriented towards remote
laboratories. However, some alternative open source plat-
forms, with different goals, do exist. An example is nginx-
rtmp-module.31 It would therefore be interesting to compare
these architectures in terms of performance and in terms of
remote laboratory requirements. It would also be interest-
ing to analyze the architecture’s performance under varying
network conditions. Furthermore, in the future, new interac-
tive live-streaming schemes may be added to the platform
and evaluated. In the latest times, new promising standards
such as MPEG-DASH have appeared. Although they are
not necessarily suited for interactive live-streaming, as they
are developed and become more mainstream they may be
explored as additional live-streaming schemes. Also, live-
streaming additions to the HTML5 video tag are expected to
appear in the future. Once such additions are standardized and
well-supported by modern browsers, they may be explored as
well.
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