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ABSTRACT In this paper, we propose the mitigating scheme to reduce the effects of phase noise in multi-
input multi-output-orthogonal frequency division multiplexing system with independent oscillator in each
RF chain. Our proposed schemes consist of two stages; channel estimation stage and data decoding stage.
In the first stage, we propose the channel estimation algorithm based on maximum a posteriori (MAP)
estimator and a method of selecting the training sequence for channel estimation and we provide the
mathematical analysis of our proposed scheme. In the second stage, MAP estimators are used to jointly
estimate phase noise at TX and RX and detect data symbols. For analysis of mean square error (MSE)
performances, we derive Bayesian Cramėr-Rao bound for multi-parameter estimation problem in each
stage. At the end of this paper, we demonstrate from our simulation results that our mathematical analysis
is accurate and the proposed algorithm improves the bit-error-rate performance and MSE performance
compared with existing schemes.

INDEX TERMS MIMO, OFDM, phase noise, RF impairment, mmWave, oscillators, channel estimation,
common phase error (CPE), inter-carrier interference (ICI).

I. INTRODUCTION
Multi input multi output (MIMO) orthogonal frequency
division multiplexing (OFDM) system is adopted in many
wireless communication systems such as IEEE 802.11 ac/ad
wireless local area networks (WLAN) [1], [2] and 3GPP
LTE [3] not only to achieve high spectral efficiency using
spatial multiplexing, but also to be robust to frequency selec-
tive channels. However, OFDM systems suffer from phase
noise which is a multiplicative phase distortion and gener-
ated by non-ideal property of the imperfect oscillators dur-
ing up-conversion and down-conversion [4], [5]. While the
single-carrier modulated signals are affected by the phase
error in a symbol unit, OFDM transmits data symbols over
many low-rate subcarriers and their phase noise is con-
volved with data symbols. This makes it more difficult to
estimate and track phase noise. There are two effects of
phase noise on the received OFDM symbols; common phase
error (CPE) and inter-carrier interference (ICI). CPE is a com-
mon phase rotation of all the subcarriers in an OFDM symbol.
On the other hand, ICI violates the orthogonality between the

subcarriers and behaves likeGaussian noise. Those effects are
greatly detrimental to synchronization and deteriorate signal-
to-interference-plus-noise ratio (SINR).

In the traditional low frequency bands (lower than
10 GHz), phase noise is small enough to be ignored [6].
Hence both 3GPP LTE [3] and IEEE 802.11 ac WLAN stan-
dardization documents [1] do not specify options associated
with phase noise. However, note that the variance of phase
noise increases quadratically versus the carrier frequency
generated by oscillators [7]. Therefore, in mmWave wireless
systems such as 60GHz WLAN standards [2] and some can-
didate bands for the 5th generation cellular systems, the large
phase noise compared to relatively low frequency band under
10GHz is one of the critical issues to be solved for the suc-
cessful deployments. For this reason, although there are many
synchronization problems such as timing offset, frequency
offset and IQ imbalance in OFDM systems, we focus on the
phase noise problem in this paper.

Phase noise mitigation algorithms in MIMO-OFDM sys-
tems have been studied in many papers [8]–[12]. All of
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FIGURE 1. Nt × Nr point to point MIMO-OFDM systems with independent oscillators.

the phase noise cancellation algorithms mentioned above
assume that transmit (TX) and receive (RX) antennas share a
common oscillator, so there is only one phase noise process
at TX and RX sides, respectively. In this case, phase noise
mitigation algorithms in single input single output (SISO)
OFDM systems can be extended and modified easily to
MIMO-OFDM systems. However, in many cases of MIMO
systems, independent oscillator may be equipped on
each of RF chains both at TX and RX transceivers,
respectively, as depicted in Fig. 1 [13]. In the case of
line-of-sight (LOS) MIMO environments, which are often
experienced in mmWave systems, as antennas need to be
placed far apart from one another to create full rank chan-
nel, all TX or RX antennas cannot be shared by a single
oscillator [14], [15]. Also, in multiuser MIMO and space
division multiple access (SDMA) systems, each user has a
separate user equipment (UE) and transmits their signals to
a common receiver [13]. For another example, as in [16],
the implementation of massive MIMO in circuit level can be
simplified with the resilience against the phase noise when
the independent oscillators are equipped.

On the other hand, although equipping the independent
oscillators in the RF transceiver becomes more general in
mmWave systems and the effect of phase noise becomes very
serious compared to the relatively low bands under 10GHz,
the studies on solving the phase noise problems in the sys-
tems are scarce. In [17], the effects of phase noise at both
TX and RX sides in MIMO-OFDM systems are analyzed.
In [13], joint estimation of channel and phase noises, and
Cramėr-Rao Bound (CRLB) analysis have been proposed.
In [18], authors present expectation and maximization (EM)
based on phase noise estimator. However, all the above papers
made the mathematical analysis or phase noise estimators in
the single carrier systems. In [19], authors propose channel
and CPE estimation algorithm in MIMO-OFDM systems by
using least square (LS) approach. However this algorithm
cannot remove ICI which gives a disastrous effect specifi-
cally in case of independent oscillators. In [20], the authors

consider independent oscillators equipped only at RX end
but a common oscillator at TX end, which is not a general
implementation.

In this paper, our main challenge is to improve the sys-
tem performances in MIMO-OFDM systems, where each
TX and RX end is equipped with independent oscillators.
It is general consideration on phase noise problem in OFDM
systems compared with existing literature such as [8], [10],
and [21]–[23]. We propose the mitigation schemes of phase
noise in MIMO-OFDM systems, where each TX and RX
end will encounter different phase noise. The schemes can
be divided into two stage; channel estimation and data
decoding. First, for channel estimation in MIMO-OFDM
systems, designing training sequences is a critical issue
to reduce mean squared error (MSE) of channel impulse
response (CIR). In [24] and [25], when using LS channel
estimation, the authors have shown that optimal pilot tone
allocations under absence of phase noise require orthogo-
nality among TX ends in time, frequency or code domain.
However, neglecting the effects of phase noise in design of
the preamble may lead to a significant loss in accuracy of
the channel estimation. In [26], optimal training symbols are
presented in the presence of frequency offset and phase noise.
However, the authors in [26] consider the system that TX and
RX antennas share a common oscillator, and only the case
of LS channel estimation. Thus, in our paper, the effective
training sequence design in our systems will be proposed
through mathematical analysis of MSE. Also, we propose
maximum a posteriori (MAP) estimator of CIR from math-
ematically derived covariance of ICI. In data decoding stage,
we iteratively estimate multiple phase noises and detect data
symbols using MAP estimation.

The rest of our paper is organized as follows. In Section II,
the MIMO system model and phase noise model used
throughout the paper are outlined. Section III introduces
the techniques to estimate channel coefficients and select
training sequences. Also Bayesian CRLB (BCRLB) for
unknown parameter and mathematical analysis are derived.
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In Section IV, our proposed algorithm in data decoding is
presented and BCRLB of phase noise is derived. For the
proof of validation of analysis and comparison of the schemes
given in Section III and IV, Section V shows the bit-error-
rate (BER) and MSE performances from numerical and sim-
ulation results. Finally, Section VII summarizes the paper and
concludes our contribution.

Throughout this paper, we adopt the following notations:
First Bold face small letters and large letters represent vectors
and matrices like {x,X}. 1N and 0N represent all one and zero
N ×1 vector, and 1N×M and 0N×M represent all one and zero
N × M matrix. (·)D and (·)Cir represent a diagonal matrix
and circulant matrix of vector which are represented by same
alphabet, respectively. And (X)a,b is the (a, b)-th entry of X.
In operators, (·)T , (·)∗ and (·)H denote transpose, conjugate
and conjugate transpose operator, respectively. E [·], R {·}
and I {·} denote expectation, real, imaginary operator, respec-
tively. Notations of ∗, ⊗, ◦ and ~ denote convolution, circu-
lar convolution, Hardarmard product and Kronecker product
operator, respectively. Finally, diag (·) is an operator to trans-
form an input vector into a diagonal matrix or an input matrix
into a vector using only diagonal elements in the matrix and
circ (·) is an operator to transform an input vector into a cir-
culant matrix. diag (·) denotes an block diagonal operator to
convert matrices with same size to an block diagonal matrix.
In this paper, j has two meaning. When denoted by a letter
subscript such as yj, it means the index of receive antenna.
While denoted by a letter such as j, it represent an imaginary
part.

II. SYSTEM MODEL
A. MIMO-OFDM
Typically up to four transmit antennas can be handled with
one RF chain. But those antennas usually are used to achieve
diversity gain by beamforming. In our paper, we assume
that each antenna means one baseband port and our system
uses multi antenna to achieve multiplexing gain. We con-
sider a Nt × Nr point-to-point MIMO-OFDM system where
TX end transmits M data streams (M ≤ min(Nt ,Nr )) to
RX end. As seen in Fig. 1, each antenna is connected to the
independent local oscillator.

Let si(k) be the data symbol at the k-th frequency domain
which is transmitted from the i-th transmitter. After normal-
ized inverse discrete Fourier transform (IDFT), the transmit-
ted signal in discrete time domain can be written as

xi(n) =
1
√
N

N−1∑
k=0

si(k)e
j2πnk
N , (1)

where xi(n) is the n-th transmitted signal in the time domain
of the i-th TX antenna and N is the number of subcarriers in
one OFDM symbol.

The baseband signal is converted into the analog signal
and upcoverted by the local oscillator, which generates
phase noise by difference between carrier signal and
the local oscillator. After experiencing multipath channels

gji =
[
gji (0) , gji (1) , · · · , gji (L − 1)

]
∈ CL×1, the channel

impulse response (CIR) vector with L length between the ith
TX and the jth RX, the downconverted baseband signal at the
jth RX antenna is given by

yj(n) =
Nt∑
i=1

xi(n)ejθi(n) ⊗ gji(n)ejφj(n) + wj(n), (2)

where yj(n) is the n-th received signal in the time domain
of the j-th RX antenna, and θi (n) and φj (n) represent TX
phase noise of the i-th TX antenna and RX phase noise of
the j-th RX antenna, respectively. Also, in (2), wj(n) is the
n-th additive white Gaussian noise (AWGN) of the j-th RX
antenna modeled as the complex Gaussian random variable
wj(n) ∼ CN

(
0, σ 2

w
)
.

To simplify the received signals in the j-th RX ends, (2) can
be rewritten in vector form as

yj = Pφj,DF
HHjFNt ,DPθ,Dx+ wj, (3)

and the total received signal vector is given by

y = Pφ,DFHNr ,DHFNt ,DPθ,Dx+ w, (4)

where yj =
[
yj (0) , yj (1) , · · · , yj (N − 1)

]T
∈ CN×1 and

y =
[
y1T , y2T ,..., yNr

T
]
T
∈ CNrN×1 denote the received

signal vector of the j-th RX antenna and the total
received signal vector in the time domain, respectively,
and xi = [xi (0) , xi (1) , · · · , xi (N − 1)]T ∈ CN×1 and

x =
[
x1T , x2T ,..., xNt

T
]
T
∈ CNtN×1 denote the transmitted

signal vector of the i-th TX antenna and the total trans-
mitted signal vector in the time domain, respectively, and

wj =
[
wj (0) ,wj (1) , · · · ,wj (N − 1)

]T
∈ CN×1 and

w=
[
w1
T ,w2

T ,...,wNr
T
]
T
∈ CNtN×1 denote the noise vec-

tor of the j-th RX antenna and the total noise vector in
the time domain, respectively. Note that in (3) and (4),
φj =

[
φj (0) , φj (1) , · · · , φj (N − 1)

]T
∈ RN×1 and φ =[

φ1
T ,φ2

T ,...,φNr
T
]
T
∈ RNrN×1 are the phase noise vector

of the j-th RX antenna and the total phase noise vector,
respectively. Denoting pφj and pφ as the phase error vector,
exp(jφj) and exp(jφ), respectively, we denote Pφj,D and Pφ,D
as the diagonal phase error matrices, diag

(
pφj
)
and diag

(
pφ
)
,

respectively. TX phase noise vectors, θ and θ i, have the same
structurewith RXphase noise vectors ,φ andφj.FNr ,D andHj
represent the block discrete Fourier transform (DFT) matrix
and the channel matrix in j-th RX end given by

FNr ,D = diag
(
[F,F, · · · ,F]︸ ︷︷ ︸

)
Nr

,

Hj =
[
Hj1,D,Hj2,D, · · · ,HjNt ,D

]
,

where is F a nomalized DFT matrix, hji =
√
NFgji ∈ CN×1

is the channel frequency response (CFR) with between the
i-th TX and the j-th RX antennas, and Hji,D is the diagonal
matrix of the vector hji, diag(hji). Finally, the total channel
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matrix, H, is given by

H =
[
HT

1 ,H
T
2 , · · · ,H

T
Nr

]T
.

B. PHASE NOISE MODEL
In this paper, we consider the oscillator without a phase
locked loop (PLL), which is often called as free-running
oscillator [21]. In this case, the phase noise is modeled as
Wiener process, given as

φj(n) = φj(n− 1)+ ζ (n), (5)

where ζ (n) is a independent and identically distributed (i.i.d.)
Gaussian random variable following ζ (n) ∼ N

(
0, σ 2

ζ

)
.

Its variance is given by σ 2
ζ =

2πβTs
N , where β denotes the

two-sided 3-dB bandwidth of Lorentzian spectrum of the
oscillator [22]. From (5), we can figure out that φj is modeled
as a Gaussian random vectorN

(
0,8j

)
, where the covariance

matrix 8j is shown to be given as [27](
8j
)
k,l = σ

2
ζ min (k, l) . (6)

As the phase noisewith independent and identical distribution
occurs at each antenna, the distribution of φ is given by

φ ∼ N (0,8) ,8 = diag
([
81,82, · · · ,8Nr

])
. (7)

Also, in the case of TX phase noise, θ follows the same
distribution as RX phase noise given in (7) and thus we have

θ ∼ N (0,2) ,2 = diag
([
21,22, · · · ,2Nt

])
. (8)

However, other systems may implement the oscillators
controlled by PLL, where phase noise process can be approx-
imately as a zero-mean colored Gaussian process [23]. As the
covariance matrix of the Gaussian process, 8 and 2, can be
calculated from specification of the oscillators, our proposed
algorithm can be applied by substituting the covariancematri-
ces of phase noise.

C. FRAME STRUCTURE AND TWO STAGE OF ESTIMATION
In this paper, we assume that transmitted signal experiences
a block fading channel that does not vary within a frame.
Hence, the entire system procedure is based on one frame,
which consists of two different types of symbols; the block-
type pilot symbol and the comb-type pilot symbol, as illus-
trated in Fig. 2. Many papers [12], [19], [21], [23], [25], [26]
and standards of OFDM systems [1], [3] adopt the similar
frame structure depicted in Fig. 2.

We investigate the schemes mitigating phase noise in both
channel estimation and data decoding. In channel estimation
stage, we consider the block-type pilot symbols as the training
symbols which are transmitted in the beginning of a frame.
Due to the fact that phase noise is usually varying much faster
than the channel, only one OFDM symbol in time domain is
used to estimate the channel because the estimated channel
can be differently rotated at each symbol by time varying
phase noise. Thus, the number of subcarriers, N , is larger

FIGURE 2. Frame structure of proposed shemes.

than the total taps of CIR to be estimated at each RX end,
L × Nt . In data decoding stage, the pilot subcarriers, which
are inserted in the intervals of the comb-type pilot symbol,
are utilized to estimate TX and RX phase noises.

III. CHANNEL ESTIMATION
When estimating the channels in the presence of phase noise,
we take two steps to reduce the effects of phase noise.
The first step is to estimate the channel based on Bayesian
approach and the other step is to select the combination of
training symbols to be robust against phase noise.

A. BCRLB OF CIR
Prior to proposing algorithms, it is important to find out the
lower bound of MSE performance in the estimation problem.
As we estimate random parameters using Bayesian approach
in Section III-B, we derive BCRLB of parameters to be
estimated in this section.

Let us define the unknown parameter vector η1 as

η1 ,
[
φTj , θ

T , gTj,re, g
T
j,im

]T
(9)

where gj =
[
gTji , g

T
j2, · · · , g

T
jNt

]T
is CIR of the j-th RX end,

and gj,re and gj,im denote R
{
gj
}
and I

{
gj
}
, respectively.

In [28], Bayesian information matrix (BIM) is defined as

B1 = Eη1 [01]+ Eη1
[
−1

η1
η1
lnp

(
η1
)]
, (10)

where

01 = Eyj|η1
[
−1

η1
η1
ln p

(
yj | η1

)]
(11)

is Fisher information matrix (FIM) and 1η1η1 f , ∂f
∂η1

[
∂f
∂η1

]T
denotes the second order partial derivative of function f with
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respect to the vector η1. In order to easily partial differentiate
negative log-likelyhood function in (11) with respect to each
parameter, we need to make signal term of (3) be divided into
each parameter vector of η1 and remainder matrix. Hence,
(3) can be rewritten as

yj = 41pθ + wj = 31pφj + wj (12)

where

41 = Pφj,DF
HHjFNt ,DXD,

31 = diag
(
FHHjFNt ,DXDpθ

)
andXD denotes diag (x). Also, the signal part of (3) is divided
into gji and the rest as

yj = Pφj,DF
H

Nt∑
i=1

diag
(
Vθisi

)
FLgji + wj, (13)

where is FL a N × L partial DFT matrix, and vθi and
Vθi denote

√
1/NFpθi and circ

(
vθi
)
, respectively. Also

in (13), si = [si (0) , si (1) , · · · , si (N−1)] ∈ CN×1 and

s =
[
s1T , s2T ,..., sNt

T
]
T
∈ CNtN×1 denote the transmitted

signal vector of the i-th TX antenna and the total trans-
mitted signal vector in the frequency domain, respectively.
To remove summation term in (13), we can rewrite (13)
as

yj = Pφj,DF
H S̃FL,Dgj + wj = Pφj,DQ̃gj + wj, (14)

where

S̃ =
[
diag

(
Vθ1s1

)
, diag

(
Vθ2s2

)
, · · · , diag

(
VθNt sNt

)]
,

FL,D = diag
(
[FL , · · · ,FL]︸ ︷︷ ︸

Nt

)
.

In the existence of AWGN, 01 is given by [29]

01 =
2
σ 2
w
R

[
∂µH1
∂η1

∂µ1

∂ηT1

]
, (15)

where µ1 denotes Pφj,DF
HHjFNt ,DPθ,Dx. The partial deriva-

tive of µ with respect to each parameter can to be approxi-
mately calculated as

∂µ1

∂φTj
≈
∂31

(
1N + φj

)
∂φj

= j31,

∂µ1

∂θT
≈
∂41

(
1NNt + θ

)
∂θT

= j41,

∂µ1

∂gTj,re
= Pφj,DQ̃,

∂µ1

∂gTj,im
= jPφj,DQ̃, (16)

where phase noise is assumed to be approximated by eφj(n) ≈
1+jφj (n) by Taylor series expansion of exponential function.
Using (16), we can obtain 01 as given in (17), as shown at the
bottom of this page.

Then, with the phase noise model given in (7) and (8) and
power delay profile of the channel, cg ∈ RL×1, we can obtain
BIM given in (18), as shown at the bottom of this page, which
is derived in the Appendix A in detail. In (18),Cg,D,C̃

Nt
gcir and

Cx are respectively defined as

Cg,D = diag
([

cTg , · · · , c
T
g

]
︸ ︷︷ ︸

Nt

T
)
∈ RLNt×LNt ,

C̃Nt
gcir =

[
C̃g,cir , · · · , C̃g,cir

]
︸ ︷︷ ︸

Nt

∈ RN×NNt ,

Cx = [cx , · · · , cx]︸ ︷︷ ︸
N

T
∈ RN×NNt , (19)

where c̃g =
[
cTg , 0

T
N−L

]T
∈ RN×1 is a zero-pedded power

delay profile, C̃gcir = circ
(
c̃g
)
∈ RN×N denotes the cir-

culant matrix of c̃g, and cx = diag
(
I ◦
(
xxH

))
∈ RNNt×1

represents the power vector of the transmitted signal. In (18),
Eη
[
Q̃H Q̃

]
can be derived as

Eη
[
Q̃H Q̃

]
= FHL,DEη

[
S̃H S̃

]
FL,D, (20)

01 =
1
σ 2
w
R


3H

1 31 3H
1 41 3H

1 Pφj,DQ̃ j3H
1 Pφj,DQ̃

4H
1 31 4H

1 41 4H
1 Pφj,DQ̃ j4H

1 Pφj,DQ̃

Q̃HPHφj,D31 Q̃HPHφj,D41 Q̃H Q̃ jQ̃H Q̃

−jQ̃HPHφj,D31 −jQ̃HPHφj,D41 −jQ̃H Q̃ Q̃H Q̃

 (17)

B1 =
1
σ 2
w
R


diag

{
C̃Nt
gcir cx + C̃Nt

gcir (I ◦2) cx
}
+8j C̃Nt

gcir ◦ Cx 0N×LNt 0N×LNt(
C̃Nt
gcir ◦ Cx

)T
1
Nt
XH
DXD +2 0NNt×LNt 0NNt×LNt

0LNt×N 0LNt×NNt Eη
{
QHQ

}
+

1
2Cg,D jEη

{
QHQ

}
0LNt×N 0LNt×NNt −jEη

{
QHQ

}
Eη
{
QHQ

}
+

1
2Cg,D

 (18)
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where

E
[
S̃H S̃

]

= E


diag

(
V∗θ1s

∗

1 ◦ Vθ1s1
)
· · ·diag

(
V∗θ1s

∗

1 ◦VθNt sNt
)

...
. . .

...

diag
(
V∗θNt s

∗
Nt ◦ Vθ1s1

)
· · ·diag

(
V∗θNt s

∗
Nt ◦ VθNt sNt

)
,
(21)

Eη
[
diag

(
V∗i s
∗
i ◦ Vjsj

)]
≈

{
diag

(
s∗i si

)
+ I◦

{
Fdiag (xi)2jdiag

(
x∗i
)
FH
}
,if i = j

diag
(
s∗i sj

)
, if i 6= j

.

(22)

Finally, by calculating the inverse matrix of BIM matrix,
BCRLB for η1 (k) can be obtained as

BCRLB (η1 (k)) =
(
B1
−1
)
k,k

(23)

Hence, utilizing explicit statistical knowledge of channel
and phase noise, we can derive the BCRLB of unknown
parameters.

B. PROPOSED CHANNEL ESTIMATION ALGORITHM
It is difficult to jointly estimate the phase noise and the chan-
nel impulse response in the channel estimation stage. This
is because there are more parameters to jointly be estimated
than the number of received signals at the j-th RX end. Hence,
the solution involves an analysis of ICI caused by phase
noise and incorporating its result in channel estimator. The
mathematical analysis of ICI will be presented in detail in
Section III-C.

In (3), the effect of TX phase noise can be expressed as

yj = Pφj,DF
H

Nt∑
i=1

Hji,DFPθi,DF
H si + wj

= Pφj,DF
H

Nt∑
i=1

Hji,DVθisi + wj

= Pφj,DF
H

Nt∑
i=1

Hji,D

(
αθiI+ Ṽθi

)
si + wj

= Pφj,DF
H

Nt∑
i=1

αθiHji,Dsi

+Pφj,DF
H

Nt∑
i=1

Hji,DṼθisi + wj, (24)

where αθi is the CPE of θi, vθi [0], and Ṽθi denotes the
matrix that the diagonal element is removed at Vθi . The sec-
ond term of (24) is the ICI which is caused by the
TX phase noise. Also, the effect of RX phase noise can be

written as

yj = αφjF
H

Nt∑
i=1

αθiHji,Dsi + FH Ṽφj

Nt∑
i=1

αθiHji,Dsi

+Pφj,DF
H

Nt∑
i=1

Hji,DṼθisi + wj, (25)

where the second term is the ICI of RX phase noise. (25) can
be simply rewritten as

yj = αφjF
H

Nt∑
i=1

αθiHji,Dsi + εrx + εtx + wj

= FHSFL,Dg̃j + εrx + εtx + wj

= Qg̃j + εj + wj, (26)

where

S =
[
diag (s1) , diag (ss) , · · · , diag

(
sNt
)]

and g̃j is the corrupt CIR at the j-th RX end, which is rotated
by αθi and αφj . Also, εtx and εrx represent ICI of TX and
RX phase noise, and εj is total ICI which occurs at the
j-th RX end. Herewe need to estimate g̃j instead of gj, because
we cannot disentangle CIR from the CPE and the rotation
of the channel can be sufficiently compensated by the CPE
estimation in data decoding stage, which is described in detail
in Section IV-C.

In general, the channel is estimated by least square (LS)
algorithm [12], [19], [24]–[26] as

ĝj,LS =
(
QHQ

)−1
QHyj. (27)

However, as the power of ICI caused by phase noise increases
in proportional to the signal power, the performance of
LS algorithm can be degraded, in particular, at high SNR.

Therefore, for more accurate estimation of the channel,
we propose the channel estimation technique based on MAP
estimation. From the fact that ICI of TX and RX phase noise
consist of the summation of the CFRs and data subcarriers
in a OFDM symbol, we assume that ICIs follow the Gaus-
sian distribution by the central limit theorem. Let w̃j denote
wj + εj, and we can introduce from the assumption that w̃j
follows Gaussian distribution N

(
0, σ 2

wI+ Cε
)
, where Cε is

the covariance matrix of εj and is derived from mathematical
analysis in Section III-C.

The log likelihood function (LLF) of the pdf p
(
yj, g̃j

)
is

given as

L
(
g̃j
)
= −ln p

(
yj | g̃j

)
− ln p

(
g̃j
)

=
(
yj −Qg̃j

)H C−1w̃
(
yj −Qg̃j

)
+ g̃Hj C

−1
g g̃j, (28)

whereCw̃ = σ
2
wI+Cε . Then, MAP estimation of the channel

can be found by maximizing (28), which is equal to taking
the partial derivative of (28) with respect to g̃j and setting it
to zero, as

ĝj,MAP =
(
QHC−1w̃ Q+ C−1g

)−1
QHC−1w̃ yj. (29)
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C. MATHEMATICAL ANALYSIS
In this section, the covariance matrix of ICI and MSE of pro-
posed algorithms is mathematically derived. The covariance
of ICI caused by phase noise is analyzed for proposing the
MAP estimation in (29). Also, mathematical analysis of MSE
can be used to select the combination of the training symbols,
which minimize the MSE performances in a certain group of
sequences.

1) COVARIANCE MATRIX OF ICI
The ICI to be incurred by phase noise is composed of εtx
and εrx . As εtx and εrx occur by TX and RX phase noise,
respectively, the cross-correlation can be assumed to be zero.
Hence, we only need to derive covariance matrix of εtx
and εrx , respectively, and the summation of them is the
covariance of total ICI, Cε . Let us define the covariance
of εtx as

Cεtx = E
[
εtxε

H
tx

]
. (30)

In (30), substituting εtx with the second term of (24), Cεtx is
given by

E
[
εtxε

H
tx

]
=

Nt∑
l=1

Nt∑
m=1

E
[
Pφj,DF

HHjl,DṼθl sls
H
m Ṽ

H
θm
HH
jm,DFP

H
φj,D

]

=

Nt∑
l=1

E
[
Pφj,DF

HHjl,DṼθl sls
H
l Ṽ

H
θl
HH
jl,DFP

H
φj,D

]

=

Nt∑
l=1

E
[
Pφj,DF

HHjl,DFP̃θl ,Dxlx
H
l P̃

H
θl ,D × FHHH

jl,DFP
H
φj,D

]

=

Nt∑
l=1

E{φj ,hji|θ}

[
Pφj,DF

HHjl,DF
(
xlxHl ◦E{θ l }

[
p̃θl p̃

H
θl

])

× FHHH
jl,DFP

H
φj,D

]
, (31)

where p̃θl denotes the phase error vector, that is, the mean
value subtracted from pθl , and P̃θl ,D denotes diag

(
p̃θl
)
.

In (31), E
[
p̃θl p̃

H
θl

]
, which is derived in the Appendix B

using the prior statistical information of phase noise, can be
approximated as

E
[
p̃θl p̃

H
θl

]
p,q

≈
σ 2
ζ

6N

[
3b2 − 3 (2N + 1) b+ 3a2 − 3a+ 2N 2

+ 3N + 1
]
,

(32)

where a and b are min (p, q) and max (p, q), respectively.

By substituting D for F
(
xlxHl ◦ E

[
p̃θl p̃

H
θl

])
FH , (31) can be

rewritten as

E
[
εtxε

H
tx

]
=

Nt∑
l=1

E{φj,hji|θ}
[
Pφj,DF

HHji,DDHH
ji,DFP

H
φj,D

]

=

Nt∑
l=1

E{φj|hjl}
[
Pφj,DF

H
(
D ◦ E{hjl}

[
hjlhHjl

])
FPHφj,D

]

=

Nt∑
l=1

E{φj|hjl}
[
Pφj,DD1PHφj,D

]
, (33)

where

D1 = FH
(
D ◦ E{hjl}

[
hjlhHjl

])
F.

Assuming that pφj ≈ 1+ jφj, (33) can be determined as

E
[
εtxε

H
tx

]
≈

Nt∑
l=1

D1 ◦
(
1N×N +8j

)
. (34)

The covariance matrix of εrx , Cεrx , can be calculated in the
similar process of above equations and can be expressed by

E
[
εrxε

H
rx

]
=

Nt∑
l=1

Nt∑
m=1

E
[
FH ṼφjHjl,Dαθl sls

H
mα
∗
θm
HH
jm,DṼ

H
φj
F
]

=

Nt∑
l=1

E
[
FH ṼφjHjl,DslsHl H

H
jl,DṼ

H
φj
F
]

=

Nt∑
l=1

E
[
P̃φj,DF

HHjl,DslsHl H
H
jl,DFP̃

H
φj,D

]

=

Nt∑
l=1

E{φj|hjl}
[
P̃φj,DF

H
(
slsHl ◦ E{hjl}

[
hjlhHjl

])
× FP̃Hφj,D

]
=

Nt∑
l=1

D2 ◦ E{φj}
[
p̃φj p̃

H
φj

]
, (35)

where

D2 = FH
(
slsHl ◦ E

[
hjlhHjl

])
F.

As we assume that the statistical information of φj is equal

to that of θ i, E{φj}
[
p̃φj p̃

H
φj

]
can be approximately expressed

as (32) likewise. Therefore, we can calculate the covariance
of ICI, Cε , using the statistical information of channel and
phase noise. With (33) and (35), we can estimate the channel
using the proposed algorithm in (29).
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2) MSE OF PROPOSED ALGORITHM
In this section, we derive MSE of estimated CIR mathemat-
ically. When using LS algorithm given in (27), MSE can be
easily calculated as

MSELS = E
[(
ĝj,LS − g̃j

)H (ĝj,LS − g̃j
)]

= E
[
w̃H
j Q

(
QHQ

)−1 (
QHQ

)−1
QH w̃j

]
= E

[
tr
{(

QHQ
)−1

QH w̃jw̃H
j Q

(
QHQ

)−1}]
= tr

{(
QHQ

)−1
QHCw̃Q

(
QHQ

)−1}
. (36)

In (36), Cw̃ have already been derived in (33) and (35), and
Q can be found out by using training symbols.

Also, MSE of the channel using proposed algorithm can
be derived through similar procedure of (36). Before deriving
the MSE of estimated CIR using proposed algorithm, we can
rewritten (29) as

ĝj,MAP =
(
QHC−1w̃ Q+ C−1g,D

)−1
QHC−1g,DQg̃j

+

(
QHC−1w̃ Q+ C−1g,D

)−1
QHC−1g,Dw̃j. (37)

By the matrix inverse lemma [30], (37) can be expressed by

ĝj,MAP

=

{
I−

(
QHC−1w̃ Q

)−1 (
Cg,D +

(
QHC−1w̃ Q

)−1)}
g̃j

+

(
QHC−1w̃ Q+ C−1g,D

)−1
QHC−1g,Dw̃j

= g̃j − T1g̃j + T2w̃j, (38)

where

T1 =

(
QHC−1w̃ Q

)−1 (
Cg,D +

(
QHC−1w̃ Q

)−1)−1
T2 =

(
QHC−1w̃ Q+ C−1g,D

)−1
QHC−1g,D.

Using (38), MSE of estimated CIR based on MAP algorithm
is given by

MSEMAP = E
[(
ĝj,MAP − g̃j

)H (ĝj,MAP − g̃j
)]

= E
[(
T1g̃j − T2w̃j

)H (T1g̃j − T2w̃j
)]

= E
[
tr
{(
T1g̃j − T2w̃j

) (
T1g̃j − T2w̃j

)}H]
= tr

{
T1Cg,DTH1

}
+ tr

{
T2CwTH2

}
−2R

{
tr
{
T2E

[
w̃jg̃Hj

]
TH1
}}
. (39)

Note that in (39), E
[
w̃jg̃Hj

]
is not calculated appeared in the

third term, which can be represented by

E
[
w̃jg̃Hj

]
= E

[
εrx g̃Hj

]
+ E

[
εrx g̃Hj

]
= E

[
P̃φj,DF

H
Nt∑
i=1

αθiHji,Dsig̃Hj

]

+E

[
Pφj,DF

H
Nt∑
i=1

Hji,DFP̃θi,Dxig̃
H
j

]

= E

[
α∗φj P̃φj,DF

H
Nt∑
i=1

Hji,DsigHj

]

+E

[
α∗φjPφj,DF

H
Nt∑
i=1

Hji,DFα∗θj P̃θi,Dxig
H
j

]
.

(40)

Assuming that αφj ≈ exp
(
j
∑N

n=1 φj (n)
)
, E
[
α∗φj P̃φj,D

]
can

be calculated as(
E
[
α∗φj P̃φj,D

])
i,i
= E

[(
ejφj(i) − αφj

)
α∗φj

]
≈ E

[
e
j
(
φj(i)−

∑N
n=1 φj(n)

)
− 1

]
≈ 0. (41)

Hence, we can get rid of the third term of (39) in calculating
the MSE of proposed algorithm, and (39) is approximated as

MSEMAP = E
[(
ĝj,MAP − g̃j

)H (ĝj,MAP − g̃j
)]

≈ tr
{
T1Cg,DTH1

}
+ tr

{
T2Cw̃TH2

}
. (42)

Through the simulation results in Section V, it will be proved
whether the assumption is valid and the mathematical analy-
sis can be close to real value.

D. SELECTION OF TRAINING SEQUENCE
In order to reduce the effect of phase noise in channel esti-
mation, it is important to design the training sequences to be
robust against phase noise. In Section III-C, we have analyzed
the MSE of CIR when using LS algorithm and proposed
algorithm. If we can solve an optimization problem,where the
solution is equal to minimizing mathematical MSE of chan-
nel, we can find out the optimal training sequence design with
regard toMSE. However, solving the optimization problem is
so difficult that we propose an alternative method.

As the design of training sequences proceeds offline,
the complexity of designing algorithm is not considered
important. Hence, we propose the exhaustive searching in
certain group of sequences considering a low MSE as the
criterion. In this paper, Hadamard sequences and frequency
orthogonal sequences are considered as the training sequence.

IV. PHASE NOISE MITIGATION
From now on, we introduce the schemes mitigating phase
noise in data decoding. The pilot subcarriers of the comb-
type pilot symbols are used to jointly estimate TX and RX
phase noise. Generally, the remaining synchronization errors
on the payload can be processed after channel equalization.
However, to estimate phase noise easily in our paper, channel
equalization is processed after estimating phase noise like
existing literatures, which researched phase noise problem,
such as [19], [21], and [22].
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A. BCRLB OF TX AND RX PHASE NOISE
In this section, we introduce the BIM and BCRLB for joint
estimation of TX and RX phase noises, which is derived
in [31], assuming the perfect estimation of CIR. Let us define
the parameter vector η to be estimated as

η ,
[
φT , θT

]T
. (43)

BIM of η is defined as

B = Eη [0]+ Eη
[
−1

η
ηlnp (η)

]
, (44)

where

0 = Ey|η
[
−1

η
ηln p (y | η)

]
(45)

is FIM of η. From (4), the received vector can be rewritten as

y = 4pθ + w = 3pφ + w, (46)

where

ϒ = FHNr ,DHFNt ,DXD,

4 = Pφ,Dϒ, 3 = diag (ϒpθ ) .

Note that µ denotes Pφ,DFHNr ,DHFNt ,DPθ,Dx. Using (15),
we can express 0 as

0 =
2
σ 2
w
R

 ∂µH

∂φ
∂µ

∂φT
∂µH

∂φ
∂µ

∂θT

∂µH

∂θ
∂µ

∂φT
∂µH

∂θ
∂µ

∂θT
.

 ,
where

∂µ

∂φT
≈
∂3

(
1NNt + jφ

)
∂φT

= j3 (47)

∂µ

∂θT
≈
∂4

(
1NNt + jθ

)
∂θT

= j4. (48)

Hence, we can derive FIM given by (49), as shown at the
bottom of this page. As real operation can be changed to
expectation, the expectation of 0 is given by

Eη

[
∂µH

∂φ

∂µ

∂φT

]
= Eη

[
3H3

]
≈ Eη

[
diag

(
ϒ∗

(
1NtN − jθ

))
diag

(
ϒ
(
1NtN + jθ

))]
= Eη

[
diag

((
ϒ∗1NtN − jϒ

∗θ
)
◦
(
ϒ1NtN + jϒθ

))]
= diag

((
ϒ∗1NtN

)
◦
(
ϒ∗1NtN

))
+Eη

[
diag

((
ϒ∗θ

)
◦
(
ϒ∗θ

))]
= diag

((
ϒ∗1NtN

)
◦
(
ϒ∗1NtN

))
+ diag

(
diag

(
ϒ2ϒH

))
= diag

((
ϒ∗1NtN

)
◦
(
ϒ∗1NtN

))
+ INtN ◦

(
ϒ2ϒH

)
(50)

and

Eη

[
∂µH

∂φ

∂µ

∂θT

]
≈Eη

[
diag

(
ϒ∗
(
1NtN−jθ

))
(I+jdiag (φ))ϒ

]
= diag

(
ϒ∗1NtN

)
ϒ,

Eη

[
∂µH

∂θ

∂µ

∂φT

]
≈ ϒHdiag

(
ϒ1NtN

)
,

Eη

[
∂µH

∂θ

∂µ

∂θT

]
= XH

DF
H
Nt ,DH

HHFNr ,DXD. (51)

Using (50), (51) and the second order statistic of phase noise,
we can rewrite (44) as (52) shown in the bottom of this
page. Then, by inverse matrix of (52), BCRLB for η can be
calculated as (23).

B. MATHEMATICAL ANALYSIS OF CHANNEL ERROR
Generally, channel estimation error is often assumed to be
slight enough not to be considered in data decoding stage.
However, as the influence of the channel error increases under
the presence of phase noise, neglecting the channel error will
lead a significant loss in data decoding. The solution proposed
in our paper is to analyze the power of the error through
mathematical derivations and incorporate the result in the
phase noise estimator.

In order to analyze the effect of channel error, (24) can be
transformed into

yj = Pφ,DFH
Nt∑
i=1

diag
(
Vθisi

)
FLgji + wj

= Pφ,DFH
Nt∑
i=1

α∗θiα
∗
θj
diag

(
Vθisi

)
FL ĝji,MAP

+eg + wj, (53)

where

eg = Pφ,DFH
Nt∑
i=1

α∗θiα
∗
θj
diag

(
Vθisi

)
FL1g,

1g = g̃ji−ĝji,MAP.

Here, eg is the term that arises because of the channel estima-
tion error. If we denote the power of eg as

σ 2
e =

1
N
E
[
eHg eg

]
, (54)

0 =
2
σ 2
w

[
R
{
3H3

}
R
{
3H4

}
R
{
4H3

}
R
{
XH
DF

H
Nt ,DH

HHFNr ,DXD

}] (49)

B =
2
σ 2
w

[
R
{
diag

(
ϒ∗1NtN ◦ ϒ1NtN

)
+ INtN ◦

(
ϒ8ϒH

)}
+8−1 R

{
diag

(
ϒ∗1NtN

)
ϒ
}

R
{
ϒHdiag

(
ϒ∗1NtN

)}
R
{
XH
DF

H
Nt ,DH

HHFNr ,DXD

}
+2−1

]
(52)
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we can derive σ 2
e as

σ 2
e =

1
N

Nt∑
l=1

E
[
1H
g F

H
L diag

(
V∗θls

∗

l
)
diag

(
Vθl sl

)
FL1g

]

=
1
N

Nt∑
l=1

E
[
1H
g F

H
L E

[
diag

(
V∗θl s

∗
l ◦ Vθl sl

)]
FL1g

]
.

(55)

To simplify (55), E
[
diag

(
V∗θl s

∗
l ◦ Vθl sl

)]
can be approxi-

mated by Taylor series expansion as

E
[
diag

(
V∗θl s

∗
l ◦ Vθl sl

)]
≈ E

[
diag

((
FXl,D

)∗ (1Nt − jθ l) ◦ FXl,D
(
1Nt + jθ l

))]
= E

[
diag

(
s∗l ◦ sl

)]
+ E

[
diag

((
FXl,D

)∗
θ l ◦ FXl,Dθ l

)]
= EsI+ Es

N∑
i=1

E
[
θl (i)2

]
I

= Es

(
1+ σ 2

ε

N (N + 1)
2

)
I, (56)

where Es represents the signal energy and is considered as
unit energy. Finally, through approximation of (56), σ 2

e can
be approximately calculated as

σ 2
e ≈ Es

(
1+ σ 2

ε

N (N + 1)
2

)
MSEMAP. (57)

We assume that w̃e = w + eg is effective noise which
follows i.i.d Gaussian noise with variance, σ 2

w̃ = σ 2
w + σ

2
e .

This assumption is reasonable because eg behaves like the
Gaussian noise.

C. PROPOSED ALGORITHM
In data decoding stage, it is difficult to detect data symbol
and estimate TX and RX phase noise at the same time.
Hence, we preferentially correct CPE [19] and find out ini-
tial x(0), because CPE affects the system performance more
critically than ICI. Also, in channel estimation stage, since
the rotated channel impulse response by CPE, g̃ji, has been
estimated, the CPEs which have arisen in the channel esti-
mation stage need to be corrected simultaneously. In this
section, we denote the CPEs to arise in channel estimation
αφj,pre and αθi,pre to distinguish them from the CPEs in data
decoding, αφj and αθi . The entire process of our proposed
algorithm is similar with the algorithm presented in [31],
but we additionally consider problems incurred by channel
estimation.

1) CPE CORRECTION
In order to easily estimate the CPEs, we use the signals in the
frequency domain. After normalized DFT operation, (2) can
be transformed into

rj (k) =
Nt∑
i=1

si (k)⊗ vθi (k) hji (k)⊗ vφj (k)+ nj (k) , (58)

where rj (k) and nj (k) are the k-th normalized DFT output of
yj and wj, respectively. As only knowing the rotated channel,
we can rewritten (58) as

rj (k) =
Nt∑
i=1

si (k)⊗ vθi (k) α
∗
θi,preh̃ji (k) α

∗
φj,pre ⊗ vφj (k)

+nj (k) , (59)

where

h̃ji = FL g̃ji =
[
h̃ji (0) , h̃ji (1) , · · · , h̃ji (N − 1)

]T
.

We can also represent (59) in matrix form as

rk =
N−1∑
l=0

N−1∑
m=0

Aφ,k−lH̃lAθ,l−msm + nk

= Aφ,0H̃kAθ,0sk +
N−1∑

l=0,l 6=k

Aφ,k−lH̃lAθ,l−ksk

+

N−1∑
l=0

N−1∑
m=0,m6=k

Aφ,k−lH̃lAθ,l−msm + nk , (60)

where rk =
[
r1 (k) , r2 (k) , · · · , rNr (k)

]T
∈ CNr×1 is

the received vector , sk =
[
s1 (k) , s2 (k) , · · · , sNt (k)

]T
∈

CNt×1 is the data vector, and nk = [n1 (k) , n2 (k) , · · · ,
nNr (k)]

T
∈ CNr×1 is the AWGN vector. Note that in (59)

both Aθ,k ∈ CNt×Nt and Aφ,k ∈ CNr×Nr are the diagoanl
matrix with the diagonal elements given as

(
Aθ,k

)
i,i =

α∗θi,prevθi (k) and
(
Aφ,k

)
i,i = α∗φi,prevφi (k), respectively.

Also, H̃k ∈ CNr×Nt in (59) is CFR matrix with the element
given as

(
H̃k

)
i,j
= h̃ij (k). Both the second and third terms

in (60) are ICI terms which can be considered as AWGN.
Then we can rewrite (60) simply as

rk = Aφ,0H̃kAθ,0sk + ñk = α ◦ H̃ksk + ñk , (61)

where

α=

 αφ1α
∗
φ1,pre

αθ1α
∗
θ1,pre
· · ·αφ1α

∗
φ1,pre

αθNt α
∗
θNt ,pre

...
. . .

...

αφNr α
∗
φNr ,pre

αθ1α
∗
θ1,pre
· · ·αφNr α

∗
φNr ,pre

αθNt α
∗
θNt ,pre


=
[
α1,α2, · · · ,αNr

]T
.

Note that Sp is the set of pilot subcarriers given as Sp =[
q1, q2, ..., qNp

]
, where Np is the number of pilot subcarriers.

Applying least square using Sp, we can estimate the CPE
matrix, α, as [19]

α̂j =
(
H̃H
pilot,jH̃pilot,j

)−1
H̃H
pilot,jrpilot,j, (62)

where

H̃pilot,j =

 h̃j1 (q1) s1 (q1) · · · h̃jNt (q1) sNt (q1)
...

. . .
...

h̃j1
(
qNp

)
s1
(
qNp

)
· · · h̃jNt

(
qNp

)
sNp

(
qNp

)
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and rpilot,j =
[
rj (q1) , rj (q2) , · · · , rj

(
qNp

)]T is the received
signal of the j-th RX antenna from all the pilot subcarrier.
After equalization using CFR and α̂j estimated from (62),
we can decide the initial value x̃(0) of the data.

2) JOINT ESTIMATION BASED ON MAP ESTIMATOR
Although the CPEs can be easily estimated and compensated
using pilot subcarriers, residual phase noises still remain.
Hence, we propose the iterative algorithm to estimate the
residual phase noise based on MAP estimation.

First, using the effective noise derived in Section IV-B and
the CPE matrix estimated in (62), (4) can be transformed into

y = α∗φ ~ 1NPφ,DFHNr ,D
(
α̂ ~ IN ◦ Ĥ

)
×FNt ,Dα

∗
θ ~ 1NPθ,Dx+ w̃e, (63)

where

αφ =
[
αφ1 , αφ2 , · · · , αφNr

]T
,

αθ =
[
αθ1 , αθ2 , · · · , αθNt

]T
and Ĥ has the same structure with H but is composed of
ĝji,MAP instead of gji. Also, we assume that α is perfectly
estimated. The assumption can be sufficiently vaild by using
the enough number of pilot subcarriers. From the fact that the
phase noise can be slight enough for CPE to be approximated
as αφj ≈ exp

(
j
∑N

n=1 φj (n)
)
, we can approximate (63) as

y ≈ Pφ̃,DF
H
Nr ,D

(
α̂ ~ IN ◦ Ĥ

)
FNt ,DPθ̃ ,Dx+ w̃e

= 4̃pθ̃ + w̃e = 3̃pφ̃ + w̃e, (64)

where

4̃ = Pφ̃,DF
H
Nr ,Dα̂ ~ IN ĤFNt ,DXD

3̃ = diag
(
Pφ̃,DF

H
Nr ,D

(
α̂ ~ IN ◦ Ĥ

)
FNt ,DPθ̃ ,Dx

)
,

both φ̃ and θ̃ are residual phase noises at TX and RX, respec-
tively, that is, the mean value subtracted from φj and θ i at
each antenna.

The log likelihood function (LLF) of the pdf p
(
y, φ̃, θ̃

)
is

given as

L
(
φ̃, θ̃

)
= −ln p

(
y | φ̃, θ̃

)
− ln p

(
φ̃
)
− ln p

(
θ̃
)
. (65)

Both φ̃ and θ̃ follow zero mean Gaussian distribution, and
their covariance matrices, Cφ̃ and Cθ̃ , are derived in (32).
Note that from (64), we can find LLF in (65) as

L
(
φ̃, θ̃

)
=

1

σ 2
w̃e

(
y− 4̃pθ̃

)H (
y− 4̃pθ̃

)
+
1
2
φ̃
T
C−1
φ̃
φ̃ +

1
2
θ̃
T
C−1
θ̃
θ̃

=
1

σ 2
w̃e

(
yHy− 2R

{
pθ̃ 4̃

Hy
}
+ pH

θ̃
4̃H 4̃pθ̃

)
+
1
2
φ̃
T
C−1
φ̃
φ̃ +

1
2
θ̃
T
C−1
θ̃
θ̃ . (66)

Assuming pθ ≈ 1NtN + jθ by Taylor’s series expansion,
we can rewrite (66) as

L
(
φ̃, θ̃

)
=

1

σ 2
w̃e

yHy−
2

σ 2
w̃e

R
{(

1TNtN − jθ̃
T
)
4̃Hy

}
+

1

σ 2
w̃e

(
1TNtN − jθ̃

T
)
4̃H 4̃

(
1NtN + jθ̃

)
+
1
2
φ̃
T
C−1
φ̃
φ̃ +

1
2
θ̃
T
C−1
θ̃
θ̃ . (67)

Taking the partial derivative of (67) with respect to θ and
setting it to zero, we obtain θ̂ as

θ̂=

(
R
{
4̃H 4̃

}
+
σ 2
w̃e

2
C−1
θ̃

)−1(
I
{
4̃Hy

}
−I

{
4̃H 4̃

}
1NtN

)
.

(68)

Following the similar procedures as the case of TX phase
noise, we can obtain φ̂ as

φ̂=

(
R
{
3̃H 3̃

}
+
σ 2
w̃e

2
C−1
φ̃

)−1(
I
{
3̃Hy

}
−I

{
3̃H 3̃

}
1NtN

)
.

(69)

However, x, φ̃ and θ̃ are needed for us to calculate (68)
and (69), respectively. Therefore, our proposed algorithm is to
iteratively estimate the k-th values such as x(k), φ̂

(k)
and θ̂

(k)

by using previous values, x(k−1), φ̂
(k−1)

and θ̂
(k−1)

. In itera-
tive algorithms, first of all, it is important to set initial value,
x(0), φ̂

(0)
and θ̂

(0)
. First, x(0) is calculated by equalizing

with estimated CFR and α̂ and detecting the symbol. In case
of θ̂

(0)
, as we do not know the initial value of residual RX

phase noise, we need to modify theMAP estimator of θ̂ given
in (68). Considering εrx incurred by φ̃, as Gaussian noise,
we can derive the covariance of εrx by converting slsHl into

EsIN in (35), and set the initial value, θ̂
(0)
, as

θ̂
(0)
=

(
R
{
4̃H C̃−1w̃e 4̃

}
+
1
2
C−1
θ̃

)−1
×

(
I
{
4̃H C̃−1w̃e y

}
−I

{
4̃H C̃−1w̃e 4̃

}
1NtN

)
, (70)

where C̃w̃e = Cεrx +σ
2
w̃e
INtN . Then, substituting θ̂

(0)
and x(0)

into (69), we can find out initial value of residual RX phase
noise, φ̂

(0)
. Defining that e(k) is the k-th sum of the squared

error between the demodulated data, ŝi = Fx̂i, in Sp and the
pilot symbols, we iterate our algorithm until the sum of square
error increases compared to the previous value. Our proposed
algorithm is summarized in Table 1.

V. SIMULATION RESULTS
For our simulations, we consider OFDM system with 64 sub-
carriers, that is,N = 64, and set the cyclic prefix length as 16,
which is one of the often adopted systems such as in [1].
We also consider two different types of symbol, block-type
pilot symbols and comb-type pilot symbols. The block-type
pilot symbols are the first symbol of one frame and consist
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TABLE 1. Joint data detection and phase noise estimation.

of only 64 pilot subcarrier. Otherwise, the comb-type pilot
symbols are followed by the block-type pilot symbol and
have 16 pilot subcarrier, so there are 48 data subcarriers.
The data modulation is given by 16-QAM, while the pilot
modulation is BPSK. The channel has 6 taps with each tap
independently Rayleigh distributed. The power profile of the
channel is specified by 3-dB decay per tap and the total power
is normalized to have unit energy. Also, the channels among
all the TX and RX antennas are assumed to be independent.
Note that we consider the same number of antennas at TX
and RX (Nt = Nr = L) and L data streams are spatially
multiplexed. The phase noise model is Wiener process with
the variance, given as 2πβTs = 5× 10−3(rad)2. Also, in our
paper, we consider Hadamard sequences as only training
sequences, andHadamard n denotes the n-th column vector of
Hadamardmatrix, whose size is 64×64. Note that the optimal
training sequences under the absence of phase noise [25] are
used to training sequences for comparison, where frequency
division multiplexing (FDM) is only considered in this paper.

First, we introduce the simulation results that validate our
mathematical analysis and MSE performances in channel
estimation stage. Figs. 3, 4 and 5 compare theMSE from sim-
ulation with the mathematical analysis in (36) and (42) versus
transmit SNR when using LS algorithm (27) in 2x2 MIMO-
OFDM, MAP algorithm in (29) for 2x2 MIMO-OFDM and
for 4x4 MIMO-OFDM, respectively. Also, Fig. 6 illustrates
the comparison between MSE of simulation result and math-
ematical derivation versus phase noise variance. From above
figures, the mathematical results are almost the same with
actual MSE of estimated CIR regardless of SNR, phase noise
variance and the number of TX antennas. Hence, we can
conclude that the mathematical analysis can be utilized when
selecting the combination of training sequence and estimating
the residual phase noise in proposed algorithm.

Due to good auto and cross correlation characteristics of
Hadamard type codes, it is often adopted in estimating the
wireless channel and requiring orthogonality [32]. There-
fore, in our paper, we choose the combination of training
sequences in the group of Hadamard sequence, which has
the same length with OFDM size of 64, and consists of total
64 codes. Using exhaustive searching with the mathematical

FIGURE 3. Comparison between MSE of mathematical analysis and
simulation result using LS algorithm in 2x2 MIMO.

FIGURE 4. Comparison between channel MSE of mathematical analysis
and simulation result using MAP algorithm in 2x2 MIMO.

FIGURE 5. Comparison between channel MSE of mathematical analysis
and simulation result using MAP algorithm in 4x4 MIMO.

MSE, we select the training sequences minimizing the MSE
of channel in Hadamard group. As designing preambles
proceeds off-line, the complexity and processing time of
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FIGURE 6. Comparison between channel MSE of mathematical analysis
and simulation result using MAP algorithm in 2x2 MIMO.

TABLE 2. The optimal combination of training sequences.

algorithm to find out solution of optimization problem are not
considered. In Table 2, there are the optimal training sequence
in Hadamard sequences each TX antenna depending on esti-
mation algorithms and the number of TX antennas. Also,
we can find out the optimal training sequences in different
group of sequences if the channel statistic and phase noise
model will be given.

In Fig. 7, we compare the MSE performance of our pro-
posed scheme with one of LS channel estimation as well
as BCRLB for different combination of training sequences.
Note that there is significant performance gain with proposed
scheme compared with the LS algorithm, and we can clearly
see that the MSE performance can be more closed to BCRLB
by using our proposed preamble design than FDM which is
optimal sequence in the absence of phase noise. As you can
see in Fig. 7, there is about 3 dB gap between MSE and
BCRLB at low SNR. We think that the reason is that there
are much more unknown parameters such as channel impulse
response, TX and RX phase noise than the number of training
sequences.

After channel estimation, in date decoding stage, we show
MSE of phase noise and BER performances to represent the
performance gain of our scheme in Table 1. Fig. 8 compares
the MSE performance of proposed phase noise estimation
scheme with one of the scheme presented in [19] as well
as BCRLB and no correction case. We consider for this
simulation that there exists the phase noise only at RX end for

FIGURE 7. Comparison between MSE and BCRLB of channel
in 2x2 MIMO-OFDM system.

FIGURE 8. Comparison between MSE and BCRLB of RX phase noise
in 2x2 MIMO-OFDM system.

comparison with the CPE correction scheme given in [19].
This is because the scheme in [19] can only estimate the
CPE matrix, α, where its element is the product of CPEs
at TX and RX phase noise. We observe from Fig. 8 that
the proposed φ estimator is closer to BCRLB than other
cases. Also, the MSE performance of the proposed scheme
improves by increasing the number of iterations, and saturates
at a certain iteration 3. Like Fig. 7, there are gaps between
MSE performances and BCRLB in Fig. 8. We think that in
deriving BCRLB we assume that data and pilot subcarriers
have already known, while in our proposed algorithmwe only
know pilot subcarriers to estimate phase noise. Hence, it is
impossible to be close to theoretical lower bound.

In Fig. 9, the BER performances of proposed scheme and
CPE correction are compared depending on whether channel
is perfectly known. The case of no correction and with-
out phase noise are used as upper bound and lower bound,
respectively, for criterion of comparison. We observe from
Fig. 9 that significant BER performance improvement can
be achieved by using our proposed algorithm, compared to
the scheme in [19] and no correction case. Although our
proposed algorithm has high complexity because of requiring
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FIGURE 9. Comparison of BER performances in 2x2 MIMO-OFDM system.

inversematrix operation, our algorithmmakes about 7dB gain
compared with CPE correction algorithm [19] at SNR 30dB,
which is a significant gain to make the success of commu-
nication. Also, considering that the phase noise variance in
simulation condition is significantly large compared to phase
noise at low carrier frequency, the performance of proposed
algorithm is sufficiently close to the lower bound. In addition,
although the estimated channel using MAP estimator and
proposed combination of training sequence in Table 2 are
used instead of perfect channel, there is only at most 3dB
loss at SNR 30dB for both CPE correction and proposed
algorithm. Finally, we confirm that the performance saturates
only in 3 iterations for most of time in our simulations. Hence,
our iterative algorithm does not require the large number of
iterations.

VI. COMPLEXITY ANALYSIS
In this section, we analyze the complexity of our algo-
rithms proposed in Section III and IV. First, in channel
estimation stage, we propose the MAP estimator given
in (29). In (29), the complexity is mainly determined
by a NtL × NtL matrix inversion, whose complexity is
O
(
Nt3 L3

)
, because the other matrix can be calculated in

advance from the statistical information of phase noise
and channel. Also, as we need to estimate the channel
impulse response at all receive ends, the total computa-
tional complexity is approximately O

(
NrNt3 L3

)
in channel

estimation.
In data detection stage, our proposed algorithm is summa-

rized in Table 1. As seen in Table 1, many operation and
process are required to mitigate the effect of phase noise.
However, the factor to mainly determine the complexity
of our algorithm is (68) and (69), because (68) and (69)
require high rank matrix inversion. Therefore, the com-
plexity of (68) and (68) are approximately O

(
Nt3 N 3

)
and

O
(
Nr 3 N 3

)
respectively. Assuming that Nt = Nr and the

number of iteration is 3, which saturates the system per-
formance in Fig. 9, the total complexity required in data
decoding stage is approximately O

(
6Nt3 N 3

)
.

VII. CONCLUSION
In this paper, we proposed the scheme mitigating the effects
of phase noise in MIMO-OFDM with independent oscilla-
tors. The proposed scheme consists of channel estimation
stage and data decoding stage. In channel estimation stage,
we proposed channel estimation algorithm based on MAP
estimator and the optimal training sequences in a certain
group of sequences through mathematical analysis. Then,
in data decoding stage, we proposed the iterative algorithm
with MAP estimator of phase noises and the estimated chan-
nel. In addition, we derived BCRLB, which is important in
estimation problem because of presenting the lower bound of
estimators, for each stage. From simulation results, we con-
firmed that the proposed scheme can improve the system
performances in terms of MSE and BER compared with the
existing schemes.

APPENDIX
A. DERIVATION OF BCRLB
To derive the BCRLB of η1, we first find out BIM in (10).
Since the second term of (10) can be calculated by the sta-
tistical information of channel and phase noise, expectation
of (17) need to be found out, which is given by

Eη



∂µH1
∂φj

∂µ1
∂φTj

∂µH1
∂φj

∂µ1
∂θT

∂µH1
∂φj

∂µ1
∂gTj,re

∂µH1
∂φj

∂µ1
∂gTj,im

∂µH1
∂θ

∂µ1
∂φTj

∂µH1
∂θ

∂µ1
∂θT

∂µH1
∂θ

∂µ1
∂gTj,re

∂µH1
∂θ

∂µ1
∂gTj,im

∂µH1
∂gj,re

∂µ1
∂φTj

∂µH1
∂gj,re

∂µ1
∂θT

∂µH1
∂gj,re

∂µ1
∂gTj,re

∂µH1
∂gj,re

∂µ1
∂gTj,im

∂µH1
∂gj,im

∂µ1
∂φTj

∂µH1
∂gj,im

∂µ1
∂θT

∂µH1
∂gj,im

∂µ1
∂gTj,re

∂µH1
∂gj,im

∂µ1
∂gTj,im


.

(A.1)

The terms related to only phase noise in (A.1) can be
calculated by (16) below as

E

[
∂µH1
∂φj

∂µ1

∂φTj

]
≈ E

[
3H

1 31

]
≈ E

[
diag

((
FHHjFNt ,DXD

)∗
(1− jθ)

)
×diag

(
FHHjFNt ,DXD (1+ jθ)

)]
= E

[
diag

((
FHHjFNt ,Dx

)∗
◦

(
FHHjFNt ,Dx

))]
+E

[
diag

((
FHHjFNt ,DXDθ

)∗
◦

(
FHHjFNt ,DXDθ

))]
= diag

(
C̃Nt
gcir cx + C̃Nt

gcir (I ◦2) cx
)

(A.2)

E

[
∂µH1
∂φj

∂µ1

∂θT

]
≈ E

[
3H

1 41

]
≈ E

[
diag

((
FHHjFNt ,Dx

)∗
(1− jθ)

)
×
(
I+ jdiag

(
φj
))
FHHjFNt ,DXD

]
= E

[
diag

((
FHHjFNt ,Dx

)∗)
FHHjFNt ,DXD

]
= C̃Nt

gcir ◦ Cx (A.3)
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1
N 2E

 p∑
n=2

(n− 1) ζ (n)−
N−p∑
m=1

(N − p+ 1− m) ζ (p+ m)

 q∑
n=2

(n− 1) ζ (n)−
N−q∑
m=1

(N − q+ 1− m) ζ (q+ m)


(A.8)

E

[
∂µH1
∂θ

∂µ1

∂θT

]
≈ E

[
4H4

]
= XH

DF
H
Nt ,DE

[
HHH

]
FNt ,DXD =

1
Nt

XH
DXD. (A.4)

We can derive the Fisher information between channel and
phase noise in (A.1) as

E

[
∂µH1
∂φj

∂µ1

∂gTj,re

]
≈ −jE

[
3HPφj,DQ̃

]
= −jE

[
diag

((
FHHjFNt ,Dx

)∗
(1− jθ)

)
Pφj,DQ̃

]
= 0N×LNt , (A.5)

because the correlations between channel and phase noise is
zero. The rest terms regarding gj, φj and θ in (A.1) also can
be approximated as zero.

Lastly, the Fisher information about only channel is given
by

E

[
∂µH1
∂gj,re

∂µ1

∂gTj,re

]
= E

[
Q̃HPHφj,DPφj,DQ̃

]
= E

[
Q̃H Q̃

]
,

E

[
∂µH1
∂gj,re

∂µ1

∂gTj,im

]
= jE

[
Q̃H Q̃

]
,

E

[
∂µH1
∂gj,im

∂µ1

∂gTj,im

]
= E

[
Q̃H Q̃

]
. (A.6)

As, in (10), the second term can be obtained from the sec-
ond order statistic of channel and phase noise, BIM of η1
given in (18) can be obtained.

B. DERIVATION OF COVARIANCE
Here, the covariance of residual phase noise ,p̃θl , is derived.
By Taylor’s series expansion, the covariance can be approxi-
mated as(
E
[
p̃θl p̃

H
θl

])
p,g

= E

(ejθ l (p)− 1
N

N∑
n=1

ejθ l (n)
)(
ejθ l (q)−

1
N

N∑
m=1

ejθ l (m)
)∗

≈
1
N 2E

[(
N∑
n=1

θl (p)− θl (n)

)(
N∑
m=1

θl (q)− θl (m)

)]
.

(A.7)

Assuming that phase noises follow the Wiener process such
as θj (n) = θj (n− 1)+ ζ (n), (A.7) can be rewritten as (A.8),

as shown at the top of this page. As ζ (n) follows independent
Gaussian distribution, (A.8) can be finally written as

1
N 2E

[(
N∑
n=1

θl (p)− θl (n)

)(
N∑
m=1

θl (q)− θl (m)

)]

=
1
N 2

a∑
n=2

(n− 1)2 σ 2
ζ +

1
N 2

N−b∑
l=1

(N − b+ 1− l) σ 2
ζ

−
1
N 2

b∑
m=a+1

(N − m+ 1) (m− 1) σ 2
ζ

=
σ 2
ζ (N − b) (N − b+ 1) (2N − 2b+ 1)

6N 2

+
σ 2
ζ (N + 1) (b− a)

N 2 +
σ 2
ζ b (b+ 1) (2b+ 1)

6N 2 −
σ 2
ζ a

2

N 2

−
σ 2
ζ (N + 2) (b (b+ 1)− a (a+ 1))

2N 2

=
σ 2
ζ

6N

[
3b2 − 3 (2N + 1) b+ 3a2 − 3a+ 2N 2

+ 3N + 1
]
,

(A.9)
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