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ABSTRACT The growth of mobile devices has provided significant opportunities for developing healthcare
apps based on themobile device ability to collect data. Unfortunately, the data collection is often intermittent.
Missing data present significant challenges to trend analysis of time series. Straightforward approaches
consisting of supplementing missing data with constant or zero values or with linear trends can severely
degrade the quality of the trend analysis. In this paper, we present a robust adaptive approach to discover the
trends from fragmented time series. The approach proposed in this paper is based on the hypothesis-testing-
based adaptive spline filtering (HASF) trend analysis algorithm, which can accommodate non-uniform
sampling and is therefore inherently robust to missing data. HASF adapts the nodes of the spline based on
hypothesis testing and variance minimization, which adds to its robustness. Further improvement is obtained
by filling gaps by data estimated in an earlier trend analysis, provided by HASF itself. Three variants for
filling the gaps of missing data are considered, the best of which seems to consist of filling significantly
large gaps with linear splines matched for continuity and smoothness with cubic splines covering data-
dense regions. Small gaps are ignored and addressed by the underlying cubic spline fitting. Finally, the
existing measurements are weighted according to their importance by simply transferring the importance of
the missing data to their existing neighbors. The methods are illustrated and evaluated using heart rate data
sets, blood pressure data sets, and noisy sine data sets.

INDEX TERMS Trend analysis, missing measurements, mobile health, mHealth, adaptive filtering, hypoth-
esis testing, fragmented time series, health behavior change, missing observation, smartphone, digital health,
health care.

I. INTRODUCTION
mHealth, also known as mobile health, denotes the use of
mobile devices in medicine, healthcare and public health
services [40]. The use of mHealth apps is rapidly increasing
and expected to continue to grow in the coming years. The
total market size of mobile health is predicted to reach 60 bil-
lion dollars by 2020 [54]. mHealth apps contribute to the
exponential increase in digital interventions for educating
users about preventive health care services, supportingweight
loss, helping users manage their energy balance, promot-
ing healthy behavior change, and assisting chronic disease
management [1]. mHealth apps have been also used for
disease surveillance, treatment support and epidemic out-
break tracking. They have extraordinary potential and have

demonstrated significant outcomes across different types of
populations [24], [25] since they combine the benefits of e-
Health [13], [15] with the ubiquity of mobile devices.

Trend analysis plays an important role in mHealth apps,
such as sleep tracking [16], [21], [50], [51], anxiety
and mood tracking [37], weight tracking [19], [29], heart
rate tracking [3] and workouts tracking [16], [17], [19]–[21],
[43], [55]. However, it is quite common for mHealth apps to
have missing data of various lengths [41] as shown in Table 1.
For example, a sleep tracking app will have missing data if
the mobile device has trouble detecting movements in bed; a
workout tracking app will have missing data if the battery is
down, or users forget to input moods on their mood tracking
apps. Gaps in time series can present significant challenges
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TABLE 1. Existing mHealth Apps.

to time series analysis, especially if the gaps are wide and
multiple.

FIGURE 1. Examples of Trend Analysis of Existing mHealth Apps: (a) no
smoothing [51], (b) no smoothing [19], (c) smoothing [50], (b and c) the
holes of missing data are represented as ‘‘0’’s.

Unfortunately, the current mHealth apps often lack suitable
methods for handling fragmented time series. For example,
apps like HealtheConnect [19], Pacifica [37], Pillow [42],
Record by Under Armour [43], and SleepBot [51] represent
trends by simply connecting all data points without using a
smoothing process. An illustration of this from the SleepBot
app is shown in Figure 1 (a). Other apps such as Beddit Sleep
Tracker [3], Fitbit [16], FitPort [17], Health Mate [20], Jaw-
bone UP [21], Lose It! [29], Sleep Cycle Alarm Clock [50],
and StepsApp Pedometer [55] use smoothed time series to
expose the trends. However, these apps handle missing data
by filling in the gaps with zeros, which significantly reduces
the reliability of the trend analysis. Examples of this are
demonstrated by the HealthConnect [19] app in Figure 1(b)
and the Sleep Cycle [50] app in Figure 1(c).

The situation is further complicated by the existence of
noise in the measurements. Unfortunately, the noise is often
nonstationary, which adds to the complexity. The effect of
noise is alleviated by standard filtering or smoothing algo-
rithms, but none of the mHealth apps surveyed in this paper
address data gaps beyond simply filling in the gaps with
zeros or with straight lines that connect the data points at

FIGURE 2. Missing data are represented by straight lines [51].

the edges of the missing segments. The effect of representing
missing data with constant or straight line interpolations on
the statistics of the noise and the smoothed signals is not well-
understood.

In this paper, we present three variant methods to fill gaps
containing missing data in mHealth apps in a more consistent
way. The Hypothesis Testing Based Adaptive Spline Filter-
ing (HASF) method [10] is subsequently applied to the filled
time series to compute the trends. The remainder of this paper
is structured as follows. In Section II, we review the litera-
ture of handling missing data in time series. In Section III,
three variants to fill gaps of missing data are proposed, and
the importance-weighting method is introduced. Numerical
evaluation is presented in Section IV. Section V concludes
the paper.

II. RELATED WORK
Trend analysis in time series is widely used in different
domains such as finance [5], [32], climate analysis and fore-
casting [47], [56], network security [26], public health [11],
[12], [39] and biomedicine [22]. The missing data problem in
fragmented time series is a common challenge in trend anal-
ysis. Most classical methods, e.g. those used in [18] and [33],
make many assumptions about the noise statistics, such as
independence and normality, and replacing missing data with
constants or straight line values will violate those assump-
tions [2]. Other approaches use different filtering techniques
to substitute plausible values for the missing observations.
Some of these approaches include:

A. AR FILTERING
The standard and most basic filtering technique is to think
of the information signal as being a very low-frequency
signal which is corrupted by a wide-frequency but station-
ary noise. In this context, obtaining the information signal
is an exercise of signal filter design. Moreover, most fil-
tering methods assume uniform sampling, an assumption
that missing data also violate. Anava et al. [2] sought to
improve the performance of a predictor dealing with miss-
ing data by adapting the coefficients of an autoregressive
(AR) predictor model until it appears to converge to the best
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AR predictor in hindsight. In other words, earlier versions
of an AR predictor are used to fill in the missing data, and
newer AR predictors are then derived. Unfortunately, the
method seems to assume stationarity in the statistics, and
hence may not work well in situations where nonstationary
changes in the trend are of primary importance as is the
case in most mHealth applications. Mirsaidi et al. [31] also
presented an approach to estimate the missing values based
on ARmodel reconstruction where the available data remains
undisturbed. This approach reconstructs the values well at
the front side of the gap; however, the backside of the gap
is not smooth and contains jumps in the reconstructed signal.
Broersen et al. [8] proposed an improvement based on AR
modeling, and the resulting likelihood maximization algo-
rithm, ARFIL, was shown to perform well, even with 90%
missing data. Their main emphasis, however, was in esti-
mating spectra (and hence assumed stationarity). The per-
formance of the method in detecting shifts in trends in
nonstationary data is therefore not guaranteed.

B. BOX-JENKINS FILTERING
Other stationary methods have been proposed to estimate
the missing data by using the filtering process. For instance,
Lewellen and Vessey [28] used the well-known Box-Jenkins
procedure [7] to smooth a fragmented genetic sequence and
approximate the missing values using a linear interpolation.
Damsleth [14] developed an optimal method that is based on
a linear combination of the forward and backward forecasts
for reconstructing the missing values using an ARMAmodel.
Mahir and Al-Khazaleh [30] employed a similar approach
using an ARIMA (autoregressive integrated moving average)
model to reconstruct the values in the missing data segments.

C. VARIANCE CONSTRAINED FILTERING
Wang et al. [58] considered missing measurements subject
to norm-bounded parameter uncertainties and predicted the
missing values using a Variance Constrained Filter (VCF).
Moreover, [59] designed a robust Finite-Horizon Filter (FHF)
where the missing measurements are described by a binary
switching sequence satisfying a conditional probability distri-
bution. An upper bound for the state estimation error variance
is first derived for all possible missing observations and all
admissible parameter uncertainties.

D. KALMAN FILTERING
The Kalman filter and its variations are also widely used for
missing measurements [27]. If the dynamics of the informa-
tion signal are known, recursive models can be employed
to model the series and estimate its model parameters [48].
Sinopoli et al. [49] addressed the missing data problem by
checking the linear minimum mean square error (LMMSE)
of the Kalman filter when the missing data appears. Similar
studies such as [9], [35], [44], and [52] used the Kalman
filter, where the missing data are modeled using a jump linear
system (JLS). In most of these papers, one must have a rea-
sonable model for the process generating the time series or be

willing to estimate or refine the parameters of the generating
process, which makes the estimation problem nonlinear and
complicated and necessitates the use of Extended Kalman
filtering techniques.

E. OTHER APPROACHES
Scargle [45] studied astronomical time series and recon-
structed the missing data by computing Fourier coefficients
as the least squares fit of sines and cosines to the avail-
able remaining observations. However, this approach is not
quite stable when describing slopes and background shapes
in the spectrum [6], [8]. Nichols [34] proposed a complex
three-stage procedure to estimate themissing data by smooth-
ing the data, estimating characteristics of the signal and its
spectrum, and then jointly estimating the missing data and
the characteristics using nonlinear optimization.

Owili et al. [36] employed an optimal linear interpola-
tion approach where the missing values in a time series are
generated by a bilinear model. However, this approach can
only be recommended in pure bilinear time series data whose
innovations have a student-t distribution.

In the context of Doppler data, another approach [57] is
not to assume any model generating the time series and
to simply interpolate the samples using straight lines or
splines, but the authors in [57] argue that it does not produce
consistent results. They classified such methods into two cat-
egories: simple (largely based on resampling an irregularly-
sampled underlying signal) and complex. They noted that
linear interpolation is a more robust resampling method but
that the estimated variance is too low. They provided a theo-
retical analysis of simple interpolation methods based on the
assumption that the resampling period is much larger than the
smallest original sampling period, perhaps leading to a loss of
resolution.

Sehgal et al. [46] proposed a method by which missing
DNA fragments in a gene can be reconstructed by com-
paring the damaged gene sequence with other similar gene
sequences. Obviously, this method requires an understand-
ing of the model generating the sequence, and may have
application in mHealth. For instance, a heart rate sequence
with missing data can be analyzed by comparing it with
other intact sequences from the same patient or other similar
patients. This approach requiresmore expert knowledge, such
as a database of similar cases, and may be useful in deriving
a priori estimates that can guide the estimation or filling-in
of missing data.

F. NONSTATIONARITY ANALYSIS AND HASF
Bondon and Bahamonde [4] accounted for nonstationarity
in the variance (heteroscedasticity). It was noted that the
problem of estimating an autoregressive conditionally het-
eroscedastic model in the presence of missing values had not
yet been addressed before. Soubeyrand et al. [53] studied
fragmented nonstationary data in the context of determining
whether two models governing climatological data behaved
differently before and after a given date (presumably reflect-
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ing major human effect). They used hypothesis testing to
answer this question, but the data was uniformly sampled. In
our previous work, we proposed a Hypothesis Testing Based
Adaptive Spline Filtering (HASF) method [10]. The HASF
method filters the data into flexible length sections and solves
the challenging nonstationary time-series problem. Unlike
other filtering methods, the HASF combines concepts from
nonstationary time-series analysis, spline fitting and hypoth-
esis testing.

III. HYPOTHESIS TESTING-BASED ADAPTIVE SPLINE
FILTERING WITH MISSING DATA
In this study, we propose a two-step procedure to find the
trends of fragmented time series. The first step is to substitute
plausible values for the missing observations to initialize
a complete time series. We present three variants: 1) fill
gaps with straight lines, 2) fill gaps with cubic splines, and
3) fill gaps with cubic and linear filtering. The second step is
to carry out the trend using the initialized filled time series
using the HASF method [10]. In Section III-A, we review
the HASF methodology developed in [10] at some length, as
to later clarify the modifications discussed in Section III-B.
The proposed method can be thought of as a special case of a
more general iterative procedure where gaps are filled based
on earlier trend analysis.

A. REVIEW OF HASF [10]
The basic concept of HASF is to break the time series into
flexible sections, each of which is curve-fitted with a cubic
spline, and to impose appropriate constraints such as conti-
nuity and smoothness between the sections, a minimum or
maximum section length, etc. The number of sections and the
nodes between them are adapted from the data using hypothe-
sis testing applied to the second statistics of the residual noise.
Essentially, the nodes are adapted, provided that the standard
errors due to the adaptation result in a statistically signif-
icant improvement, typically determined through an F-test.
We assume S polynomial sections in the whole sequence u.
The sth cubic polynomial is given by

us−1(σ ) = as + bsσ + csσ 2
+ dsσ 3, (1)

where σ is the local time of the section. For a systematic
approach, we write the equations in matrix form as

Vsθs = Us, (2)

where θs = [as, bs, cs, ds]T is the unknown vector, which
has 4 unknown coefficients, V is a Vandermonde matrix
computed from instants in the section. We assume K time
samples in this section.

Vs =


1 σ1 σ 2

1 σ 3
1

1 σ2 σ 2
2 σ 3

2
...

... · · ·
...

1 σK σ 2
K σ 3

K

. (3)

For the whole sequence, we have

Cθ = U , (4)

where C collects the Vandermonde matrices of all sections:

C = diag (V1, · · · ,VS), (5)

and the unknown θ represents all coefficients of all sections
(in MATLAB

TM
notation):

θ =
[
θ1; θ2; · · · ; θS

]
. (6)

Note that the least-squares solution minimizes

min
θ
||Cθ − U ||2 =

∑
j

(
V jθ − U j

)2
.

Now assume the data are measured at times t1, · · · , tn and
that there are S sections defined by the nodes τ1, · · · , τS+1.
We assume that the sample times are split according to

τ1 ≤ t1 < t2 < · · · < tK1 < τ2,

...

τS ≤ tKS−1+1 < · · · < tKS ≤ τS+1.

In this case, every sample
(
tj, u

(
tj
))

is counted/used once.
The data is gathered in U =

[
U1; U2; · · · ; US

]
represents

the measurement temporal sequence u

U1 =

 u1
. . .

uK1

 , . . . , US =

 uKS−1+1...

uKS

. (7)

In order to make the approximation smooth and connected,
the polynomials and their derivatives must be continuous
as the connecting points. The continuity condition and the
smoothness conditions between sections s and s+ 1 are

continuity: us(ws) = us+1(0),

smoothness: u′s(ws) = u′s+1(0),

which can be written in terms of the unknown coefficients as

as + bsws + csw2
s + dsw

3
s = as+1,

0+ bsws + 2csws + 3dsw2
s = bs+1. (8)

A matrix used to implement the continuity constraints
between sections s and s+ 1 is introduced and denoted Gs

Gs=
[
1 ws w2

s w3
s −1 0 0 0

0 1 2ws 3w2
s 0 −1 0 0

]
, (9)

where ws is the length of sth section.
For the whole sequence, the LHS of the constraints is

represented

Aeq =


G1 0 . . . 0

0 G2
. . .

...
...

. . .
. . . 0

0 . . . 0 GS−1

. (10)
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Note that Gs and Gs+1 overlap over 4 columns. The RHS of
the constraints is represented as a column of 2(S − 1) zeros.
Once the LHS is formed, a cubic-spline fit is applied to

the data given an initial grid of points. Subsequently the grid
is adapted so as to make the residual errors as uniform and
homoscedastic as possible. This involves three operations:
a) Inserting nodes: This operation is based on the null

hypothesis that the variances of two residuals (before
and after inserting a node) are equal. If the null hypoth-
esis is rejected, (namely, that the F-statistic is signifi-
cantly larger than 1), the current section can be divided
into smaller sections by inserting a node. Note that
in this way the heteroscedasticity of the residual error
is reduced, and the estimated trend leaves a hopefully
homoscedastic residual.

b) Shifting nodes: The shifting is simply determined by
whether it improves the overall standard error. The shift-
ing is first tested in the positive direction, and if it fails
to improve the error, the current node is shifted in the
negative direction.

c) Removing nodes: This is similar to the operation of
inserting nodes, and is based on the null hypothesis
that the variances of two residuals (before and after
inserting a node) are equal. If the null hypothesis is
rejected, (namely, that the F-statistic is significantly
larger than 1), the two sections in questions are merged
by removing the node between them. Heteroscedasticity
of the residual error is therefore hopefully maintained.

FIGURE 3. Variant 1: A missing data gap is filled by a straight line defined
by the data at its endpoints.

B. MODIFICATIONS OF HASF
1) VARIANT 1: FILLING GAPS WITH STRAIGHT LINES
In order to initialize a complete time series, we use straight
lines to connect the gaps of fragmented segments. In Figure 3,
the gray color signal is the time series with missing data; the
blue color line is the dummy data that fills in the gap; the
red color line is the trend of the filled time series using
HASF filtering. Note that the accuracy of straight line filling
is dependent on the edge points of the gap of missing data.

FIGURE 4. Variant 2: Missing data are replaced with cubic splines, and
data-dense regions are approximated with cubic splines.

Moreover, the fitted cubic splines (over existing data) and the
straight gap-filling line are discontinuously connected.

2) VARIANT 2: FILLING GAPS WITH CUBIC FILTERING
In this variant, we use cubic splines to fill the gaps with
interpolated data (Figure 4). If a data point is missing, we
remove the row of U and the corresponding row of C . Here
continuity and smoothness are guaranteed between the poly-
nomials fitting the existing data and the gaps. Unfortunately,
the cubic polynomials over the gaps are expected to suffer
from wild oscillations.

FIGURE 5. Variant 3: Missing data are replaced with linear splines while
data-dense regions are approximated with cubic splines.

3) VARIANT 3: FILLING GAPS WITH COMBINED
CUBIC AND LINEAR FILTERING
In this variant, we use linear splines to fill the data gaps
and cubic splines to fit the existing data, and we enforce
continuity and smoothness at every node. Note that gaps
that are too short, for instance, single points surrounded by
existing samples, are ignored in the sense that the section
containing them is still represented with a cubic spline fitted
using the existing data. The result is illustrated in Figure 5.
The algorithm is described below.
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We assume S sections in the whole sequence u. If the sth

section represents a gap of missing data, then a linear spline
is used:

us−1(σ ) = as + bsσ,

where σ is the ‘‘local’’ time of the section considered. The
measurement equations are given by

V θs = u, (11)

where θs = [as, bs]T is the unknown vector, which has
2 unknown coefficients. The corresponding Vandermonde
matrix V of a missing data segment is

Vs =


1 σ1
1 σ2
. . . . . .

1 σK

. (12)

In order to make the approximation smooth and connected,
the corresponding functions and the derivatives should be
continuous at the points connecting the sections. The conti-
nuity condition us(ws) = us+1(0) between sections s and s+1
is modified to

as + bsws = as+1, (13)

where ws is the length of sth section. The smoothness condi-
tion u′s(ws) = u′s+1(0) becomes

0+ bsws = bs+1, (14)

A matrix used to implement the continuity constraints
between sections s and s + 1 is introduced and denoted Gs.
There are 4 constraints included below:
• If section s uses linear filtering and section s + 1 uses
cubic filtering, then

Gs =
[
1 ws −1 0 0 0
0 1 0 −1 0 0

]
. (15)

Gs and Gs+1 overlap over 2 columns in G.
• If section s uses cubic filtering and section s + 1 uses
linear filtering, then

Gs =
[
1 ws w2

s w3
s −1 0

0 1 2ws 3w2
s 0 −1

]
. (16)

Gs and Gs+1 overlap over 4 columns in G.
• If section s uses cubic filtering and section s + 1 uses
cubic filtering, then

Gs =
[
1 ws w2

s w3
s −1 0 0 0

0 1 2ws 3w2
s 0 −1 0 0

]
.

(17)

Gs and Gs+1 overlap over 4 columns in G.
• If section s uses linear filtering and section s + 1 uses
linear filtering, then

Gs =
[
1 ws −1 0
0 1 0 −1

]
. (18)

Gs and Gs+1 overlap over 2 columns in G.
All these constraints can be obtained by appropriate dele-

tions of the columns of the original Gs.

FIGURE 6. An example of adding weights to increase the importance of
data neighboring missing data.

4) IMPORTANCE-WEIGHTING OF THE
MEASUREMENT EQUATIONS
In the case of missing data, it is better to use the weighted
least squares criterion. A good strategy is to assign a higher
weight to the observation points that are isolated. If a point
is surrounded by missing observations, that point should be
counted as more important; in other words, it should possess a
higher weight, as illustrated in Figure 6. Note that the weights
of the missing points are irrelevant in the least squares
solution.

This is achieved by scaling the jth residual, which is numer-
ically equivalent to scaling the jth rows of C and U by ρj:

min
θ
||Cθ − U ||2ρ =

∑
j

ρ2j

(
C jθ − U j

)2
=

∑
j

(
ρjC jθ − ρjU j

)2
where ρj is a weight given to the jth data sample. The algo-
rithm of computing weights is described in Algorithm 1
below.

IV. EXPERIMENT & EVALUATION
Once the gaps of missing segments are filled, we then can
apply the HASF method [10] to the filled time series to
estimate the trend. The HASF method can be recursively
applied as needed on the dataset to improve performance.
Our experience with the examples we considered indicates,
however, that one iteration is often sufficient to obtain good
approximations.

To evaluate the performance of the three variants, we first
applied the HASF method to the original time series without
missing data to get the theoretical trend trendc. We then com-
puted the trend trendm of time series with missing data. Equa-
tion 19 is used for evaluating the Signal-to-Error Ratio (SER).
A higher SER indicates better performance:

SER = 20 log10(
rms(trendc)

rms(trendc − trendm)
)dB (19)

where rms denotes the root mean square of a time series.
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Algorithm 1 Algorithm: Compute Weights
u: input a fragmented signal of length n
w: hamming window length
rho: importance weights

1) compute indices of missing observations m
2) compute hamming vector h
3) initialize weights: rho= ones(1, n)
4) loop over m

a) lw = left side of current window centered at i
b) rw = right side of current window centered at i
c) find instants of missing observations mw and of

existing observations ew in the current window
d) compute hamming vector of current window: ih =

(lw:rw)− i+ w+ 1; hw = h(ih);
e) mip = sum(hw(ew));
f) if mip > 0

i) weights = hw/mip;
ii) weights(mw) = weights(mw)*0;
iii) rho(lw:rw)=rho(lw:rw )+weights

5) return rho

A. HEART RATE DATASETS
The evaluation datasets are generated from Mackowiak’s
heart rate dataset [23], which has 130 observations in the time
series. We randomly removed some observations according
to two parameters, n and wmax, where n is the number of
gaps and wmax is the maximum length of a gap. We generated
10 datasets for each combination of n and wmax. In total,
120 datasets were generated.

FIGURE 7. Heart Rate Dataset.

Figure 7 shows one example of experiments on the heart
rate datasets. The black color line, blue color line, and red
color line represent Variant 1, Variant 2 and Variant 3, respec-
tively. The green color line is the trend of the original time
series without missing data. Thus, any line that is closer to
the green color line has better performance.

TABLE 2. Heart rate Datasets.

We evaluated the three variants on 120 heart rate datasets.
From the results of Table 2, Variant 1 (filling gaps with a
straight lines) and Variant 3 (filling gaps with cubic and linear
filtering) are better than Variant 2 (filling gaps with cubic
filtering). Variant 3 is the best in general. In all three variants,
the smaller gap, the better the SER.

TABLE 3. Blood pressure Datasets.

B. BLOOD PRESSURE DATASETS
We also evaluated our method on a blood pressure
dataset [38]. This dataset consists of time series observations
of blood pressure measurements and readings from sensors.
The dataset we used has 231 observations. We randomly
removed some observations according to n and wmax as in
the procedure for the heart rate datasets. Each combination
(n andwmax) has 10 datasets, and 120 datasets were generated
in total. Table 3 shows the blood pressure dataset results,
which are similar to those of the heart rate datasets (Table 2).
As with the heart rate datasets, Variant 3 is the best, followed
by Variant 1 and Variant 2, and all variants produce a better
SER as the average gap length wmax is reduced.

C. NOISY SINE DATASETS
To study the effect of the severity of missing data, we gener-
ated a sequence of sinusoidal signals corrupted with noise,

u = sin
2π t
P
+ noise (20)
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FIGURE 8. Blood pressure Dataset.

FIGURE 9. Data based on sin(2πt/100)+ noise.

where P is the period of the signals, and we varied the
amount of missing data. The ratio of the total length of
missing data gaps normalized by the period of the underlying
trend should be a good measure of the severity of gaps.
In total, 120 datasets were generated and corrupted by noise
(SNR=0.97).
The results of our trend detection algorithms (Table 4)

applied to these data are quite consistent and similar to the
heart rate datasets (Table 2) and blood pressure datasets
(Table 3). Variant 3 has the best SER performance over all
gap sizes W = wmax, and the performance improves as the
gap size gets smaller.

Moreover, we generated more sine datasets with different
periods (50, 100, 150 and 200) and W = wmax (1, 3, 5,
7 and 9). Twenty combinations of period and average gap
width were used in total, and each combination had 90 ran-
dom datasets. We show the variation of the SER against the
ratio W/P in Figure 10. An increase of W/P is likely to
decrease the performance (SER). This means that a smaller
gap (average wmax) results in a better performance. Figure 11
shows that the performance is improved through importance
weighting of the measurements.

TABLE 4. Sine Datasets : sin(t*2*pi/100)+noise.

FIGURE 10. Variant 3 Performance (without importance weighting).

FIGURE 11. Variant 3 Performance (with importance weighting).

In summary, the performance of Variant 3 is better than that
of Variant 1 and Variant 2. Overall, Variant 3 contains a num-
ber of useful characteristics, such as: (a) It ignores short gaps
and models with cubic splines the data sections dominated
by existing data; (b) It models data sections dominated by
large gaps with linear splines; (c) It enforces continuity and
smoothness conditions between all adjacent sections regard-
less of whether they are linear or cubic; (d) It adapts the nodes
of the trend so as to improve stationarity; (e) It is ultimately
augmented with importance weighting. The results are very
encouraging with the signal-to-error ratio exceeding 32 dB
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when the gaps are small compared with the time scale of the
signal corrupted with noise. Importance weighting seems to
improve the result by an average of 3.19 dB.

V. CONCLUSIONS
In this paper, we presented three variants of modifying the
Hypothesis Testing Based Adaptive Spline Filtering (HASF)
method to discover the trends from fragmented time series.
The modified methods were shown to provide a robust way
to deal with missing data due to the ability of the modified
HASF to (a) ensure continuity and smoothness of the under-
lying trend as desired, (b) deal with the nonstationarity and
heteroscedasticity of the data, and (c) reflect the change of
importance of data samples that remain after removing neigh-
boring data. The results were consistent across real and sim-
ulated datasets and show that Variant 3 is the best. Variant 3
uses cubic splines to fit the existing data and linear splines
for large gaps. Importance weighting typically improves the
performance with the SER exceeding 32 dB.
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