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ABSTRACT An improved full-wave multilevel Green’s function interpolation method (MLGFIM) with
RBF-QR technique is proposed for the fast evaluation of electromagnetic field. The difficulty in applying
the interpolation approach with radial basis functions (RBFs) lies in solving the increasingly singular matrix
equation with the increase of the number of interpolation points. The compromise of making the basis
functions relatively less smooth was used in the previous RBF implementations to address this problem.
In this paper, a new interpolation scheme, the RBF-QR technique is applied to the interpolation of Green’s
function to resolve the ill-conditioning issue without such a compromise. A better conditioned basis function
is generated by the QR-factorization technique, and it also solves the sensitivity of the basis function to
the value of shape parameter. Moreover, a new hybrid interpolation pattern is adopted to optimize the grid
pattern, e.g., reduce the number of interpolation points required and the boundary interpolation errors. The
employment of the proposed RBF-QR technique in conjunction with hybrid interpolation pattern makes the
efficiency of the MLGFIM greatly improved. The proposed algorithm is used for the analysis of problems
involving objects, such as patch arrays, photonic bandgap structures, metasurface structures, double negative
metamaterial and so on. Five numerical examples are given to validate this new algorithm, and show the
accuracy and efficiency of the improved MLGFIM.

INDEX TERMS Fast integral equation solver, Green’s function interpolation, radial basis functions,
ill-condition.

I. INTRODUCTION
The ability of fast evaluation of electromagnetic field in the
microwave and optical components such as patch antenna
arrays, metasurface structures, or photonic bandgap struc-
tures is the key to a simulation tool. These problems are often
analyzed using integral equation-based computational tech-
niques, e.g., the method of moment (MoM) [1]. However, the
computational requirements for MoM are very high, so vari-
ous fast numerical methods have been proposed to accelerate
the computation. For instant, multilevel fast multipole algo-
rithm (MLFMA) [2]–[4], precorrected FFT (PFFT) [5], [6],
adaptive integral method [7], [8], and sparse matrix canonical
grid (SMCG) [9], [10], to name a few. All of these algorithms

have a computational complexity of O(N log N ), because
the far-field interactions are indirectly computed using some
approximation methods.

Specifically, a kernel independent approach which
is called the multilevel Green’s function interpola-
tion method (MLGFIM) has been developed to solve
quasi-static [11], [12] and full-wave [13], [14] electro-
magnetic problems. For the full-wave problems, account-
ing for the rapidly changing phase term of the full-wave
Green’s function, it is found that the Lagrange interpola-
tion which has been adopted in quasi-static solver is no
longer valid. This problem is alleviated by applying inverse
multiquadric (IMQ) radial basis functions (RBFs) [15] with
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staggered Tartan grid [11]. Recently, in order to enhance the
efficiency of the MLGFIM, the effect of different types of
RBFs has been comprehensively compared. The results show
that the accuracy and efficiency of Gaussian (GA) [16] and
Bessel (BE) [17] RBFs are better than that of IMQ RBFs. In
addition, a modified staggered Tartan grid, which replaces the
original staggered Tartan grid [13], is also proposed in [16]
to obtain a better interpolation performance for the Green’s
function approximation. However, the previously used inter-
polation methods have difficulties in the orthogonalization of
the RBFs, because an increasingly singular matrix equation
needs to be solved with the increase of the number of inter-
polation points [13]. Making the basis functions relatively
less smooth was used in the previous RBF implementations
to alleviate the ill-conditioning issue. But less smooth RBFs
will also lower the interpolation accuracy [18], [19].

Meanwhile, uniform grid pattern (e.g., staggered tartan
grid [13] or modified staggered tartan grid [16]) restricts the
number of interpolation points to some fixed numbers. The
number of interpolation points cannot be chosen arbitrarily,
and thus, redundant interpolation points should be employed
to ensure the interpolation accuracy. Moreover, RBF imple-
mentation using a (quasi) uniform grid pattern leads to large
errors near the boundaries of the interpolation region [20],
and it will contaminate the solution and make the final results
inaccurate. Hence, an interpolation pattern, which can flexi-
bly choose the number of interpolation points and suppress
the boundary errors, is required.

In this paper, a multilevel RBF-QR interpolation method is
adopted for the Green’s function interpolation. We adopt the
QR-factorization technique suggested in [18] for the imple-
mentation of RBF interpolation, in which a better conditioned
interpolation basis is generated after the factorization of the
coefficient matrix of GA RBFs. Given this new basis func-
tion which removes the ill-conditioning issue, an accurate
interpolation result can be obtained even the RBFs are very
smooth. Moreover, to further enhance the interpolation effi-
ciency, a new hybrid interpolation pattern which combines
the modified staggered Tartan grid [16] and clustered Halton
points [21] is also proposed in this paper to remedy the
weakness of the previously used grid patterns. By applying
this hybrid pattern, the number of interpolation points can be
an arbitrary number, and no redundant interpolation points
are thus required. In addition, the boundary errors are greatly
suppressed, because the interpolation points are denser near
the boundary for this new interpolation pattern. The proposed
method involving a better conditioned basis function and a
new hybrid pattern will be used to enhance the efficiency
of the MLGFIM. Five numerical examples will be given to
validate the accuracy and show the efficiency of the improved
MLGFIM.

II. THE IMPLEMENTATION OF MLGFIM
For composite metallic and dielectric bodies, Poggio-Miller-
Chang-Harrington-Wu-Tsai (PMCHWT) [22] integral equa-
tions are frequently used to describe this problem. After

FIGURE 1. 2-D pictorial representation of the interpolation points (white
circles) and interpolated points (black circles) in the field group m and
source group n.

FIGURE 2. The testing scheme in which the interpolation points are
distributed in the slash group and the source point locates one group
length away from the slash group.

applying the Galerkin method to the integral equations, a
corresponding matrix equation is generated, and each matrix
element can be expressed into the scalar form as [14]:

Z (v)ij = α

∫
s(v)i

ds
∫
s(v)j

ds′τi(
⇀r )ςj(

⇀r
′
)3(v)(⇀r ,⇀r

′
) (1)

where α is a constant, 3(v)(⇀r ,⇀r
′
) is the interaction function

between field point⇀r and source point⇀r
′
, and τi(

⇀r ) and ςj(
⇀r
′
)

are related to the weighting function and the basis function.
In order to efficiently solve the matrix equation generated

by the integral equations, MLGFIM is applied to accelerate
the matrix-vector multiplication. With multilevel division,
the under-simulated structure is divided and enclosed into
groups. Instead of directly calculating interaction function,
MLGFIM uses interpolation method to quickly approximate
this function if these two groups are far apart. In order to
illustrate the interpolation approximation of the interaction
function, we consider the scenario in Fig. 1. According
to [11], the interaction function 3(v)(⇀r ,⇀r

′
) between field

group m and source group n can be approximated using
interpolation approach as follows:

3(v)(⇀r ,⇀r
′
)=

N∑
p=1

N∑
q=1

ωm,p(
⇀r )ωn,q(

⇀r
′
)3(v)(⇀rm,p,

⇀r
′

n,q)

(2)

where ωm,p(
⇀r ) and ωn,q(

⇀r
′
) are the pth and qth interpolation

functions, ⇀rm,p and ⇀r
′

n,q are the pth and qth interpolation
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points in field group m and source group n, respectively. N
is the number of interpolation points.

After substituting (2) into (1), we can implement the
MLGFIM to accelerate the computation, viz.,

Z (v)ij =α

[∫
s(v)i

dsτi(
⇀r )ω̄Tm(

⇀r )

]
3

(v)
mn

[∫
s(v)j

ds′ςj(
⇀r
′
)ω̄n(

⇀r
′
)

]
(3)

where ω̄Tm(
⇀r ) is the interpolation functionmatrix consisting of

ωm,p(
⇀r ) and3

(v)
mn is the interaction function matrix consisting

of 3(v)
(
⇀rm,p,

⇀r
′

n,q

)
.

III. INTERPOLATE Green’s FUNCTION WITH RBF-QR
METHOD
Consider a function f (⇀r ) in an influence domain that has a
set of n arbitrarily distributed nodes with corresponding val-
ues {f (⇀r i)}Ni=1. Applying the basis function ϕ

(∣∣∣⇀r − ⇀r i
∣∣∣ , s)

(where s is the shape parameter), we obtain the approximation
function fa(

⇀r ) as [15]:

fa(
⇀r ) = [ϕ1 · · ·ϕN ] ¯̄8−1

[
f (⇀r 1) · · · f (

⇀r N )
]T

(4)

where ϕi = ϕ
(∣∣∣⇀r − ⇀r i

∣∣∣ , s) and the entries of matrix ¯̄8 are

8i,j = ϕ
(∣∣∣⇀r j − ⇀r i

∣∣∣ , s). The matrix ¯̄8 becomes increasingly
singular with the increase of number of interpolation points,
so the inverse operation of this matrix is difficult. As we have
addressed, conventional RBF interpolation alleviates the ill-
conditioning problem with the compromise of the use of less
smooth basis functions.

In order to deal with the ill-conditioning problem without
such a compromise, RBF-QR method is applied for Green’s
function interpolation. With Taylor expansion and spherical-
Chebyshev expansion, the GA RBFs can be rewritten as [18]:

ϕi = e−(s|r̄−r̄i|)
2

=

jtru∑
j=0

(j−p)/2∑
m=0

dj,m

2m+p∑
v=−(2m+p)

cj,m,v(
⇀r i) · Tj,m,v(

⇀r ) (5)

where p = mod(j, 2) and jtru is the number of terms of the
truncated Taylor expansion. Other coefficients in function (5)
are defined as

dj,m= 23+p+4ms2j
((j+p+2m)/2)!

((j−p−2m)/2)!(j+1+p+2m)!
(6)

cj,m,v(
⇀r i) = tj−2myve−s

2R2i r jiY
v
2m+p (θi, φi) 2F3

×

(
ρj,m, σj,m, s4R2i

)
(7)

Tj,m,v(
⇀r ) = e−s

2R2r2mY v2m+p (θ, φ)Tj−2m (R) (8)

where{
Y vµ (θ, φ) = Pvµ (cos θ) cos (vφ) , v = 0, · · · , µ
Y−vµ (θ, φ) = Pvµ (cos θ) sin (vφ) , v = 1, · · · , µ

(9){⇀r = r
(
sin θ cosφx̂ + sin θ sinφŷ+ cos θ ẑ

)
⇀r i = ri

(
sin θ cosφx̂ + sin θ sinφŷ+ cos θ ẑ

) (10)

ρj,m = [(j− 2m+ 1) /2, (j− 2m+ 2) /2] (11)

σj,m = [j− 2m+ 1, (j− 2m− p+ 2) /2,

(j+ 2m+ p+ 3) /2] (12)

and y0 = 0.5, yv = 1(v > 0), t0 = 0.5, tj−2m =
1(j > 2m). Pvµ (x), Tn (x) and 2F3 (x) are the normalized
associated Legendre function, Chebyshev polynomial of the
first kind and hypergeometric function, respectively.

Considering the RBFs centered at N different points, the
following relation is obtained according to the expansion (5):
ϕ1
ϕ2
...

ϕN

=

c0,0,0

(⇀r 1) c1,0,−1
(⇀r 1) · · · cjtru,(jtru−p)/2,jtru(⇀r 1)

c0,0,0
(⇀r 2) c1,0,−1

(⇀r 2) · · · cjtru,(jtru−p)/2,jtru(⇀r 2)
...

...
. . .

...

c0,0,0
(⇀r N ) c1,0,−1(⇀r N ) · · · cjtru,(jtru−p)/2,jtru(⇀r N )



·


d0,0 0 · · · 0
0 d1,0 · · · 0
...

...
. . .

...

0 0 · · · djtru,(jtru−p)/2

·


T0,0,0
(⇀r )

T1,0,−1
(⇀r )

...

Tjtru,(jtru−p)/2
(⇀r )

(13)

or

9̄ = ¯̄C · ¯̄D · T̄ (⇀r ) (14)

By QR-factorizing the rectangular coefficient matrix ¯̄C ,
equation (14) can be expressed as:

9̄ = ¯̄Q · ¯̄R · ¯̄D · T̄ (⇀r ) = ¯̄Q ·
[
¯̄R1 ¯̄R2

] [ ¯̄D1 0
0 ¯̄D2

]
· T̄ (⇀r )

=
¯̄Q ·
[
¯̄R1 ¯̄D1

¯̄R2 ¯̄D2

]
· T̄ (⇀r ) (15)

where ¯̄R1 is upper triangular and both ¯̄R1 and ¯̄D1 are N × N .
It has been proven that the expansion functions Tj,m,v(

⇀r )
are better conditioned and insensitive to the shape of
RBFs [18], changing the basis function to be more similar
to the expansion functions can resolve the ill-conditioning
problem. Hence, a new basis is generated as [18]:

χ̄ = ¯̄D−11
¯̄R−11
¯̄QH 9̄ =

[
¯̄I ¯̄D−11

¯̄R−11
¯̄R2 ¯̄D2

]
· T̄ (⇀r )

=

[
¯̄I ¯̄R′

]
· T̄ (⇀r ) (16)

which can be viewed as the expansion functions T̄ (⇀r ) plus
a correction part. With this new basis, we can also obtain
approximation function fa(

⇀r ) using equation (4).
To validate the effect of the RBF-QR method, the same

testing scheme introduced in [13], [16], [17], [23] is used
and also shown in Fig. 2. The source point is one group
length away from the field group (slash) and located at
the face center (black dot). It has been proven that (quasi-
uniform) Halton points are appropriate for RBF interpola-
tion, and if these quasi-uniform points are clustered towards
the domain boundary, better interpolation accuracy will be
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achieved [18], [20]. Thus, we distribute the interpolation
points in the field group with the length of l as:

α̃i =
l
2
· sin (π · αi/l) , αi = xi, yi or zi (17)

where xi, yi and zi are the Cartesian coordinates of i-th Halton
points [21]. The grid generated by equation (17) is clustered
similarly to Chebyshev grid without being restricted to spe-
cific locations.

FIGURE 3. The 1-D GA RBFs using five different shape parameters.

The condition number and maximum interpolation error
in the field group with different number of clustered Halton
points and shape parameter s are tested. The shape parameter
s controls the shape of basis function, as shown in Fig. 3.
It is observed that as s reduces, the smoothness of theGARBF
increases. When the value of s reduces to a relatively small
number, the GA RBF becomes almost linear near the center,
and consequently eliminates the coordinate dependence. The
entries in the coefficient matrix are hard to distinguish and
the ill-conditioning problem occurs. So that a lot of numerical
cancellation occurs when evaluating fa(

⇀r ). On the other hand,
if the value of s is large, the derivative of basis function
becomes discontinuous at the center. Thus, a large shape
parameter does not give very smooth interpolates and is
generally not preferred [19]. This phenomenon suggests that
computations for smaller values of ε can be very accurate if
the conditioning problem is overcame by applying the new
basis function (16).

Figs. 4(a) and (b) show the condition number and maxi-
mum interpolation error when the shape of the RBF is fixed.
The shape parameter is set as s = 0.2, which implies that a
smooth basis function is used. When the edge length of the
testing group l is l = 1λ, the interpolation performance using
RBF-QRmethod and conventional RBFmethod based onGA
RBFs are compared. From Fig. 4(a), it is observed that when
the number of interpolation points increases, the condition
number for conventional RBF method increases accordingly
and consequently causes ill-conditioning problem. However,
since a better conditioned basis (16) is adopted, the condition
number for RBF-QR method is much smaller. The maximum
interpolation error shown in Fig. 4(b) indicates that conven-
tional RBFmethod results in large interpolation error after the

FIGURE 4. The interpolation results when l = 1λ and s = 0.2.
(a) Logarithm (base 10) of the condition number for matrix ¯̄8. (b)
Maximum interpolation error.

number of interpolation pointsN increases beyond 70. In con-
trast, owing to the great reduction of condition number, the
interpolation using RBF-QR method becomes increasingly
accurate with the increase of the number of interpolation
points.

The interpolation performances using RBFs with differ-
ent shape parameters are shown in Figs. 5(a) and (b). The
number of clustered Halton points N in this figure is set as
N = 300. From these two figures, it is observed that when
the value of shape parameter s is small (corresponding to flat
and smooth RBFs in Fig. 3), the condition number using con-
ventional RBF method is very large, and consequently gen-
erates inaccurate interpolation results. Increasing the value
of shape parameter alleviates this problem and reduces the
interpolation errors. But when the shape parameter increases
beyond 1.8, the interpolation errors increase again due to the
discontinuous derivative of the basis function. Since the better
conditioned basis (16) is insensitive to the value of shape
parameter, the condition number of matrix ¯̄8 for RBF-QR
method remains small and changes little with the variation
of shape parameter values. As a result, the interpolation
accuracy using RBF-QR method is always smaller than that
using conventional RBF method until the shape parameter
increases to 1.8, and then the interpolation errors become the
same.

IV. APPLYING A HYBRID INTERPOLATION PATTERN
Although the staggered Tartan grid (STG) [13], [16] performs
better than clustered Halton points in the Green’s function
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FIGURE 5. The interpolation results when l = 1λ and N = 300.
(a) Logarithm (base 10) of the condition number for matrix ¯̄8.
(b) Maximum interpolation error.

FIGURE 6. The maximum interpolation error for staggered grid points
(two adjacent specific numbers of staggered points are shown in the
figure).

interpolation, the restriction of these grid patterns which has
been addressed involves the use of some redundant inter-
polation points. Fig. 6 shows the maximum interpolation
error for different group lengths when STG is applied. Since
the interpolation results in the testing group are uneven in
accuracy, and the part with large interpolation errors will
contaminate the solution everywhere across the domain, a
threshold of maximum interpolation error should be set to
ensure the accuracy of MLGFIM. In this paper, the error
threshold Ethre is set as Ethre = 0.01. From Fig. 6, we find

FIGURE 7. 2-D representation of a 3-D hybrid pattern (solid dots and
hollow dots are staggered grid points and cluster Halton points,
respectively).

FIGURE 8. The distributions of interpolation errors when l = 1λ and
x = −0.4λ using (a) staggered grid pattern and (b) hybrid pattern.

that we must use 172 staggered grid points to satisfy the error
threshold when the edge length of group l = 1λ. Actually, to
satisfy the error threshold, the number of interpolation points
required is between 63 and 172. Since it is impossible to
generate the number of staggered grid points between 63 and
172, some redundant interpolation points must be used.

The clustered Halton points have no such a restriction, and
thus it is possible to remedy the weakness of staggered grid by
combining it with clustered Halton points. The hybrid inter-
polation pattern, as shown in Figure 7, is generated as follows.
Assume the edge length of group l = 1λ, it has been inferred
that the actual number of interpolation points is between
63 and 172. Hence, 63 staggered grid points are first adopted
to compose one part of the hybrid pattern. Subsequently, the
clustered Halton points generated by (17) are gradually added
to the hybrid pattern until the maximum error using the total
interpolation points is below the threshold.

Apart from the above advantage, the hybrid interpolation
pattern can also suppress the boundary interpolation errors.
Assume the edge length of group l is chosen as l = 1λ
and 63 staggered grid points are used for the interpolation.
Fig. 8(a) shows the distribution of interpolation errors on the
plane that is close to the edges of the group (x = −0.4λ).
From Fig. 8(a), it is observed that the interpolation errors
near the corners are very large, and that makes the interpo-
lation at these regions inaccurate. Fig. 8(b) shows the error
distribution on the same plane when hybrid pattern consisting
of 63 staggered grid points and 10 clustered Halton points is
applied. We find that the corner errors are suppressed after
only 10 clustered Halton points are augmented.
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FIGURE 9. Required number of interpolation points using RBF-QR with
hybrid pattern and the methods in [16] and [17].

Furthermore, the required numbers of interpolation points
using the proposed method for different group lengths are
given and compared with those using the previously reported
methods [16] and [17], as shown in Fig. 9. The increase step
of group length is set as quarter wavelength in this figure, and
it is observed that the number of required interpolation points
using the proposed method is always smaller than that using
the previous methods.

TABLE 1. Comparison of the interpolation accuracy between RBF-QR and
conventional RBF method with BE RBFs.

Since the BE RBFs have a better convergence behavior
than other used basis functions [17], to further prove the effec-
tiveness of the proposed methods, the interpolation accuracy
using RBF-QR method and conventional RBF method based
on BE RBFs with the same number of interpolation points are
compared, as shown in Table 1. From this table, we find that
the interpolation accuracy of using RBF-QR method is better
than that using conventional RBF method, and the difference
of maximum error between these two methods are increased
with the increase of the group length.

V. NUMERICAL RESULTS
In this section, three examples are given to demonstrate
good performance of the proposed method. The generalized
minimal residual (GMRES) iteration method with a relative
error norm of 10−3 is employed for all the calculations,
and the inner loop of GMRES contains 100 matrix-vector
multiplications.

As the first example, the proposed algorithm is applied to
solve the plane wave scattering from a 3 by 3microstrip patch

FIGURE 10. Plane wave scattering from a 3 by 3 patch array. (a) Geometry
and (b) Bistatic RCS θθ polarization.

FIGURE 11. Plane wave scattering from a four-layer photonic band gap
structure. (a) Geometry and (b) Bistatic RCS θθ polarization.

array, as shown in Fig. 10(a). The parameters of the array are
as follows: ax = 3.66 cm, ay = 2.6 cm, bx = 1.8917 cm,
by = 2.9517 cm, lx = ly = 5 cm, h = 0.158 cm. The relative
permittivity of the substrate is 2.17. A plane wave with center
frequency of 3.7 GHz is normally incident along −z axis.
12 grids per wavelength λd (where λd = λ0

/√
εr ) are used to

discretize the array and the total number of unknowns for the
equivalent electric and magnetic currents is 25,988. Fig. 9(b)
shows the bistatic RCS with θθ polarization result calculated
by the proposed algorithm and the result in [16]. Very good
agreement is observed between two results which validates
the proposed algorithm.

In the second case, plane wave scattering from a four-
layer photonic band gap structure is analyzed, as shown in
Fig. 11(a). The structure is made of layers of dielectric rods
with an orderly stacking sequence. In each layer, 12 or 13
alumina rods with a refractive index of 3.1 are arranged
parallel to each other, and separated by a center-to-center
distance of 1.123 cm. The width, height and length of the rods
are 0.318 cm, 0.318 cm and 15.24 cm, respectively. The rods
of the second neighbor layer are shifted by 0.5615 cm in the
direction perpendicular to the rod axes. A plane wave propa-
gating along −z axis impinges normally to the structure. The
center frequency of the wave is 6.0 GHz. After discretizing
the structure, 204,888 unknowns for the equivalent electric
and magnetic currents are obtained. The bistatic RCS with
θθ polarization result calculated by the proposed algorithm
is shown in Fig. 11(b), and compared with the result shown
in [14]. Again, good agreement is observed between these two
results.
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FIGURE 12. A dipole in front of an 11 by 11 dielectric sphere array.
(a) Geometry. (b) Polar plot of the directivity versus φ in dB when θ = 90◦.
(c) Distribution of Poynting vector in yoz plane.

Next, the structure of a dipole in front of an 11 by 11
dielectric sphere array (εr = 2.25) is investigated, as shown
in Fig. 12(a). The radius of the sphere is 2 cm and the
distance between the centers of two adjacent spheres is 5 cm.
A Herzian dipole which works at the frequency of 6.25GHz
is located 10 cm in front of the array center and placed along
z axis. In this example, 10 grids per wavelength λd are used
to discretize this structure so that the number of unknowns
for equivalent electric and magnetic currents is 144,020. The
polar plot of the directivity versus φ when θ = 90◦ is shown
in Fig. 12(b). The results calculated by the proposed algo-
rithm and previous MLGFIM [17] which applies BE RBFs
with STG pattern are agreed very well. The distribution of
Poynting vector in the plane of x = −20 cm is also calculated,
as shown in Fig. 12(c).

In the following example, consider a plane wave
impinges normally on a fishnet-type structure which always
performances as metamaterial [24]. Fig. 13(a) shows a
fishnet-type structure consisting of 10× 10 elements, and its
corresponding element in 3-D view, in which w1 = 10 µm,
w2 = 17.5 µm, d = 115 µm, t = 9 µm. The patterns on
the top and bottom surfaces of the substrate are made of the
same shaped PEC, and the permittivity of the substrate is
2.25. A plane wave with electric field parallel to the x-axis
propagates along −z-axis, the magnitude of the electric field

FIGURE 13. Plane wave impinges normally on a finite fishnet-type
metasurface structure. (a) Geometry. (b) Bistatic RCS with θθ polarization.

TABLE 2. Comparison of CPU time and memory requirement.

of the incident wave is 1V/m. The bistatic RCS is investigated
at the frequency of 2 THz. From Fig. 13(b), it can be seen that
the results calculated by the proposed method and previous
MLGFIM [17] agree very well.

We also compare the computational efficiency between
the proposed algorithm and previous MLGFIM algorithm.
In [17], the interpolation results show that the efficiency
of BE RBFs with staggered points are better than previ-
ously used interpolation methods (including methods in [14]
and [16]) for Green’s function approximation. Therefore, we
compare the computational performance of MLGFIM using
the proposed algorithm and BE RBFs with staggered grid
pattern for the aforementioned three examples, as shown in
Table 2. From this table, it is observed that the CPU times for
the four examples have reduced by 14.7%, 33.6%, 56.7% and
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FIGURE 14. Plane wave scattering from a dielectric elliptical sphere.
(a) Geometry. (b) Bistatic RCS with φφ polarization. (c) CPU time.
(d) Memory requirement.

56.0%, respectively, after applying the proposed algorithm.
It should be mentioned that because the large size of
example 3 make it requires more interpolation points than
example 2, although the number of unknowns in example 2
is larger than example 3, the time for simulating example 2 is
still shorter. Table 2 also compares the memory requirements
between the proposed method and previous MLGFIM. The
comparison results show that the memory requirements have
been saved by 10.4%, 29.8%, 43.5 % and 49.4% for the
four examples, respectively. More significant reductions of
calculation time and memory requirement can be observed
with the increase of the object size.

Finally, a dielectric elliptical sphere consisting of different
types of mediums is subsequently considered, as shown in
Fig. 14(a). The long axis of the elliptical sphere is 6 m,
whereas the short axis is 1.5 m. The plane wave scattered by
this elliptical sphere comprising double positive (εr = 2.25,
µr = 1.0), single negative (εr = −2.25, µr = 1.0) and
double negative (εr = 2.25, µr = −1.0) medium is studied.
Fig. 14(b) compares the bistatic RCS with φφ polarization
for these three cases, when plane wave with a frequency of
300 MHz is impinges on the elliptical sphere along −x axis.
The forward scattering is enhanced significantly due to nega-
tive permittivity and permeability. The CPU time for perform-
ing each matrix-vector multiplication and the corresponding
memory requirement are shown in Figs. 14(c) and (d), in
which the frequency of incident wave gradually increases.
In these two figures, about 20 grids per wavelength are used
to discretize this structure, and three types of numbers of

levels are used for the calculation. From Fig. 14(c) and (d),
it is observed that the CPU time and memory requirement
of the proposed method are always smaller than those of the
previous one. In addition, it is also observed that the proposed
algorithm approximately obeys a computational complexity
of O(N log N ) and memory complexity of O(N ).

VI. CONCLUSION
A new interpolation scheme using RBF-QR method with
hybrid interpolation pattern is proposed to improve the com-
putational efficiency and memory storage requirement of
MLGFIM. The RBF-QRmethod resolves the ill-conditioning
problem without the compromise of adopting less smooth
RBFs, and the hybrid pattern optimizes the interpolation grid
pattern. Compared with previously reported schemes, this
method can provide a better interpolation performance, and
thus make the MLGFIM more efficient.
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