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ABSTRACT Internet of things (IoT) is expanding its outreach to almost every aspect of our daily life.
By utilizing network coding in IoT, the IoT energy consumption can be reduced. Thus it is worthwhile
studying and improving the applications in IoT, where network coding is incorporated. In this paper,
we optimize the performance of network coding-based communication and reliable storage in two important
components of IoT, including the IoT core network, where data is sensed and transmitted, and the distributed
cloud storage, where the data generated by the IoT core network is stored. First, we propose an adaptive
network coding scheme in the IoT core network to improve the transmission efficiency. We demonstrate the
efficacy of the scheme and the performance advantage over existing schemes through simulations. Second,
we introduce the optimal storage allocation problem in the network coding-based distributed cloud storage,
which aims at searching for the most reliable allocation that distributes the n data components into N data
centers, given the failure probability p of each data center. Finally, we propose a polynomial-time optimal
storage allocation (OSA) scheme to solve the problem. Both the theoretical analysis and the simulation
results show that the storage reliability could be greatly improved by the OSA scheme.

INDEX TERMS Internet of Things, wireless sensor networks, distributed cloud storage, green networking.

I. INTRODUCTION
Internet of things (IoT) [1], [2] is an integral part in today’s
development of smart city. People could remotely access and
interact with a wide range of devices integrated with sensors,
from home appliances, wearable electronics to environmen-
tal monitors. With such enormous coverage potential in our
daily life, IoT with reduced energy consumption (the ’green’
attribute) has attracted more and more attention. In recent
years, energy-efficient networking and computing [3] have
been extensively studied from many perspectives, such as
the framework design [4], the algorithm design [5] and the
resource reusing [6].

The high level view of Internet of things is shown in
Fig. 1, which includes IoT core network for data sensing
and transmission, distributed cloud storage [7] for storing
the data generated by the core network, cloud computing [8]
for processing the data. Upon these components are various
applications such as e-transportation, e-heath, smart home
and so on. Communication networks such as 4G and 5G
networks [9] interconnect these major components.

FIGURE 1. High level view of Internet of things.

The IoT core network is responsible for generating the
data for Internet of things. Smart devices sense various
data and send out the data through the networks constituted
by these devices [10], [11]. Because the smart devices are
mostly battery-driven, plenty of researches aim at devising
energy-efficient schemes to prolong the operation time of the
network, such as in [12]–[14]. Moreover, since the com-
munication of the IoT core network is largely through
wireless, the packet loss may be high due to fadings and
interferences, which would bring unnecessary energy
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consumptions. Thanks to the emerging of software defined
wireless networking [15], we can apply sophisticated algo-
rithms to improve the communication quality of the IoT core
network and conserve energy.

During the operation of Internet of things, data collected
from a vast number of sensors in the IoT core network could
explode. The distributed cloud storage is the best candidate
to safely and reliably store these data. The distributed data
storage architecturemodel distributes the database tomultiple
servers in many locations across the participating network in
the storage cloud. Each location is directly and independently
plugged into the Internet. If something unexpected happens
to the data in one location, generally only a small amount of
backed up data is impacted. Thus the data could be recovered
with much less energy consumption, using the data stored in
the rest of the locations. Besides distributing the data, many
researches also study proactive approaches to ensure the data
availability such as in [16].

Network coding provides a trade-off between communica-
tion capacity and computational complexity in network envi-
ronment by enabling the intermediate relay nodes to encode
the incoming packets before forwarding them. Since network
coding can improve the throughput and robustness of the
network, the unnecessary energy consumption due to high
loss rate communication or high failure rate storage can be
saved. Application of network coding in Internet of things can
contribute to the ‘green IoT networking’. With such desirable
merit, in this paper we optimize the performance of network
coding based communication and reliable storage in Internet
of things. The main contributions of this paper are:

• We propose an adaptive network coding scheme
(ANC scheme) for the IoT core network and demon-
strate that the scheme can improve the transmission
efficiency and the performance is better than existing
schemes.

• For the distributed cloud storage utilizing network
coding that stores the data generated by the IoT core net-
work, we introduce the optimal storage allocation prob-
lem and propose an optimal storage allocation (OSA)
scheme. Simulation results show that the storage relia-
bility can be greatly improved.

The paper is organized as follows: in Section II we briefly
review the IoT core network and the distributed cloud storage.
The concept of network coding and its advantages in commu-
nication and storage are also introduced in Section II. Next we
propose and analyze our adaptive network coding scheme for
the IoT core network in Section III. After that we study the
optimal storage allocation problem in the distributed cloud
storage utilizing network coding in Section IV. At last is the
Conclusion.

II. PRELIMINARIES AND RELATED WORK
A. INTERNET OF THINGS
The objective of Internet of things is to equip every-
thing related to human beings with smart chips integrating

sensors, actuators and transceivers. Smart devices equipped
with smart chips within a certain range can communicate
with each other and form networks. These networks can be
further connected to the Internet through proper intercon-
necting. In this paper, we will mainly focus on the IoT core
network and the distributed cloud storage which stores the
data generated by the IoT core network as shown in Fig. 1.

1) IoT CORE NETWORK
IoT core network consists of the smart devices mentioned
above and the networks among these devices. Several chal-
lenges of the IoT core network exists. First, it lacks of a
unified infrastructure and protocol stack. Second, the mon-
itor and control of the network lacks of flexibility. Third,
the functionality of the network cannot be changed without
reprogramming the smart devices when the application envi-
ronment changes.

To overcome these shortcomings, software defined wire-
less networking (SDWN) [15] was proposed based on the
paradigm of software defined networking (SDN) [17]. In the
context of SDWN, the network elements in the data plane
are smart devices which act as both end users and switches.
The data flow is separated from the control flow. We can
easily change the network behaviors through exchange of the
control flow among smart devices.

Thanks to the advantages of SDWN, it is much easier to
implement algorithms which can improve network perfor-
mance into IoT core network. In [18] the authors propose to
combine network coding and software defined networking,
where the code rate of the network coding is fixed. Although
this approach can improve the communication throughput,
the strategy is not flexible to cope with the changing channel
qualities in wireless environments. In this paper, wewill show
that the transmission efficiency of the IoT core network can
be greatly improved through our adaptive network coding
scheme, where the code rate of the network coding can be
dynamically adjusted in a centralized manner with the global
view of the whole network.

2) DISTRIBUTED CLOUD STORAGE
The volume of all global data will be boosted dramatically
with the developing of Internet of things, where there will be
hundreds of thousands of sensors deployed to create more and
more data. To the year 2020, the amount of data would grow
to 40 zettabytes. How to properly store the data has become
a major challenge in Internet of things.

Traditional centralized data center is not suitable for the
context of Internet of things. If something unexpected hap-
pens such as power outage or military actions, the precious
data stored in the data center could be lost and unrecoverable.
To ensure a high reliability of the data storage, a typical
solution is to store the data across multiple servers in the
distributed cloud storage. The main idea is that instead of
storing the entire data in one server, we can split the data
into n data components and store the components separately.
The original data can be recovered only when the required
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(threshold) number of components, say k , are collected. The
storage efficiency is much higher than simply replicating
the data over multiple servers. The distributed cloud storage
can also increase data availability while reducing network
congestion, thus leading to increased resiliency. A popular
approach is to employ an (n, k) maximum distance separa-
ble (MDS) code, such as the Reed-Solomon (RS) code in the
Total Recall system [19]. In later sections, we will show that
by applying network coding in the distributed cloud storage
we can further improve the performance of data storage.

B. NETWORK CODING
In this section, we will briefly introduce the concept of
network coding and its advantages in improving the com-
munication throughput and the distributed cloud storage
reliability, which could eventually contribute to the ‘green
IoT networking’. Network coding was first introduced in
the seminal paper by Ahlswede et al. [20]. By allowing the
intermediate relay nodes to encode the incoming packets,
the network could achieve the maximum multicast capacity.

A network is equivalent to a directed graph G = (V ,E),
where V represents the set of vertices corresponding to
the network nodes and E represents all the directed edges
between vertices corresponding to the communication link.
The start vertex v of an edge e is called the tail of e and written
as v = tail(e), while the end vertex u of an edge e is called the
head of of e and written as u = head(e). For a source node u,
there is a set of symbolsX (u) = (x1, . . . , xk ) to be sent. Each
of the symbol is from the finite field GF(2m), where m is a
positive integer. For a link e between intermediate nodes r1
and r2, written as e = (r1, r2), the symbol ye transmitted on
it is the function of all the ye′ such that head(e′) = r1. And
ye can be written as:

ye =
∑

e′:head(e′)=r1

βe′,e · ye′ , (1)

in which the encoding coefficients βe′,e ∈ GF(2m).
For a sink node v, there is a set of incoming symbols
ye′ (e′ : tail(e′) = v) to be decoded.

1) NETWORK CODING IN COMMUNICATION
The main idea of network coding can be illustrated through
Fig. 2. Assume the capacity of all the edges is C , the capacity
of this network is 2C according to the max-flow min-cut
theorem. Only by encoding the incoming packet symbols
x1, x2 at node R3, this network can achieve the maximum
capacity. Since node R3 only need to send out one symbol
x1 + x2 instead of two symbols, the energy consumption of
R3 in data transmission could be reduced by 50%.
In [21] and [22], the authors have shown that linear codes

with random selected coefficients are sufficient to achieve the
multicast capacity by coding on a large enough field. Sink
nodes that have received more linear independent encoded
symbols than the original symbol generated by the source
nodes can easily decode the original symbols by solving a set
of linear equations. Moreover, it has been demonstrated that
network coding can improve the communication throughput.

FIGURE 2. A simple example of network coding.

As an example, the authors in [23] have applied the prin-
ciples of random network coding to the context of peer-to-
peer (P2P) content distribution, and have shown that file
downloading times can be reduced. Thus in this paper we
propose to apply adaptive random linear network coding in
the IoT core network to improve the network transmission
efficiency. In [24], the authors develop an OpenCoding pro-
tocol to improve the network throughput through intra-flow
network coding for wireless mesh networks.

2) DISTRIBUTED CLOUD STORAGE UTILIZING
NETWORK CODING
When a storage node in the distributed cloud storage network
that employing (n, k) RS code (such as Total Recall [19])
fails, the replacement node connects to k nodes and down-
loads the data of the same amount as the whole file first to
decode the original file. Then the replacement node encodes
the original file using the same (n, k) code to recover the
encoded part of the file stored in the failed node. This
approach is a waste of bandwidth because the whole file has
to be downloaded to recover a fraction of it.

To overcome this drawback, Dimakis et al. [25] introduced
the conception of (n, k, d, α, β,B) regenerating code based
on the network coding. In the context of regenerating code,
the contents stored in a failed node can be regenerated by
the replacement node through downloading β help symbols
from each of d helper nodes. This regeneration is identical
to the encoding process of the intermediate nodes in net-
work coding. The bandwidth consumption for the failed node
regeneration could be far less than the whole file. Thus the
energy consumption in data regeneration could be greatly
reduced.

In [25], a tradeoff between the regeneration bandwidth
γ = dβ and the storage requirement α was derived based on
network coding theory and two extreme points were found:
minimum storage regeneration (MSR) point in which the
storage parameter α is minimized:

(αMSR, γMSR) =
(
B
k
,

Bd
k(d − k + 1)

)
, (2)

and minimum bandwidth regeneration (MBR) point in which
the bandwidth γ is minimized:

(αMBR, γMBR) =
(

2Bd
2kd − k2 + k

,
2Bd

2kd − k2 + k

)
. (3)
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FIGURE 3. network coding based distributed cloud storage.

Fig. 3 is an illustrative example of regenerating code with
parameters n = 4, k = 2, d = 3, α = 2, β = 1,B = 4. 4
symbols u1, u2, u3, u4 are stored in 4 storage nodes, and can
be retrieved from any 2 of the storage nodes. A failed node
can be regenerated by downloading 1 symbol each from the
3 remaining nodes. Here we suppose node 3 fails. For the
storage systems simply employing RS code, 4 symbols have
to be downloaded first to decode the original symbols. Then
we have to encode the 4 decoded symbols again to regenerate
the symbols in the failed node 3. So the bandwidth needed
for repairing the failed node 3 is 4. For the regenerating code
solution in Fig. 3, by linearly combing the 3 downloaded
symbols u1 + 3u2 + u3 + 3u4, 2u1 + u2 + 2u3 + u4 and
u1+4u2+u3+4u4 into 2 symbols 3u1+4u2+3u3+4u4 and
2u1 + 7u2 + 2u3 + 7u4, we can regenerate a new node 3 that
has the same function as the failed node 3. In the repairing
process, only 3 symbols need to be downloaded. Thus the
repair bandwidth is saved by 25%. In the later section, we
will introduce a storage allocation problem for regenerating
code in the distributed cloud storage and propose an optimal
storage allocation scheme that can achieve the highest possi-
ble reliability.

III. ADAPTIVE NETWORK CODING IN THE
IoT CORE NETWORK
In this section, we will show our adaptive network cod-
ing (ANC) scheme in the IoT core network. The size of
the data to be transmitted in the IoT core network may be
larger than the size limit of a single packet, such as new
firmwares to update the smart devices on-air. So the data
needs to be divided into data fragments first then transmitted
in multiple packets with one data fragment per packet. A node
has to correctly receive enough linearly independent packets
to reassemble the original data.

A. LIMITATIONS OF EXISTING WORKS
Since the communication between smart devices are through
wireless channel and there may be various fadings and inter-
ferences in the channel, some of the nodes may experience
packets loss in the communication. When network coding is
not utilized, retransmission is a common method to mitigate

the packets loss. In some cases, certain packets may get lost
most of the time so these packets have to be retransmitted
many times until they are correctly received. Thus the overall
transmission efficiency will be low. Here the transmission
efficiency is defined as the ratio between the minimum num-
ber of the packets needed to reassemble the original data and
the number of total packets transmitted from the source node
and the intermediate nodes. When network coding is utilized,
a node can retrieve the original data as long as the node can
correctly receive enough number of packets. The entire trans-
mission of the data will not be affected by lacking of certain
particular packets. So the overall transmission efficiency will
be higher.

However, there are still limitations for simply applying the
network coding in the IoT core network, where the number of
encoded packets to be generated and sent in the intermediate
nodes is predetermined [18]. If too few packets are gener-
ated, the sink node may not even be able to collect enough
packets to decode the original data. If too many packets are
generated, the transmission efficiency will be low. Moreover,
the fact that the quality of wireless channel is changing over
time makes the situation even worse. As an example, when
the channel quality becomes better and the packet loss rate
goes lower, some of the encoded packets will be useless and
the transmission efficiency could be higher. The encoding
strategy should be able to dynamically adjusted according to
the transmission conditions.

B. ANC SCHEME FOR THE IoT CORE NETWORK
To overcome the limitations mentioned above, we propose an
adaptive network coding (ANC) scheme to further improve
the transmission efficiency of the IoT core network with
SDWN, as illustrated in Fig. 4. In this example, end users
could communicate with the IoT core network with SDWN
through Internet for monitoring/control purposes. The data
transmission inside the IoT core network could benefit from
our ANC scheme. In the figure, the IoT core network formed
by the smart devices could be the smart appliance network
at home, the surveillance camera network on streets or the
emission detecting network in factories, etc. Here we only
include the data plane and control plane of the SWDN to show
the main idea of the ANC scheme.

For the data plane, the source node will send out linear
combinations of the original packets. Each intermediate node
will perform random linear network coding. The incoming
packets will be linearly combined using random coefficients
then sent out to succeeding nodes. The code rate r of the
network coding is defined as the ratio of the number of
encoded packets to the number of incoming packets. And
the code rates of the network coding will be automatically
adjusted by the SWDN controller mentioned below. The sink
nodes will decode the original packets after receiving enough
number of linearly independent packets.

Meanwhile, for the control plane, the smart devices will
report packets receiving statistics to the SDWN controller
periodically through the control path. Based on the informa-
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FIGURE 4. ANC Scheme for the IoT core network.

tion reported, the SDWN controller will dynamically adjust
the network coding strategies to eliminate unnecessary trans-
missions. If the packet loss becomes higher around some
node, more encoded packets will be generated in the cor-
responding intermediate nodes. If the packet loss becomes
lower, the number of encoded packets will be decreased.
Since the SDWN controller has the global information of the
network, this centralized control will be more effective.

1) SOURCE NODE ALGORITHM OF THE ANC SCHEME
In the source node, the data to be transmitted will be frag-
mented into data packets with equal length. Every n data
packets will form a coding group, in which random linear
network coding will be performed. For the purpose of clarity,
in the paper we assume that there is only one coding group.
For each packet hi in the coding group, there will be an
encoding vector 1i = [δi,1, δi,2, . . . , δi,n] (δi,j ∈ GF(2m),
1 ≤ i, j ≤ n) attached in front to indicate which packets
participate in the encoding of hi. GF(2m) denotes the finite
field with 2m elements where m ∈ {8, 16, 32, 64, . . . } is
determined by the symbol size. For an uncoded packet hi,
the elements in the encoding vector will be all-zero except
δi,i = 1. The packet format is illustrated in Figure 5. The
source nodewill performAlgorithm 1 to send out the encoded
packets gi (1 ≤ i ≤ drne) where r is the code rate determined
by the SWDN controller and drne is the ceiling operation to
get the smallest integer that is larger than or equal to rn.

In algorithm 1, the source node generates drne
n-dimensional encoding vectors 1i (first n encoding

FIGURE 5. ANC packet format.

Algorithm 1 ANC Scheme - Source Node
F the network coding code rate r is determined/updated

by the SWDN controller
for i = 1→ drne do

if i ≤ n then
repeat generate a random encoding vector 1i =

[δi,1, δi,2, . . . , δi,n]
until 1i is linearly independent from all the 1j,

1 ≤ j < i (except for i = 1)
else

generate a random encoding vector1i = [δi,1, δi,2,
. . . , δi,n]

end if
F multiply each symbol of packet data hj by δi,j
gi ⇐

∑n
j=1 δi,jhj

send out [1i||gi], where‘‘||’’ is the concatenation
operation

end for
report the number of sent out packets to the SWDN
controller

vectors are linearly independent) and uses the vector elements
δi,1, δi,2, . . . , δi,n as coefficients to generate and send out
encoded packets from the uncoded packets h1, . . . ,hn.

2) INTERMEDIATE NODE ALGORITHM OF THE ANC SCHEME
For each coding group, the intermediate node will open a
receiving buffer to store the incoming fresh packets from the
nodes designated by the SDWN controller for encoding. The
intermediate node will also record all the encoding vectors
received in the incoming packets. A packet is called a fresh
packet if its encoding vector is linearly independent from all
of the previously received packets’. In order to get a trade-
off between the packet diversity and communication delay,
the intermediate node will encode the incoming fresh packets
received during a preset interval τ which is measured by a
timer then clear the receiving buffer and wait for the next
incoming fresh packet to restart the timer and the buffer-
ing. At the end of each time interval, the encoding of the
fresh packets in the receiving buffer is performed. For better
illustration, we can split each of the nτ fresh packets in the
receiving buffer into the encoding vector 1i and data gi
(1 ≤ i ≤ nτ ). nτ is the number of fresh packets in the
receiving buffer. The intermediate node will send out drnτ e
encoded packets using Algorithm 2, where r is the code rate
determined by the SWDN controller. At the same time, the
intermediate node will report the receiving and the sending
of the packets to the SWDN controller.
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Algorithm 2 ANC Scheme - Intermediate Node
F the network coding code rate r is determined/updated

by the SWDN controller
for i = 1→ drnτ e do

if i ≤ nτ then
repeat generate a random vector Ri = [ri,1, ri,2,

. . . , ri,nτ ]
until Ri is linearly independent from all the Rj,

1 ≤ j < i (except for i = 1)
else

generate a random vectorRi = [ri,1, ri,2, . . . , ri,nτ ]
end if
F multiply each symbol of 1j by ri,j
1′i ⇐

∑nτ
j=1 ri,j1j

F multiply each symbol of gj by ri,j
g′i ⇐

∑nτ
j=1 ri,jgj

send out
[
1′i||g

′
i

]
, where‘‘||’’ is the concatenation oper-

ation
end for
report the number of received packets from each of the
other nodes/the number of sent out packets to the SWDN
controller

In algorithm 2, the intermediate node generates drnτ e
nτ -dimensional vectors Ri (first nτ vectors are linearly inde-
pendent) and uses the vector elements ri,1, ri,2, . . . , ri,nτ as
coefficients to generate and send out recoded packets from the
received packets g1, . . . , gnτ . The corresponding encoding
vectors are processed the same way.

3) SINK NODE ALGORITHM OF THE ANC SCHEME
Once the sink node receives n linearly independent packets,
it can solve the following equation to decode the original
packets data h1,h2, . . . ,hn:

11
12
...

1n



h1
h2
...

hn

 =

g1
g2
...

gn

. (4)

Then h1,h2, . . . ,hn can be concatenated to restore the orig-
inal data. The sink node will also periodically report the
packets receiving status to the SWDN controller.

4) SDWN CONTROLLER ALGORITHM OF THE ANC SCHEME
Since the SDWN controller receives the packets send-
ing/receiving status from each of the nodes in the IoT core
network periodically , it can adjust the code rate of the net-
work coding for each of the nodes according to Algorithm 3.
Suppose ηi is the number of packets sent by node i, Ni is the
set of succeeding nodes receiving the packets from node i,
and η(i)j is the number of packets received by node j ∈ Ni.
The code rate ri of node i can be determined by

ri =
ηi

maxj∈Ni (η
(i)
j )
, (5)

Algorithm 3 ANC Scheme - SDWN Controller
for each of the source node or intermediate node i do

calculate ri according to the packet sending/receiving
status of node i and Ni
send ri to update the code rate of node i through the
control path

end for

where max() is the operation to select the maximum element.
Besides the code rate, since the SDWN controller has all
of the topology information, for each node i, it can specify
the succeeding relay nodes to receive the packets sent from
node i.

FIGURE 6. Performance of the ANC scheme.

C. PERFORMANCE EVALUATION OF THE ANC SCHEME
In Fig. 6 are the simulation results of the ANC scheme. The
simulation is carried out in the NS-2 platform [26]. In the
simulation, the leftmost node in Fig. 4 tries to send data
to the rightmost two nodes. The qualities of the channels
between the intermediate nodes are chosen randomly.We cal-
culate the transmission efficiencies under different num-
bers of total original data packets (can be viewed as one
coding group for network coding). For performance com-
parison, we also simulate the cases for no network cod-
ing (pure retransmission) and network coding with prede-
termined code rates as in [18]. To make the comparison
more clear, we normalize the transmission efficiencies for
the cases with fixed network coding and the ANC scheme
by the transmission efficiency for the case without network
coding. From the simulation results, we can see that the
transmission efficiency for the case with network coding
becomes higher than the case without network coding with
the increasing of the number of original data packets. And the
ANC performs best among all the cases. It can also be seen
that the performance gain of the ANC scheme will increase
when the number of total original data packets becomes
larger.
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IV. OPTIMAL STORAGE ALLOCATION IN THE
DISTRIBUTED CLOUD STORAGE UTILIZING
NETWORK CODING
In this section we first introduce a storage allocation prob-
lem for the distributed cloud storage utilizing network
coding. Then we propose the optimal storage allocation
(OSA) scheme. We also show the performance of the optimal
storage allocation scheme.

A. STORAGE ALLOCATION PROBLEM
In the storage allocation problem S, the data is encoded
with an (n, k, d, α, β,B) regenerating code, so there will be
n encoded parts. There are N (N < n) data centers in total
to store these parts, each with a failure probability of p. If a
data center fails, all the data stored in the data center will be
lost. If the total number of encoded parts in the remaining
data centers is less than k , the original data cannot be recov-
ered any more. Since there are more encoded parts than the
data centers, there will be different allocation strategies of
the encoded parts with different storage reliabilities. For the
problem S, we try to find out the allocation strategy with the
lowest failure probability among all the possible allocation
strategies.
Definition 1: A set S with N elements n1, n2, . . . , nN (ni >

0, 1 ≤ i ≤ N) is a valid allocation if
∑N

i=1 ni = n.
Definition 2: For an allocation strategy S, the failure

probability P is defined as the probability that the original
data cannot be recovered given the failure probabilities of
individual data centers.

The problem S can be formulated as:

find the allocation S among all the valid allocations,

such that
∑
∀Sj⊆S

P

∑
ni∈Sj

ni ≥ n− k

 is minimal. (6)

As an example, for the regenerating code in Fig. 3, n = 4
encoded parts are stored in N = 2 data centers. Suppose
the failure probability of each data center is p = 0.01. Two
storage allocation strategies are shown in the figure. For the
first allocation strategy S = {3, 1} (blue data centers with
dash lines), 3 encoded parts are stored in data center 1 and 1
encode part is stored in data center 2. It is easy to calculate
the failure probability of this allocation strategy is 0.01. For
the second allocation strategy S = {2, 2} (orange data centers
with solid lines), 2 encoded parts are stored in each of the two
data centers. The failure probability of this allocation strategy
is 0.0001, which is much lower than that of the first strategy.

B. OPTIMAL STORAGE ALLOCATION SCHEME
In this section, we will show our optimal storage allocation
(OSA) scheme to solve the storage allocation problem. The
OSA scheme includes two stages: the first stage is to find
out all the possible valid allocations S and the second stage
is to calculate the failure probability P for each S. Then we
can output the allocation with the lowest failure probability
through comparison.

1) STAGE I: FIND OUT ALL THE POSSIBLE VALID
ALLOCATIONS S
The naive approach to find out all the possible valid S is to
search all the possible combinations of n1, n2, . . . , nN such
that

∑N
i=1 ni = n. However, this approach will take exponen-

tial time thus is not practical. In our OSA scheme, we first
change this problem into an integer partition problem [27]:
to allocate n encoded parts into N storage centers is the same
as to partition an integer n into N parts. Take n = 7,N = 3
as an example, there are 4 ways to partition 7 into 3 parts:
{1, 1, 5}, {1, 2, 4}, {1, 3, 3} and {2, 2, 3}, which also consist
all the possible valid allocations. Then we can solve the
integer partition problem using dynamic programming based
on the following recurrence equation:

P(n,N ) = P(n− 1,N − 1)+ P(n− N ,N ), (7)

where P(i, j) is the total number of ways of partitioning inte-
ger i into j parts. The first part of equation (7) is the subprob-
lem where at least one 1 exists in the partition and the second
part of the equation is the subproblem where no 1 exists
in the partition. Thus the solution to the original problem
perfectly incorporates these two subproblems, which make
it feasible to solve using dynamic programming. We propose
Algorithm 4 to find out all the possible valid allocations S.
In the algorithm, we use S(i, j, k) to represent the k th valid
allocation out of the P(i, j) allocations for i encoded parts
and j storage centers. ∪ is the union operation between two
sets. The addition between a set S and a number x is defined
as the additions between every element of the set and the
number:

S + x := {ni + x|ni ∈ S for 1 ≤ i ≤ N }. (8)

After the execution of the algorithm, we can get all the
possible valid allocations S(n,N , k) (1 ≤ k ≤ P(n,N )).
It is easy to see that the algorithm runs in polynomial
time.
Theorem 1: Algorithm 4 can output all the valid alloca-

tions S(n,N , l) for 1 ≤ l ≤ P(n,N ), where S(n,N , l) rep-
resents the l th valid allocation out of the P(n,N ) allocations
for n encoded parts and N storage centers.

Proof: Algorithm 4 calculates S(i, j, l) (1 ≤ l ≤ P(i, j))
for 1 ≤ j ≤ N from i = 1 to i = n through a bottom-up
manner and we can get S(n,N , l) (1 ≤ l ≤ P(n,N )) for
i = n, j = N . For each i, line 3 to line 4 first calculate
P(i, 1) = 1 and S(i, 1, 1) = i, corresponding to the case of
allocating i encoded data parts into one data center. Then for
each j = 2, . . . ,N , there will be two cases:

• Line 8 to line 9 correspond to the case with i − j < j,
where at least one storage node will be allocated only
1 encoded data part. The second part of equation (7)
does not exist. So the number of ways of allocating i
encoded data parts into j storage nodes will be equal to
that of allocating i − 1 encoded data parts into j − 1
storage nodes: P(i, j) = P(i − 1, j − 1). And each of
the valid allocations S(i, j, l) will be the union of each
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Algorithm 4 OSA Scheme - Stage I
Input: the number of encoded parts n and the number of

storage centers N
Output: all the valid allocations S(n,N , l), (1 ≤ l ≤

P(n,N ))
1: function FindAllAllocations(n,N )
2: for i = 1→ n do
3: P(i, 1)⇐ 1
4: S(i, 1, 1)⇐ i
5: for j = 2→ N do
6: if i ≥ j then
7: if i− j < j then
8: P(i, j)⇐ P(i− 1, j− 1)
9: S(i, j, l)⇐ S(i− 1, j− 1, l)∪ {1}, for

1 ≤ l ≤ P(i, j)
10: else
11: P(i, j)⇐ P(i− 1, j− 1)+ P(i− j, j)
12: S(i, j, l)⇐ S(i− 1, j− 1, l)∪ {1}, for

all 1 ≤ l ≤ P(i− 1, j− 1)
13: S(i, j,P(i − 1, j − 1) + l) ⇐ S(i −

j, j, l)+
1, for all 1 ≤ l ≤ P(i− j, j)

14: end if
15: end if
16: end for
17: end for
18: end function

already calculated allocations S(i− 1, j− 1, l) with the
set {1}.

• Line 11 to line 13 correspond to the case with i −
j ≥ j, where P(i, j) is the summation of two previ-
ously calculated parts as shown in equation (7). The
computation of the first part and the corresponding
valid allocations is the same as in line 8 to line 9.
The second part is the number of ways of allocating
i − j encoded data parts into j storage nodes P(i − j, j),
where each of the storage node will be allocated at least
2 encoded data parts. Thus each of the valid allocations
S(i, j,P(i − 1, j − 1) + l) will be each of the already
calculated allocations S(i − j, j, l) plus 1 as defined in
equation (8).

�
Fig. 7 illustrates the algorithm for n = 7 encoded data

parts and N = 3 data centers. Each (i, j) pair represent the
calculation of P(i, j) and S(i, j, l). The pairs without shades
are calculated using line 8 to line 9 (the first case) while the
pairs in shades are calculated using line 11 to line 13 (the
second case). The solid lines correspond to the first part of
equation (7) and the dashed lines correspond to the second
part. From the figure we can clearly see that (7, 3) can be effi-
ciently calculated using the results of (6, 2) and (4, 3), which
have already been calculated the same way as illustrated in
Fig. 7.

FIGURE 7. The calculation of Algorithm 4 for n = 7, N = 3.

2) STAGE II: CALCULATE THE FAILURE PROBABILITY P FOR
EACH VALID ALLOCATION S
After we get all the possible valid allocations S, we can
calculate the failure probability PS for each of them. The goal
function of equation (6) can be further written as:

PS =
∑
∀Sj⊆S

P

∑
ni∈Sj

ni > n− k


=

∑
∀Sj⊆S, s.t.

∑
ni∈Sj

ni>n−k

p|Sj|(1− p)N−|Sj|, (9)

where p is the failure probability of each storage center,∣∣Sj∣∣ is the number of elements in subset Sj. If we try to
directly calculate PS for every subset Sj ∈ S, the order of
the number of subsets to be calculated will be approximate

to
∑N
|Sj|=1

(
N∣∣Sj∣∣
)
≈ 2N , where

(
N∣∣Sj∣∣
)
denotes the number

of
∣∣Sj∣∣-combinations of the set S, thus making it infeasible to

calculate in practice.
In the second stage of the OSA scheme (Algorithm 5),

we propose to change the exhaust search problem into a
number counting problem. More specifically, for each i (1 ≤
i ≤ N ), we count the total number of subsets S(i)j such

that S(i)j denotes the subsets with exactly i elements and the

summation of every element in S(i)j is larger than n− k:

PS =
N∑
i=1

∣∣∣∣∣∣∣
S(i)j |

∑
ni∈S

(i)
j

ni > n− k


∣∣∣∣∣∣∣ pi(1− p)N−i. (10)

In Algorithm 5, we first calculate the summations of every
subset, which can be viewed as a variant of the subset-sum
problem [28]. For each i (1 ≤ i ≤ N ), we merge the same-
value summation results of the subsets S(i)j and count the total

number of S(i)j which have that summation value. Then for
the subsets that have summation results larger than n− k , we
can calculate the corresponding failure probability according
to equation (10). In the algorithm, T ,L,R represent three
auxiliary lists for subset summation. For a auxiliary list X ,
we use X .length to denote the number of elements of the
list, X .index to denote the current index number of the list,
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Algorithm 5 OSA Scheme - Stage II
Input: a valid allocation S(n,N , l), (1 ≤ l ≤ P(n,N ))
Output: the failure probability PS of the allocation
1: function CalculateProbability(S(n,N , l))
2: {n1, n2, . . . , nN } ⇐ sort the allocation S(n,N , l) in

non-descending order
3: L ⇐ {0}
4: F calculate summations of every subset
5: for i = 1→ N do
6: T ⇐ φ

7: R⇐ L + ni, CR(1, 1)⇐ 1
8: CR(l, j)⇐ CL(l − 1, j), for all nonzero CL(l, j),

2 ≤ j ≤ L.length, 2 ≤ l ≤ i, i ≥ 2
9: L.index,R.index⇐ 1
10: while L.index ≤ L.length do
11: if VL(L.index) == VR(R.index) then
12: T ⇐ T ∪ VR(R.index)
13: for all 1 ≤ l ≤ i, CT (l,T .length)⇐

CL(l,L.index)+ CR(l,R.index)
14: increase L.index,R.index by 1
15: else
16: if VL(L.index) < VR(R.index) then
17: T ⇐ T ∪ VL(L.index)
18: CT (l,T .length) ⇐ CL(l,L.index),

for
all 1 ≤ l ≤ i

19: increase L.index by 1
20: else
21: T ⇐ T ∪ VR(R.index)
22: CT (l,T .length) ⇐ CR(l,R.index),

for
all 1 ≤ l ≤ i

23: increase R.index by 1
24: end if
25: end if
26: end while
27: oldLn⇐ T .length
28: T ⇐ T ∪ {VR(R.index),VR(R.index+ 1), . . . ,

VR(R.length)}
29: {CT (l, oldLn+ 1), . . . ,CT (l,T .length)} ⇐

{CR(l,R.index), . . . ,CR(l,R.length)}, 1 ≤ l ≤ i
30: L ⇐ T
31: end for
32: PS ⇐ 0
33: F count the number of subsets with the summation

results larger than n− k
34: for i = 1→ N do
35: sum⇐ 0
36: for j = 1→ T .length do
37: if VT (j) > n− k then
38: sum⇐ sum+ CT (i, j)
39: end if
40: end for
41: PS ⇐ PS + sum× pi(1− p)N−i

42: end for
43: end function

VX (j) to denote the value of jth element in X , and CX (i, j) to
denote the total number of subsets that have the same element
number i and the same summation value VX (j). Although the
total number of subsets is 2N , Algorithm 5 is a polynomial
time algorithm:
Theorem 2: The complexity of Algorithm 5 is O(nN ).
Proof: Since the summation of a valid allocation S itself

is the largest in all the summations of the subsets of S, the
element number T .length in T cannot exceed n. Through
the merge of subsets with the same summation values, each
of the N for-loops has the complexity O(n). So the total
complexity is O(nN ). �
Theorem 3: Algorithm 5 can output the failure probability

PS for the input allocation.
Proof: In line 3 we initialize the auxiliary list L with

an empty element ′0′, representing the summation result of
0 element of the input allocation S. Line 4 to line 31 calculate
the summations of every subset of the input allocation. At the
beginning of each round i of the for loop i = 1, . . . , n, the
auxiliary list L is the list containing the summation results
of every subset of the first l (0 ≤ l < i) elements of the
input allocation S. Line 7 to line 8 calculate the auxiliary list
R by adding the new element ni to L: R = L + ni. Since
the first element in L is the empty ′0′, CR(1, 1) will be 1,
indicating that the total number of subsets that have 1 element
and summation value ni is 1. Then the rest value of CR(l, j)
will be CL(l − 1, j) for 2 ≤ j ≤ L.length because of the
addition of ni to L. The elements of allocation S are sorted
in non-descending order, thus the elements in both L and R
are also in non-descending order. From line 10 to line 29,
we merge the elements of the auxiliary lists L and R into a
temporary auxiliary list T one by one, following the rules
below:

• If the value of the current element VL(L.index) in
L is equal to the current element VR(R.index) in
R, add the value into T . The corresponding counter
CT (l,T .length) is equal to the sum of the two counters:
CT (l,T .length) = CL(l,L.index)+CR(l,R.index) for
1 ≤ l ≤ i.

• If the value of the current element VL(L.index) in L is
smaller than the current element in R, add the element
VL(L.index) into T . Set the counter CT (l,T .length) to
CL(l,L.index) for 1 ≤ l ≤ i.

• If the value of the current element VR(R.index) in R is
smaller than the current element in L, add the element
VR(R.index) into T . Set the counter CT (l,T .length) to
CR(l,R.index) for 1 ≤ l ≤ i.

• Since the last element in L is smaller than some elements
in R, after merging L into T , we can directly merge
the remaining elements of R into T through line 28 to
line 29.

At the end of each for loop, the merged list T is assigned
back to L for the next round of calculation. After N th

round, list T has the summation results of all the subsets
in S.
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FIGURE 8. The calculation of Algorithm 5 for S = {1, 2, 2}.

Then the failure probability of S can be easily calculated
from line 34 to line 42 by counting the number of subsets
with the summation results larger than n− k . �

Fig. 8 illustrates the summations for all the subsets of
S = {1, 2, 2}. For i = 1, L = {0}, CL(1, 1) = 0, R =
{1}, CR(1, 1) = 1. The merged list T = {0, 1}, CT =
{0, 1}. For the second round, L,CL are assigned the values
of T ,CT . According to line 7 and line 8 of Algorithm 5,
R = L + n2 = {2, 3} and CR(2, 2) = CL(1, 2) = 1. At the
end of the third round, we can get the summation results
T = {1, 2, 3, 4, 5} and the countermatrixCT , which correctly
record the number of subsets that have the same summation
value. As an example, CT (2, 3) = 2, indicating that there are
two 2-element subsets ({n1 = 1, n2 = 2}, {n1 = 1, n3 = 2})
that have the same summation value VT (3) = 3.

3) OSA SCHEME
Based on the algorithms of the two stages, we can achieve
the optimal storage allocation through Algorithm 6. And it is
straightforward to see:
Theorem 4: The OSA scheme is a polynomial time

algorithm.

Algorithm 6 OSA Scheme
Input: the number of encoded parts n and the number of
storage centers N

Output: the allocation with the lowest failure probability
function OSA(n,N )

S(n,N , l)⇐ FindAllAllocations(n,N ) (1 ≤ l ≤
P(n,N ))
for l = 1→ P(n,N ) do

PS ⇐ CalculateProbability(S(n,N , l))
end for
output the allocation with the lowest PS

end function

C. SIMULATION RESULTS FOR THE OSA SCHEME
In this section, we will show the performance of the OSA
scheme for the given regenerating code with parameters
(n, k, d, α, β,B) and number of data centers N .

FIGURE 9. Performance of the optimal storage allocation for different k.

FIGURE 10. Performance of the optimal storage allocation for different
number of storage centers.

In Fig. 9 are the simulation results for n = 45, k =
{16, 21, 26, 31}, N = 9 and p = 0.1. For performance
comparison, we also plot the results for the even allocation
as defined in equation (11), where bn/Nc is the floor oper-
ation to get the largest integer that is less or equal to n/N ,
mod(n,N ) is the modulo operation to find the remainder of
the division of n by N .

ni =

{
bn/Nc + 1, 1 ≤ i ≤ mod(n,N )
bn/Nc, mod(n,N ) < i < N

(11)

The even allocation is a natural allocation scheme to store
equal number of data blocks into each storage center. From
the figure we can see that the failure probability of the OSA
scheme is about half order of magnitude lower than the even
allocation. Both of the probabilities will become higher when
k increases since there is less redundancy in the distributed
cloud storage to recover the failed storage centers.

In Fig. 10 are the simulation results for n = 45, k = 21,
p = 0.1. In this simulation, we change the number of storage
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centers N to study its impact to the failure probability. From
the figure we can see that the failure probability will become
lower when the number of storage centers increases. And the
performance gap of the even allocation and the OSA scheme
will diminish with the increasing of the number of storage
centers.

V. CONCLUSION
Applying the network coding in Internet of things could save
energy and contribute to the ‘green IoT networking’. Moti-
vated by this advantage, in this paper we optimize network
coding based communication and reliable storage in Internet
of things. We propose an adaptive network coding (ANC)
scheme in the IoT core network with software defined wire-
less network (SDWN). Simulation results have demonstrated
that the ANC scheme can achieve higher transmission effi-
ciency than existing schemes. Then we introduce the optimal
storage allocation problem for the distributed cloud storage
that utilizes network coding, which stores the data generated
by the IoT core network. we propose an optimal storage
allocation (OSA) scheme to solve the problem in polynomial
time. We also conduct simulations to show that the OSA
scheme can greatly improve the storage reliability.
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