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ABSTRACT This paper presents a new area-based prior value technique for the improvement of automatic
visual inspection in hard disk drive manufacturing. Micro-contaminations are detected on the air-bearing
surface of the head gimbal assembly. The new area-based prior value technique uses the locations of
contaminations that appear in the inspection area. The experimental results validate the efficiency of the
new detection method on low-resolution images, as the proposed method yielded 93.1% accuracy.

INDEX TERMS Micro contamination, prior value, likelihood, hard disk drive inspection.

I. INTRODUCTION
The hard disk drive (HDD) is one of the electronic compo-
nents that allow digital data storage in computers. One of
the largest manufacturing bases of HDDs can be found in
Thailand, whose HDD sector has a high volume of export [1].
HDD companies have high production capacities, and thus
it is essential that manufacturers maintain a stable product
quality while achieving a high level of production. Compa-
nies therefore need to develop inspection systems to detect
defects during hard disk drive production.

Automatic machine vision systems are used in the HDD
manufacturing industry to check the quality of products.
Studies of the inspection systems for HDD products, such
as the one proposed by Gulphanich et al. [2] focused on
the accuracy of measuring the size of the hard drive. Their
3D inspection system uses a laser strip light to measure the
width and length and tightness of the screws in the HDD
assembly [2]. An imaging system based on a spatial light
modulator for auditing HDD slider bars presented in [3] uses
the pixel-based phase mask to adjust the focal length of the
CCD camera to read the serial numbers of the slider bars.
Contour features and non-linear filters have been applied to
detect corrosion of the FeCo pole tips of the read/write head
[4]. A Bayesian network–based method for the detection of
soldering defects on the read/write head is presented in [5].
The algorithm uses image-processing techniques to extract
key features of the soldered object using object parame-
ters including size, length, shape, and aspect ratio. Next,
the Bayesian network is used to classify each soldered object

into groups of defects. In a blind test involving 660 prod-
ucts, the Bayesian network–based approach achieved a 91.5%
accuracy. The vertical edge and circular Hough transform
were used to detect the solder ball or pad burnt defect of the
read/write head, a method that yielded 99.3% accuracy when
tested with 18,123 HGA images [6], [7].

On HDDs, data are written to and read from disk platters
using a Head Gimbal Assembly (HGA). The HGA consists
of two parts: 1) the suspension, composed of the flexure,
load beam, and base plate; 2) the slider, the main part of
the HGA, which consists of a small circuit and air-bearing
surface (ABS). Fig. 1 shows the suspension mechanism and
slider compared in size to that of a general paper clip. This
component induces an electromagnetic field in the HGA,
while reading and writing data to a disc platter. In HGA

FIGURE 1. HGA components.
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production, there are steps in the slider/suspension assembly
that are susceptible to errors causing contaminations. ABS
contaminations may in turn cause read/write errors. There-
fore, the detection of contaminations on the ABS is one of
the most important problems to solve.

The main challenge posed by HGA inspection is that the
HGA’s components are very small, as is the contaminations
that occur in them. In our previous work on ABS contami-
nation detection, including ABS inspection [8], the presence
of contamination on the ABS were detected using texture
and image segmentation with block matrices [9]. However,
the texture and intensity-based methods involve processing
with high-resolution images. Other previous work experi-
ments with low-quality images and contamination-detection
methods based on circle detection and intensity values [10]
and the improvement of the contamination detection using
likelihood and anglemeasurement, including prior value [11].

This paper therefore addresses the detection of ABS con-
tamination. We present a new method that improves the per-
formance of automatic visual ABS contamination detection,
as described in [10] and [11], through achievable with low-
resolution images. The performance of the detection method
is improved by reducing the false detection rate. We therefore
propose a new concept for calculating the prior value based
on the location of the contaminations.

II. METHOD
To detect the contamination on the ABS, HGA images are
captured from a top-view positioning camera with a con-
stant lighting environment. The top-view camera produces a
2400×2000 pixel color image of the HGA. Image-processing
techniques are then used to identify the contamination on the
ABS. First, we use cross correlation [4] and the ABS template
image to extract the region of the ABS from the original HGA
image. Next, we obtain the 490× 414 pixel ABS sub-image,
which is the most correlated region between the HGA test
image f [m, n] and the ABS template image {w[m, n]}. The
cross-correlation function is

rfw[m, n] =
44∑
s=0

420∑
t=0

f [s, t]w[m+ s, n+ t] (1)

where m and n are the coordinates m ∈ {0, 1, . . . , 2400},
n ∈ {0, 1, . . . , 2000}. By finding the maximum value of
the cross-correlation function, the best matching image is
obtained. That is, rfw[m0, n0] = max m, n rfw[m, n], where
the coordinate [m0, n0] gives the maximum value. This coor-
dinate is used to generate the output ABS image, {f [m0 +

m, n0 + n]}. The quality of the ABS image is improved
using the image super-resolution technique [12], [13]. The
ABS test image is aligned with the ABS template using a
registration technique based on intensity values [11]. The size
of the smallest contamination is around 1 µm. Because the
contamination particles are very small and have a circular
shape, we up-sample the ABS test image 5 times the original
size and apply amedian filter to anti-alias the ABS test image.

FIGURE 2. Examples of detected circles traced on the ABS skeleton
image, (a) skeleton of the ABS template image, (b) circle with 0, 1 and
2 cross points, (c) the angle of a contamination circle, and (d) the angle of
a non-contamination circle.

Next, the circular Hough transform is applied to detect the
potential area of contamination. The circle parameters are
converted back to the original dimensions of the ABS test
image [10], [11]. The detected circles are traced on the skele-
ton of the ABS template image and each circle is classified
into one of three cases based on the number of intersection
pixels of the circumference and the ABS skeleton pixels. The
three cases are case 1: the number of cross-points= 0, case 2:
the number of cross-points = 1, and case 3: the number of
cross-points ≥ 2. For case 2: the number of cross-point ≥ 2,
the angle between the two cross-points relative to the circle
center is calculated. Examples of detected circles traced on
the ABS skeleton image, the angle of a contamination circle,
and the angle of non-contamination circle are shown in Fig.
2.

In this section we present the new area-based value tech-
nique. The flow chart of the proposedmethod shown in Fig. 3.
The cross-covariance value, anglemeasurement, ratio of prior
value, and the image super-resolution technique are also
described in this section.

A. THE NEW AREA-BASED PRIOR VALUE
We present the area-based prior value technique, which is
a prior probability of the basic Bayesian theorem:

Posterior ∝ Likelihood × Prior (2)

Bayesian classification is based on likelihoods and prior prob-
abilities that are calculated from a training set. The method in
this paper classifies the detected circles into two classes: con-
taminations and non-contaminations using Bayesian classifi-
cation. To calculate the prior value, we observed the detected
circles from the training set, which were constructed from
1,050 non-contamination ABS images and 313 contaminated
ABS images. The idea of the area-based prior value comes
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FIGURE 3. Flowchart of the proposed method.

from the observation that non-contaminations frequently
appeared on some particular parts of the skeleton edge of the
ABS. The detected circles that appeared on the corners of
the ABS skeleton were usually non-contaminations, while the
contamination circles often appeared on the skeleton edge.
The detected circles that appeared on non-skeleton pixels
were regarded as contamination circles, and could be clas-
sified using the intensity-based technique. Hence, this step
focus on the detected circles that appears on the skeleton edge
only.

1) 12 SUB-REGIONS PRIOR VALUE
In our previous work [11], we divided the ABS skeleton tem-
plate into 12 equal square sub-regions. The number of circles
that crossed the skeleton were counted, and the prior proba-
bilities were then calculated: P(w1) is the prior probability of
class w1 contamination, and P(w2) is the prior probability of
class w2 non-contamination. Examples of detected circles in
the square sub-regions are shown in Fig. 4.

FIGURE 4. Examples of detected circles in sub-regions: (a) contamination
circles, (b) non-contamination circles.

The 12 sub-regions’ prior value produced many erroneous
classifications, and therefore we designed the new area-based
prior value to improve the performance of the classification.

2) THE NEW AREA-BASED PRIOR VALUE
To calculate the new area-based prior value, we generate
a square from the centers and radii of the detected circles,
the area of each square being radii × radii. We then draw all
generated squares on the temporary blank image, which is the
same size as the ABS template image. We use image labeling
to label the connected pixels of the square on the temp image.
In our study, we had 130 labels for the connected pixels.
Next, we trace the detected circles in each label. The prior
probabilities P(w1) of class w1 contamination, and P(w2) of
classw2 non-contamination are computed from the number of
detected circles appearing in each labeled region. An example
of a labeled region in the temp image is shown in Fig. 5. The
colors of each group of pixels refer to the labeled region.

FIGURE 5. Example of labeled region.

B. CROSS-COVARIANCE FEATURE
Cross-covariance [14] is a statistic that indicates the similarity
of two intensity images. We compute the cross-covariance
from the ABS grayscale test image and the template ABS
grayscale image.

1) SQUARE SUB-IMAGE
The square parameters are generated from the parame-
ters of each detected circle, the width of the square being
2×(radii+1). The square sub-image is then extracted from the
test ABS image, and the square sub-image is extracted from
the ABS template image using the same parameters. Fig. 6(a)
shows the difference between the contamination square and
the extracted square from the ABS template image, while
Fig. 6(b) shows non-contamination square obtained by the
corner circle and the extracted square from ABS template
image. Both squares look similar and has a low cross-
covariance of 0.01.

2) LIKELIHOOD
We use the cross-covariance feature of each circle from the
training set, the same training set being used to calculate the
area-based prior value. The training set contains 461 contam-
ination squares and 38,929 non-contamination squares. The
cross-covariance feature vector is named x, the likelihood
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FIGURE 6. Examples of detected cross-covariance scores:
(a) contamination cross-covariance scores, (b) non-contamination
cross-covariance scores.

[15], [16] of class w1 contamination is P(x|w1), and the
likelihood of class w2 non-contamination is P(x|w2). The
likelihood function is computed using a separate histogram
[11] for each case: case 1: the number of cross-points = 0,
case 2: the number of cross-points= 1, and case 3: the number
of cross-points ≥ 2. The log-likelihoods are plotted in Fig. 7.
For case 1:The number of cross-points= 0, the likelihoods

P(x|w1) and P(x|w2) cause many erroneous classifications,
and hence we use the threshold of the cross-covariance scores
to classify detected circles into two classes: w1 and w2.
For case 2: The number of cross-points = 1, we apply

the likelihoods to classify the detected circle as a contamina-
tion, or a non-contamination class. If P(w1|x) is greater than
P(w2|x), the detected circle is considered contaminated.

3) THE THRESHOLD OF CROSS-COVARIANCE SCORES
We obtain the threshold from the minimum percentage of
false detections as shown in Fig. 8. The threshold we obtained
was 0.09.

C. ANGLE MEASUREMENT AND RATIO OF PRIOR VALUE
For case 3: the number of cross-points ≥ 2, there are many
non-contamination circles detected.We apply angle measure-
ment as the first filter. The angle is calculated from two
cross-points and the circle center. If there is more than one
angle, we select the largest angle. The circles with angles
< 90 degrees are consider contaminatedwhile the circles with
angles ≥ 90 degree are processed with the Bayesian classifi-
cation using the cross-covariance score, likelihood function,
and prior value. In the Bayesian classification step, we also
include the ratio of prior value. β1 is a factor of the prior
value of class contamination P(w1) and β2 is a factor of the
prior value of class contamination P(w2). The likelihoods of
class contamination and class non-contamination are P(x|w1)
and P(x|w2), respectively. The detected circles are considered

FIGURE 7. Log-likelihoods: (a) case 1: the number of cross-points = 0,
(b) case 2: the number of cross-points = 1, (c) case 3: the number of
cross-points ≥ 2.

contaminated according to the following condition:

P(x|w1)
P(x|w2)

>
β2

β1
×
P(w2)
P(w1)

(3)
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FIGURE 8. Threshold of cross-covariance scores.

where β1 is the factor of the prior value of the contamination
class P(w1) and β2 is the factor of the prior value of the
contamination class P(w2). The likelihoods of the contami-
nation class and the non-contamination class are P(x|w1) and
P(x|w2), respectively. We obtain the value of β1 and β2 from
finding the minimum percentage of false detections when the
value β2

β1
is increased from 1

8 to 1, as shown in Fig. 9. The
ratio f the prior value we obtained is 2

8 .

FIGURE 9. Finding the ratio of the prior value.

III. EXPERIMENT
We designed an experiment to compare the performance of
the contamination-detection method of the previous works
[3], [4] with that of our improved contamination-detection
method, including the new area-based prior value and ratio
of prior value. Table 1 below shows the methods employed in
the experiment.

In this section the experimental results for the test set are
presented to illustrate the effectiveness of our methods. The
test set comprised 3,073 non-contamination HGA images and

TABLE 1. Method and description.

377 contaminated HGA images. The HGA images in the test
set were not included in the training set. The results of the
proposed method were compared with those reported in [3],
where angle measurement and intensity were used to identify
contamination in the ABS images (shown as method A),
and [4], where angle measurement, likelihood approach for
3 cases of cross-point, and prior value were used to detect
contamination in the ABS images (shown as method B).
We also report the results when the proposed method was
divided into the three cross-point cases using the likelihood,
angle measurements, and new prior value without the image
super-resolution algorithm (shown as method C), and when
the proposed method was divided into the three cross-point
cases using the cross-covariance value, likelihood, and angle
measurements(shown as method D).
The proposed method was also divided into the three cross-

point cases using the cross-covariance value, likelihood,
angle measurements, and the ratio of prior value without
image super-resolution (shown as method E). In addition,
the previous method was divided into the three cross-point
cases using the likelihood, angle measurements, and new
area-based prior value with image super-resolution (shown
as method F).

Finally, the proposed method was divided into the three
cross-point cases using the likelihood, angle measurements,
new area-based prior value, and ratio of prior value, with
image super-resolution (shown as method G). Methods A,
B, C , D, E , F , and G were implemented in Matlab and
run on a Windows PC. The results are shown in Table 2.
False detections in non-contamination images are classified
as FN (False Negative), and false detections in contamination
images are classified as FP (False Positive).

To evaluate the performance of the methods, the F1 score
[17] is provided. The F1 score can be interpreted as a
weighted average of the precision and recall, with an F1 score
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TABLE 2. Experimental results.

TABLE 3. Performance evaluations.

reaching its best value at 1 and its worst at 0.

Precision =
TP

TP+ FP

recall =
TP

TP+ FN

F1 = 2×
(
Precision× Recall
Precision+ Recall

)
The performance evaluations using the F1 scores are shown

in Table 3. The proposed method G, using image super-
resolution, cross point, cross-covariance, likelihood, angle
measurements, and ratio of prior of area-based value attained
the best performance of 0.93 for precision, 0.62 for recall,
and 0.75 for F1 score. Method A obtained 0.73 for pre-
cision, 0.16 for recall, and 0.27 for the F1 score. Next,
method B obtained 0.71 for precision, 0.34 for recall, and
0.46 for the F1 score. Method C obtained 0.80 for precision,
0.37 for recall, and 0.50 for the F1 score.Moreover, methodD
obtained 0.72 for precision, 0.26 for recall, and 0.38 for
F1 score. Method E obtained 0.85 for precision, 0.22 for
recall, and 0.36 for the F1 score. Finally, method F obtained
0.88 for precision, 0.0.62 for recall, and 0.72 for the F1 score.

We also provide the results of the testing using the training
set in Table 3, including the precision, recall, and the F1 score.

IV. DISCUSSION
We used the training set to compute likelihoods and area-
based prior values, to calculate a suitable threshold for the
cross-covariance feature, and to find a suitable ratio for the
area-based prior value. As shown in Table 4, Method F

TABLE 4. Results on training set.

based on the prior value obtained from the histogram of the
number of circles located in each of the 12 sub-squares of the
skeleton template image, attained the highest performance.
However, when we tested Method F with the test set, its
performance was reduced because the prior values of each
of the 12 sub-square images were unstable, the calculated
areas were too wide and unspecific. The new area-based prior
value was more specific in locating each of the detected
circles, and more efficient than the area-based prior value
from the 12 sub-square images when tested with the test set.
In HDD inspection, false detections and precision are primary
concerns. Therefore, we conclude that method G provides
improved inspection performance. When adding more meth-
ods the computation time increases. However, the computa-
tion time required by the proposed method does not exceed
the computational resources that will be typically available
on a production site. The inspection cycle time will therefore
not be affected.

V. LIMITATIONS
The method proposed in this paper improves the performance
of ABS contamination detection. The image data available
to the authors contained compression artifacts and had a
lower resolution than what is actually available by the image
acquisition system installed in the production sites. Actual
deployment of the method is therefore likely to produce even
better results.

VI. CONCLUSION
This paper proposed a new area-based prior value tech-
nique to improve the contamination-detection performance
of the ABS of HGAs. The experimental results validated the
effectiveness of the proposed method compared to previous
studies. The proposed method also holds potential for the
detection of contamination on other parts of the HGA or other
small HDDs components.
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