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ABSTRACT Multicarrier phase ranging (MCPR) technique has been widely used in radio navigation,
telemetry, radar, and many other fields. In an MCPR system, unique range estimation can be obtained within
only the so-called unambiguous distance (UD) because of phase ambiguity. As a metric gauging, the mea-
surable distance of an MCPR system, the UD has been well studied under two common configurations: the
linearly spaced frequencies and the proportionally spaced frequencies. In this paper, we propose to apply the
frequency hopping (FH) waveform to the MCPR systems for an enhanced antijamming capability, which
has been a key criterion in military and other mission critical applications. It is, however, difficult to define
the UD with randomly spaced frequencies (RSF) led by the FH waveform. Under the RSF configuration,
the UD becomes a random variable. We try to depict its statistical property with a deterministic value and
find that the upper bound of the random UD plays an important role. We prove that, without phase noise,
the UD can reach its upper bound with a large probability when only a dozen of carriers are employed,
as long as the hop set of FH waveform is large enough. Simulations further show that even in the presence of
phase noise and multipath fading scenarios the UD under the RSF configuration can also achieve its upper
bound asymptotically if the number of carriers is moderately increased from a dozen to several dozens. Our
paper uncovers the feasibility of applying the FH waveform to the MCPR systems.

INDEX TERMS Multi-carrier phase ranging, unambiguous distance, frequency hopping waveform.

I. INTRODUCTION
Carrier phase measurement can be used to estimate the dis-
tance that radio signal travels since the latter is proportional
to the phase shift between the received and transmitted sig-
nal. This ranging technique has been widely used in many
fields, such as radio navigation [1]–[3], telemetry [4], deep
space ranging [5], radar [6], smart sensor and RFID tag
localization [7], [8], optical interferometer [9], and wireless
network security [10]. A well known problem with carrier
phase ranging is phase ambiguity. When the distance to be
measured is larger than the carrier wavelength, the number
of whole cycles cannot be directly fixed by a single phase
measurement. To resolve phase ambiguity, it is common to
employ multiple carrier frequencies during one ranging cycle
for joint estimation [1]–[9].

Even in a multi-carrier phase ranging (MCPR) system,
phase ambiguity cannot be eliminated completely. Only if
the distance is constrained within a specific interval called

as the unambiguous distance (UD), a unique estimation can
be obtained. Therefore, the UD serves as a metric gauging
the maximum measurable distance of an MCPR system.
The size of UD depends on the set of carrier frequencies
used for ambiguity resolution, i.e. {fi} (i = 1, . . . ,M ). Two
common configurations of {fi} include linearly spaced fre-
quencies (LSF) and proportionally spaced frequencies (PSF),
as shown in Fig. 1(a) and 1(b) respectively. In the former case,
the UD is the synthetic wavelength1 of two adjacent carriers,
i.e. c/1f , where c is the signal propagation speed and 1f is
the frequency step [3], [7]. In the latter case, the UD is just
the largest carrier wavelength itself [4].

Recently, there has been an realistic need for enhancing
the anti-jamming capability of radio positioning/navigation
systems since they are becoming an important information

1It is also called as the lane width in some radio navigation systems such
as [1] and [3].
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FIGURE 1. Configurations of the carrier frequencies in an MCPR system.

infrastructure [20], [21]. Frequency hopping (FH) waveform
has been widely used in tactical and commercial radio com-
munication networks for anti-jamming purposes [23]–[25].
In the FH waveform, the carrier frequency switches quickly
amongst the hop set under the control of a random hopping
sequence, as shown in Fig. 1(d). Since the hop set usually
consists of a large number of channels and the hopping
sequence is difficult to follow or predict, the FH waveform
can evade jamming signals effectively. In this paper, we pro-
pose to apply the FH waveform to MCPR systems for an
enhanced anti-jamming capability. However, the application
of FH waveform also brings a new problem: the carrier
frequencies employed during one ranging cycle are randomly
spaced within the bandwidth, as shown in the red lines of
Fig. 1(c), and it is not clear how to define the UD in terms
of randomly spaced frequencies (RSF). The challenge lies in
that the corresponding UD, 3rsf , is a random variable and
its statistical property is difficult to describe since the phase
ambiguity resolution is a non-linear estimation problem.

In this paper, we aim to find a deterministic value instead of
a random variable to depict the measurable distance ofMCPR
systems under the RSF configuration. It is safe to adopt the
lower bound of the random UD as the metric, but it also
drastically underestimates the practical performance.We then
turn to explore the feasibility of using the upper bound,
3rsf , as the metric.
We firstly derive the expression for 3rsf and prove that the

necessary and sufficient condition for random UD achieving
this upper bound is the carrier frequencies {fi} (i = 1, · · · ,M )
are relatively prime. By means of growth estimation tech-
nique in number theory, we further derive an elegant closed-
form expression to approximately describe the probability
of {fi} being relatively prime, i.e. PM . We are inspired to
find that, as long as the hop set of FH waveform consists
of a large number of channels, PM will approach 1 when
only a dozen of carrier frequencies are employed. This con-
clusion is well supported by numerical simulations. As to a

fast frequency hopping waveform, 1000 hops per second for
example, the corresponding ranging cycle takes just a dozen
of milliseconds.

The above analysis is based on the assumption that phase
error is absent. We further investigate the impact of phase
error on the UD under the RSF configuration through exten-
sive simulations. It has been reported that the size of UD
under the LSF configuration varies significantly depending
on whether phase error is neglectable or not [9]. One may
anticipate a similar result for the RSF configuration. Fortu-
nately, the simulation results show that, even in the presence
of random noise and multipath induced phase error, the UD
under the RSF configuration can still achieve its upper bound
3rsf asymptotically as long as the number of carriers M are
moderately increased from a dozen to several dozens. As a
comparison, to obtain the same theoretical UD under the LSF
and PSF configurations, an order more carriers or extremely
accurate phase measurement would be a necessary condition.

The contributions of this paper are summarized as follows:
• The FH waveform is firstly introduced into MCPR sys-
tems for an enhanced anti-jamming capability.

• We prove that, when phase error is absent, the upper
bound of the random UD3rsf can serve as a trustworthy
metric of the measurable distance for MCPR systems
employing the FH waveform, as long as the frequency
hop set is large enough.

• Simulations further show that 3rsf can also be achieved
probably even in the presence of phase noise and multi-
path induced phase error.

The remainder of the paper is organized as follows.
In Section II, we provide a brief review about the related
works. In Section III, we present the system model for
an MCPR system employing the FH waveform. The anal-
ysis on the UD of the RSF configuration in the absence
of phase error is provided in Section IV, followed by the
numerical simulations. In Section V, we study the impact of
phase error on the UD under the RSF configuration through
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extensive simulations. Finally, conclusions are achieved
in Section VI.

II. RELATED WORKS
The unambiguous distance of an MCPR system defines its
measurable distance, and it has received many research inter-
ests [1], [3], [6], [7], [9]. The size of UD depends on the car-
rier frequencies used for phase ambiguity resolution. If only
a single carrier is used, the UD is obviously the wavelength
itself. An MCPR system under the PSF configuration is just
the case. In such a system, phase ambiguity is resolved in a
cascadingmanner, i.e., the range estimation obtained from the
carrier with a longer wavelength is used to resolve the phase
ambiguity of the carrier with a shorter wavelength. Therefore,
the UD of the system is limited by the longest wavelength.
In telemetry applications, the synthetic carrier wavelength
may be as long as tens of thousands of kilometers to guarantee
a large measurable distance [4].

Under the configuration of dual carrier frequencies2

{f1, f2}, a widely accepted metric of UD is the synthetic
wavelength of these two frequencies, i.e. 3 = c/1f , where
1f = |f1 − f2| [3]. Take the carrier phase GPS for exam-
ple. When the frequencies of L1 (1575.42MHz) and L2
(1227.60MHz) are employed, the synthetic wavelength is
c/(L1 − L2) = 86.2cm, nearly 4 times larger than the orig-
inal wavelength. Actually, the theoretical UD, which is the
least common multiple of the two carrier wavelengthes [14],
is much larger than the synthetic wavelength. In the above
example, the theoretical value of UDwith frequencies L1 and
L2 is 14.66m, 17 times larger than the synthetic wavelength.
However, the theoretical UD with dual carriers can only be
obtainedwhen the phase error is small enough [9]. Otherwise,
the synthetic wavelength is still a good metric for gauging the
measurable distance of an MCPR system.

The UD with more than two carrier frequencies has been
investigated in [2], [6], and [7]. Under the LSF configura-
tion, UD can still be depicted by the synthetic wavelength,
i.e., c/1f . A smaller frequency step results in a larger UD.
However, the bandwidth also shrinks which leads to a deteri-
orated ranging accuracy [6]. Alternatively, more carriers can
be used to occupy a large bandwidth. For example, a radio
navigation system in [2] employs 192 frequencies to enlarge
the UD to kilometer level, but one measurement cycle takes
as long as 6 seconds, leading to a poor real time performance.

In [11], a mechanism has been designed to select carrier
frequencies randomly for an MCPR system. It is observed
that the UD can be significantly enlarged compared with
the LSF configuration, but no solid explanation is provided.
Furthermore, the mechanism proposed in [11] adopts two
independent randomization process, which does not agree
with the model of FH waveform as shown in Fig. 1(d).

Finally, it is worthy to note that, although the FHwaveform
has already been applied to an MCPR radar system [6],
the UD of such an FH radar is still a deterministic value.

2It is regarded as a special case of the LSF configuration in this paper.

The reason lies in that all the frequencies in the hop set are
used for ambiguity resolution. Essentially, this configuration
degenerates to an LSF case. In this paper, we are concerned
to describe the random UD when only a random subset of the
hop set is used for ambiguity resolution.

III. SYSTEM MODEL
In this section, we provide the model for an MCPR system,
including the configuration of carrier frequencies as well as
the phase ambiguity resolution.

A. CONFIGURATION OF CARRIER FREQUENCIES
Under the LSF configuration, as shown in Fig. 1(a), the set of
carrier frequencies {fi} is an arithmetic sequence, i.e., fi+1 =
fi + 1f (i = 1, · · · ,M − 1). Given the bandwidth B,
the number of carrier frequencies can be represented asM =
B/1f . On one hand, a smaller frequency step leads to a larger
UD because 3lsf = c/1f [7]. On the other hand, a larger
bandwidth B results in a better ranging accuracy [6], [13].
Therefore, M would be increased to achieve good perfor-
mance at both ends. In practical MCPR system that employs
the LSF configuration, M varies from 2 to several hundreds.
A larger M means a longer measurement cycle, and thus
poorer real time performance.

Under the PSF configuration, as shown in Fig. 1(b), the fre-
quency step of {fi} is an geometric sequence, i.e, 1fi+1 =
µ1fi (i = 1, · · · ,M − 1) where µ is an positive integer. The
UD under the PSF configuration is determined by the longest
synthetic wavelength, i.e. 3psf = c/1f1. Since 1fi enlarges
exponentially, the number of carriersM is much smaller than
that under the LSF configuration given the same bandwidthB.
In telemetry applications that employs the PSF configuration,
M is usually no more than 10.

The application of the FH waveform to an MCPR system
results in the random spaced frequencies (RSF) configu-
ration, as shown in the red lines of Fig. 1(c). In the FH
waveform, the carrier frequency switches quickly amongst
the hop set 8 = {fi} (i = 1, · · · ,N ) under the control of a
random hopping sequence, as shown in Fig. 1(d). In general,
8 itself is just a LSF set and N is large enough, as shown
in the blue lines of Fig. 1(c). The elements of the hopping
sequence are integers ki (i = 1, · · · ,N ) which map to the
carrier frequencies fi with the equation fi = kiδf where δf
is the frequency step of the hop set. During one ranging
cycle, the phase of M (M � N ) carriers are measured for
ambiguity resolution.3 To evade jamming signals effectively,
the hopping sequence should be as random and uniform as
possible [26]. Therefore, it is equivalent to randomly choose
M frequencies from the hop set 8 following the uniform
distribution. The non-continuity of the bandwidth B under
the RSF configuration is taken into consideration for two
reasons: (i) in the dynamic spectrum access paradigm enabled
by cognitive radios, the distribution of available spectrum is

3If M = N , the RSF configuration degenerates to the LSF configuration
and the measurement time for one ranging cycle enlarges correspondingly.
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TABLE 1. Symbols for describing different configurations of carrier
frequencies.

often non-contiguous [12]; (ii) the FH waveform can readily
aggregate the non-contiguous bandwidth to further improve
the anti-jamming capability as well as the ranging accuracy
of an MCPR system [13].

We denote K as the set of positive integers {ki} (i =
1, · · · ,N ). The minimum and maximum value of {ki} is Kmin
and Kmax respectively. Due to the non-continuity of the band-
width B, the integers in K is also non-contiguous. We divide
K into L sub-sets, each containing Nl contiguous integers.
So the norm of K can be represented as N =

∑L
l=1 Nl .

The symbols used to describe the LSF, PSF and RSF
configurations are summarized in Table 1.

B. AMBIGUITY RESOLUTION OF AN MCPR SYSTEM
In an MCPR system, phase shift between the reference and
received signals are measured at multiple carrier frequencies
for ambiguity resolution. Denoting the reference signals as
x(t) = At cos(2π fit) {i = 1, · · · ,M}, then the received
signal is the addition of the delayed signal and channel noise,
i.e., y(t) = Bt cos(2π fi (t−d/c))+w(t), where At and Bt are
signal amplitudes, d is the distance that radio signal travels,
c is the signal propagation speed, and w(t) is the channel
noise.

The theoretical values of phase shifts between the reference
and received signals are

ϕ0i = 2π fi
d
c

(mod 2π ). (1)

Due to the modulo operation, there exists ambiguity when
deducing d from the phase measurements. Eqs. (1) can also
be written as

d = niλi +
ϕ0i

2π
λi, (2)

where λi = c/fi is the wavelength of the i-th carrier, ni is the
whole cycle ambiguity. Under the PSF configuration, ni is
solved iteratively by ni−1 while n1 is determined by a-priori
knowledge about d . Under the LSF and RSF configurations,
d and ni are solved together by phase measurements. How-
ever, Eqs. (2) are underdetermined, and therefore, the solution
of d is not unique. These solutions are spaced apart with
the cycle of the least common multiple of λi [14], which
is referred as the UD. A unique solution of d can only be
obtained if d is constrained within the UD.

In the presence of phase error, analytical solution to
Eqs. (2) is not available. Alternatively, ambiguity can be
resolved by some estimation techniques, such as phase
unwrapping [19] and least square estimation [7]. Denot-
ing the phase measurement as ϕi = ϕ0i + ni where ni is
the phase error. In this paper, we adopt the least square
estimator

d̃ = argd min F(d) s.t. d ∈ D, (3)

where F(d) =
√∑

(ϕi − 2π〈 d
λi
〉)2 is the square error of the

estimation d , 〈x〉 is the fractional part of x, andD is the search
interval. In the presence of phase error, there exist two kinds
of ranging error, i.e. local small error and outliers [13]. Since
the uniqueness of distance estimation is not feasible, we have
to make a new definition of the practical UD with phase
error.
Definition 1: The practical UD of MCPR systems after

phase errors have been introduced is the maximum search
interval D which satisfies that Pr(|̃d − d0| ≤ `) > Pthre,

where d0 is the true distance while d̃ is the estimated distance
based on the objective function (3), ` is the threshold for non-
outlier estimation, Pthre is the threshold for the probability of
non-outliers, |x| and Pr(x) denotes the absolute value and the
probability of x respectively.
In other words, the practical UD is the maximum

search interval to guarantee the probability of non-outlier
estimations is large enough, say 99.9%. In Section V,
we will analyze the impact of phase error on the practical
UD quantitatively.

IV. UNAMBIGUOUS DISTANCE UNDER THE RSF
CONFIGURATION WITHOUT PHASE ERROR
In this section, we firstly derive the lower and upper bound of
theoretical UD under the RSF configuration, and then analyze
the probability of UD achieving its upper bound 3rsf in the
absence of phase error. Finally, numerical simulation results
are provided to verify the theoretical analysis.

A. THE LOWER AND UPPER BOUND OF UD
As stated in Section III, without phase error, the theoreti-
cal UD is the least common multiple of the carrier wave-
lengths used for ambiguity resolution. Theorem 1 describes
the theoretical UD in terms of the carrier frequencies
{fi} (i = 1, . . . ,M ).
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Theorem 1: The theoretical UD of an MCPR system can
be expressed as follows:

3 =
c
κδf

, (4)

where κ is the greatest common divisor of
{ki} (i = 1, · · · ,M ).

Proof: Since3 = ai ·λi (ai is an integer) and λi =
c
kiδf

,

we turn to find the least commonmultiple of {1/ki}. Denoting
1/κ ′ as one of the common multiples of {1/ki}. Since 1/κ ′ is
divisible by 1/ki if and only if ki is divisible by κ ′, it is obvious
that κ ′ is the common divisor of {ki}. If κ ′ is the greatest
common divisor of {ki}, i.e. κ , then its inverse is the least
common multiple of {1/ki}. Therefore, 3 could be expressed
as

c
κδf

. �

Based on Theorem 1, we can easily conclude the lower and
upper bounds of the UD under the RSF configuration. On one
hand, the greatest common divisor of {ki} is no greater than
Kmin, thus the lower bound can be represented as

3̃rsf =
c

Kminδf
= λmax . (5)

This lower bound is achieved only under the extreme
condition that all the frequencies in the RSF config-
uration are a multiple of (Kmin)δf . For modern radio
positioning/navigation systems employing the UHF or
L band, the maximum carrier wavelength is on the meter
level or below. It is safe but over-conservative to adopt such
a value as the metric for the measurable distance under the
RSF configuration.

On the other hand, the upper bound can be represented as

3rsf =
c
δf
. (6)

Furthermore, we obtain the following lemma without addi-
tional proof.
Lemma 1: 3rsf can be obtained if and only if the integers

in {ki} (i = 1, · · · ,M ) are relative prime.
Remark: According to Eq. (6), a smaller δf results in a

larger 3rsf . The frequency step adopted by the FH wave-
form is usually on the order of KHz [27]. Correspondingly,
the upper bound of the random UD may be up to tens
of or even hundreds of kilometers, large enough for most
radio positioning/navigation applications. So the key problem
left is how probable that theM -tuple {ki} being relative prime
and how this probability varies with respect to the number of
carriers M .

B. THE PROBABILITY OF OBTAINING 3rsf
As revealed by Lemma 1, the probability that UD under RSF
configuration obtains its upper bound is equivalent to the
probability that M random algebraic integers {ki} being rela-
tive prime. In the field of analytical number theory, a similar
problem has been solved by the Benkoski’s theorem [16].
However, these random integers are required to be chosen
from a continuous set [1, N ]. Here, we try to tackle the

difficulties arising from the non-continuous candidate set
K (L ≥ 1) and arbitrary starting point Kmin under the RSF
configuration.

Denoting the probability that integers {ki} (i = 1, . . . ,M )
randomly chosen fromK are relative prime as PM . The value
of PM is depends not only on M , but also on the number of
sub-bands, L, as well as the distribution of these sub-bands.
Under the assumption that L and M are the constants much
smaller than N , we manage to specify the ‘‘growth’’ of PM
with respect to these parameters using the growth estimation
tool borrowed from the analytic number theory.
Theorem 2: The probability that M random integers {ki}

out of K being relative prime can be approximated as

PM ≈
1

ζ (M )
,

where ζ (·) is the Riemann-zeta function.
Proof: Firstly, we define the following notations.

• p1, · · · , pN : a serial of distinct primes;
• Ap1,··· ,pN : the number of M -tuples composed with posi-
tive integers in K which can be divided by

∏N
i=1 pi;

• Z : the number of relative primeM -tuples composedwith
integers out of K.

Obviously, PM = Z/NM . So we concentrate on deriving
the expression for Z .

These integers in theM -tuple are relative prime if and only
if there exists no prime that divides allM integers. According
to the Inclusion-Exclusion principle, we have

Z = NM
−

∑
p1

Ap1 +
∑
p1<p2

Ap1p2 −
∑

p1<p2<p3

Ap1p2p3 + · · · .

(7)

Let xj represents the number of integers in K that can be
divided by the integer j, then xMj is the number of M -tuples
that can be divided by the integer j, and we have

∑
p1 Ap1 =

xM2 + x
M
3 + x

M
5 + x

M
7 + · · · ,

∑
p1<p2 Ap1 p2 = xM2∗3 + x

M
2∗5 +

xM2∗7+· · · , and so on. By using theMöbius functionµ, Eq. (7)
can be reformatted more compactly as

Z =
∞∑
j=1

µ(j)xMj , (8)

where µ (j) is the Möbius function defined as

µ (j) =


1 if j = 1;
0 if j has repeated prime factors;
(−1)r if j has r different prime factors.

Actually, we do not need the infinity at the upper end of
the summation in Eq. (8), since the terms with j > Kmax are
all zeros. So we further rewrite the sum as

Z =
Kmax∑
j=1

µ(j)xMj . (9)

Let Nl and xj (l) denote the number of integers in the l-th
segment ofK and those can be divided by j respectively, then

10300 VOLUME 5, 2017



P. Liu et al.: UD of MCPR With Random Hopped Frequencies

N =
∑L

l=1 Nl , xj =
∑L

l=1 xj (l). Since each pair of adjacent
integers that can be divided by j are spaced apart with j, the
maximum of xj (l) is dNl/je while its minimum is bNl/jc.
So we have

∑L
l=1(Nl/j− 1) < xj (l) <

∑L
l=1(Nl/j+ 1), that

is, N/j−L < xj < N/j+L. Furthermore, under the assump-
tion that L is a small constant independent of N , we have
xj = O(Nj ).

Since

xMj −
(N
j

)M
=

(
xj −

N
j

)(
xM−1j + xM−2j

(N
j

)
+ · · · +

(N
j

)M−1)
,

and 0 ≤ N/j− xj ≤ L, we have

xMj − (
N
j
)M = O

((N
j

)M−1)
. (10)

Applying the growth estimate of Eq. (10) to Eq. (9),
we have

Z =
Kmax∑
j=1

µ (j)
(N
j

)M
+O

( Kmax∑
j=1

(N
j

)M−1)
. (11)

Therefore, PM can be represented as

PM =
Z
NM

=

Kmax∑
j=1

(µ (j)
jM

)
+O

(
N−1

Kmax∑
j=1

( 1
jM−1

))
. (12)

As proved in [17], the summation of Dirichlet series µ (j)
jM

is
∞∑
j=1

µ (j)
jM
=

1
ζ (M )

.

So, the first sum in Eq. (12) can be rewritten as

Kmax∑
j=1

µ (j)
jM
=

1
ζ (M )

−

∞∑
j=Kmax+1

µ (j)
jM

=
1

ζ (M )
+O

(∫
∞

Kmax+1

dx
xM

)
=

1
ζ (M )

+O
(
(Kmax + 1)1−M

)
. (13)

To simplify the analysis, we assume M ≥ 3. When N →
∞, Kmax also approaches to the infinity. Since M ≥ 3,
we have O((Kmax + 1)1−M )→ 0.
For the second term in Eq. (12), also under the condition

that M ≥ 3 and Kmax →∞, we have

Kmax∑
j=1

1
jM−1

= O
(∫ Kmax

1

dx
xM−1

)
= O(1),

and thus, this term is on the order of O(N−1), which also
approaches to 0 when N →∞.

Finally, we conclude that

lim
N→∞

PM =
1

ζ (M )
. (14)

The number of available frequencies of the FH waveform,
N , is usually on the order of tens of thousands in engineer-
ing systems. In such a condition, the approximation made
in Theorem 2 is good enough to specify the probability of
the M -tuple {ki} randomly chosen from K being relative
prime. �
Remark: When M > 1, the Riemann-zeta function is

always a positive number larger than 1, and it converges to
1 rapidly asM increases. Therefore, the approximated proba-
bility of {ki} (i = 1, . . . ,M ) being relative prime approaches
to 1 as M increases. Since the upper bound of the random
UD can be obtained with large probability, we propose to
adopt this value as the metric of the measurable distance for
an MCPR system under the RSF configuration.

C. NUMERICAL SIMULATION
As stated in Theorem 2, the probability of an M -tuple ran-
domly chosen from K being relative prime can be approx-
imated with the inverse of Riemann-zeta function. In this
section, we conduct numerical simulations using the Monte-
Carlo method to examine the accuracy of this approximation.
In simulations, the bandwidth B ranges from 132MHz to
862MHz, which is readily available for radio communica-
tion systems employing the FH waveform [23], [24]. The
frequency resolution is δf = 1 kHz. The hop set consists of
N = 215 carrier frequencies which are distributed uniformly
within B. We examine three different scenarios where the
number of spectrum segments L is 1, 7, and 12 respectively.
M ranges from 3 to 13. The corresponding {ki} are chosen
randomly from K using an M -sequence generator. For each
combination of M and L, 105 Monte-Carlo simulations are
conducted, and then the probability of {ki} being relative
prime is calculated.

Both the theoretical and simulation results on the prob-
ability PM are given in Fig. 2. As shown in the figure,
when the frequency hop set is large enough, the simulation
results of PM agree with the theoretical value in all scenarios.
Therefore, the approximation made in Theorem 2 is accurate
enough. Another important observation is thatPM approaches
1 very closely when M > 10 no matter how many segments
the bandwidth is composed with. A small M means a short
ranging cycle while a large N leads to a large UD. Therefore,
the size of UD under the RSF configuration can be easily
extended without sacrificing the real time performance.

V. THE IMPACT OF PHASE ERROR ON THE
PRACTICAL UNAMBIGUOUS DISTANCE
In this section, we study the impact of phase error on the
practical UD of the RSF configuration through extensive
simulations. Particularly, we investigate two different kinds
of phase error, i.e. random noise and multipath induced error.

As defined in Section III, a practical UD is the maximum
interval within which the probability of non-outliers is large
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FIGURE 2. Probability of M-tuple {ki } out of K being relative prime.

enough. Under the RSF configuration, a distance estimation
d̃ is regarded as a non-outlier if |̃d−d0| < c/(1f )max , where
(1f )max is the maximum step of any two adjacent frequencies
in the RSF configuration.4 We try to find out whether the
practical UD under the RSF configuration can achieve 3rsf .

A. PRACTICAL UD WITH RANDOM PHASE NOISE
Phase noise is modeled as an i.i.d random variable following
the zero mean Gaussian distribution. We consider two cases
with the standard deviation of σ = 0.1 rad and σ = 0.5 rad,
respectively. The lowest carrier frequency is 131.9 MHz and
the frequency step of the hop set is δf = 1 MHz. Correspond-
ingly, the upper bound of the random UD is 3rsf = 300 m.
Choosing a large δf is to facilitate the analysis of the least
square objective function. The true distance is 201m and the
search interval for the least square estimator is [51m, 351m].
This search interval centers around the true distance and
its length equals to 3rsf . The number of carriers M varies
from 3 to 200. For each M , we conduct 105 Monte-Carlo
simulations and calculate the probabilities of non-outlier esti-
mations. Simulation results under the RSF configuration are
shown as the red lines in Fig. 3.

When the standard deviation of phase noise is small
(σ = 0.1), the probability of non-outlier estimations within
the interval of 3rsf converges to 1 whenM > 10. This result
agrees well with the Theorem 2. As the standard deviation of
phase noise grows (σ = 0.5), the probability of non-outlier
estimations drops moderately. But 3rsf can also be obtained
asymptotically when M > 20.

1) COMPARISON WITH THE LSF CONFIGURATION
As a comparison, we construct a LSF configuration which
also meets the criterion that carrier frequencies are relatively
prime while the frequency step is 1f = 6δf . Theoretically,

4A non-outlier is NOT an accurate estimation. Since the accuracy metric
of an MCPR system is out of the scope of this paper, interested readers can
refer to [13] for more information.

FIGURE 3. Probability of non-outlier estimation in the presence of
Gaussian phase noise under the LSF and RSF configurations.

FIGURE 4. Probability of outliers under the LSF configuration after phase
noise is introduced.

the UD under this LSF configuration is the same as that under
the RSF configuration. We also conduct 105 Monte-Carlo
simulations to investigate the impact of phase noise on the
UD under the LSF configuration. An estimation d̃ is regarded
as a non-outlier if |̃d−d0| < c/(1f ). For eachM , we choose
the same bandwidth B for the two configurations for fair-
ness because B also determines the ranging accuracy of an
MCPR system [13]. The simulation results under the LSF
configuration are shown as black lines in Fig. 3. Compared
with the RSF configuration, the probability of non-outlier
estimations under the LSF configuration drops dramatically
when the number of carriers is decreased. The theoretical UD
cannot be obtained asymptotically until M grows to several
tens or hundreds.

To get some insight into this phenomenon, we further
investigate the objective function of the least square estimator
under the LSF and RSF configuration. Since the frequencies
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FIGURE 5. Objective function of the least square estimator under the LSF and RSF configurations. (a) M=20, LSF configuration. (b) M=200, LSF
configuration. (c) M=20, RSF configuration. (d) M=200, RSF configuration.

under the LSF configuration are also relatively prime, the the-
oretical UD is also 3lsf = 300 m. However, the objective
function under the LSF configuration has one main-lobe at
the true distance and multiple side-lobes at the outliers within
the interval of 3lsf , as shown in Fig. 5(a) and 5(b). Even in
the absence of phase noise, the peaks of these side-lobes are
very close to that of the main-lobe. For example, the differ-
ence between the main peak (d=201m) and these side peaks
in Fig. 5(a) is less than 0.001. It is very difficult to distinguish
the main peak from these side peaks after phase noise is
introduced. Therefore, outliers will occur at these side peaks
with large probability. The main peak is not distinguishable
until M becomes larger, as shown in Fig. 5(b).
The probability of outliers under the LSF configuration

after phase noise has been introduced is presented in Fig. 4.
In line with the expectation, if M is small while the standard
deviation of phase noise is large, the probability of each
outlier is nearly equivalent to that of non-outlier estimation.
These outliers are spaced apart with the cycle of 50 m, which

is just the synthetic wavelength c/1f . Only if hundreds of
carrier frequencies are employed under the LSF configura-
tion, the probabilities of outliers is neglectable. Therefore,
for an MCPR system which uses less than ten carrier fre-
quencies, such as Omega and carrier phase GPS, it is the
synthetic wavelength rather than the theoretical UD that is
more suitable for gauging the measurable distance.

On the contrary, under the RSF configuration, although
there also exist some side peaks in the objective function,
they are distinguishable from the main peaks even M is
small, as shown in Fig. 5(c). This is particularly true
as M enlarges, indicated by Fig. 5(d). Correspondingly,
the probability of outliers is small after phase noise has been
introduced and it is feasible to adopt 3rsf as the UD under
the RSF configuration.

2) COMPARISON WITH THE PSF CONFIGURATION
Finally, we compare the impact of phase noise on the prac-
tical UD under the RSF configuration against that under
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FIGURE 6. Probability of non-outliers in the presence of Gaussian phase
noise under the LSF and PSF configurations.

the PSF configuration. Since the frequency step under the
PSF configuration grows exponentially as the number of
carriers M is increased, it is infeasible to employ a large M .
We set 1f1 = 1MHz and M = 7. The theoretical UD
is 3psf = 300 m which is set as the search interval. The
largest frequency step is 1f6 = 1024MHz and the band-
width is B = 1365MHz. For the RSF configuration, B and
M are set the same as that of the PSF configuration. The
standard deviation of Gaussian phase noise σ varies between
0.01 rad and 1 rad and 105 Monte-Carlo simulations are
conducted for each σ . We define 10 log 1

σ 2
as the signal-

to-noise-ratio (SNR) of phase measurement and investigate
the relationship between the probability of non-outliers and
phase SNR. The simulation results under these two configu-
rations are shown in Fig. 6.

SinceM is small, the theoretical UD under the RSF config-
uration can only be obtained asymptotically when phase SNR
is larger than 15dB. However, the asymptotical condition for
obtaining the theoretical UD under the PSF configuration
is even much stricter, since the probability of non-outliers
approaches 1 only when phase SNR is larger than 40dB. If the
phase SNR is not that high, it is convenient to increase the
probability of non-outliers by employing more carriers under
the RSF configuration while this method does not work under
the PSF configuration.

B. PRACTICAL UD WITH MULTIPATH
INDUCED PHASE ERROR
In this section, we turn to study the impact of multipath
induced phase error on the practical UD. The multipath
induced phase error is sensitive to channel parameters, and
therefore, it is vulnerable to environment change and difficult
to predict [22]. We model the phase error induced by multi-
path fading as i.i.d random variables following the zero-mean
uniform distribution. This model has been verified by some
in-site measurements [22]. For simplicity, Gaussian phase
noise is ignored after multipath error has been introduced.

FIGURE 7. Probability of non-outliers in the presence of multipath
induced phase error.

The parameter settings forMonte-Carlo simulations are the
same with those in the previous section except for the phase
error model. The multipath induced phase error is assumed to
be uniformly distributed within [−δ, δ]. We consider a weak
multipath environment where δ = π/4 and a strongmultipath
environment where δ = π/2 respectively. The probability of
non-outliers under the RSF configuration is shown in Fig. 7
and it is only comparedwith that under the LSF configuration.
Similar with Fig. 3, the practical UD under the RSF configu-
ration is more robust against multipath error than that under
the LSF configuration. Even in strongmultipath environment,
the probability of unambiguous estimation under the RSF
configuration can approach 1 by employing only 20 carriers,
whereas the minimum number of carriers needed by the LSF
configuration to obtain the UD reliably is more than 200,
an order more than that needed by the RSF configuration.
More importantly, this result confirms that3rsf can also serve
as a practical metrics for themeasurable distance of anMCPR
system in multipath scenarios.

VI. CONCLUSION
This paper introduces the frequency hopping radio wave-
form into MCPR systems and explores the performance with
respect of the unambiguous distance (UD) under the resulting
RSF configuration. With boasted anti-jamming capability,
the randomness of carrier frequencies in the RSF config-
uration implies that the UD is a random variable. In this
paper, we aim to depict the UD under the RSF configuration
with a deterministic value and find that the theoretical upper
bound of random UD, i.e. 3rsf , play a role. We derive an
closed-form expression for the 3rsf and further prove that
the sufficient and necessary condition for achieving 3rsf is
the carrier frequencies are relatively prime. With the help
of number theory tools, we obtain an elegant expression to
approximately describe the probability that the frequencies
in the RSF configuration are relatively prime, i.e. PM . We are
inspired to find that, as long as the hop set of the FHwaveform
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is large enough, PM approaches 1 when only a dozen of
carriers are employed. This conclusion is well supported
by numerical simulations and indicates 3rsf can serve as a
trustworthy metric for the UD under the RSF configuration.

We further study the impact of phase error on the
practical UD. Two kinds of phase error, including random
noise and multipath induced phase error, are considered.
Simulations show that, as long as the number of carriers
are increased moderately from a dozen to several dozens,
the practical UD can still achieve 3rsf with large probability.
For a fast frequency hopping waveform, 1000 hops per sec-
ond for example, the corresponding ranging cycle takes just
ten of milliseconds. In contrast, the asymptotical condition
for obtaining the theoretical UD under the LSF and PSF
configurations are much stricter since one order more carriers
and much higher phase SNR are needed respectively.

Our work uncovers the feasibility of applying the FH
waveform to MCPR systems. Particularly, it reveals that a
frequency hoppingMCPR system has great potential for large
scale radio positioning/navigation applications.
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